Hitting Probabilities of the Random Covering Sets

Bing Li
(joint work with Yimin Xiao and Narn-Rueih Shieh)

Department of Mathematical Science, University of Oulu

Będlewo, 26th April, 2012
Random covering problem on the circle
Covering model

- $\{\xi_n\}$ is a sequence of i.i.d. random variables uniformly distributed on the circle $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ ($\xi_n : \Omega \to \mathbb{T}$, $\mathbb{P} \circ \xi_n^{-1} = \mathcal{L}$)
Covering model

- \(\{\xi_n\} \) is a sequence of i.i.d. random variables uniformly distributed on the circle \(\mathbb{T} := \mathbb{R}/\mathbb{Z} \) (\(\xi_n : \Omega \to \mathbb{T}, \mathbb{P} \circ \xi_n^{-1} = \mathcal{L} \))
- \(\{l_n\} \) is a decreasing sequence of positive numbers (\(0 < l_n < 1, l_n \downarrow 0 \))
Covering model

- \{\xi_n\} is a sequence of i.i.d. random variables uniformly distributed on the circle \(T := \mathbb{R}/\mathbb{Z} \) \((\xi_n : \Omega \to T, \mathbb{P} \circ \xi_n^{-1} = \mathcal{L})\)
- \{l_n\} is a decreasing sequence of positive numbers \((0 < l_n < 1, l_n \downarrow 0)\)
- Random intervals: \(I_n(\omega) = \xi_n(\omega) + (0, l_n) \)
Covering model

- \(\{ \xi_n \} \) is a sequence of i.i.d. random variables uniformly distributed on the circle \(\mathbb{T} := \mathbb{R}/\mathbb{Z} \) \((\xi_n : \Omega \to \mathbb{T}, \mathbb{P} \circ \xi_n^{-1} = \mathcal{L})\)

- \(\{l_n\} \) is a decreasing sequence of positive numbers \((0 < l_n < 1, l_n \downarrow 0)\)

- **Random intervals** : \(I_n(\omega) = \xi_n(\omega) + (0, l_n) \)

- **Random covering set**

\[
E(\omega) := \{ t \in \mathbb{T} : t \in I_n(\omega) \text{ infinitely often} \} = \limsup_{n \to \infty} I_n(\omega)
\]
Covering model

- \{\xi_n\} is a sequence of i.i.d. random variables uniformly distributed on the circle \(\mathbb{T} := \mathbb{R}/\mathbb{Z} \) (\(\xi_n : \Omega \rightarrow \mathbb{T}, \mathbb{P} \circ \xi_n^{-1} = \mathcal{L} \))
- \{l_n\} is a decreasing sequence of positive numbers (\(0 < l_n < 1, l_n \downarrow 0 \))
- Random intervals : \(I_n(\omega) = \xi_n(\omega) + (0, l_n) \)
- Random covering set

\[
E(\omega) := \{ t \in \mathbb{T} : t \in I_n(\omega) \text{ infinitely often} \} = \limsup_{n \to \infty} I_n(\omega)
\]

- Another writing as random series

\[
E(\omega) = \{ t \in \mathbb{T} : \sum_{n=1}^{\infty} \chi_{(0,l_n)}(t - \xi_n(\omega)) = +\infty \}
\]
Sizes of covering sets

- the roles of the two measures
 - \(P \): measures the randomness of the initial points of the random intervals
 - \(L \): measures the lengths of the random intervals

Kahane (1985) \(E \) is almost surely dense on \(T \) and is of second category.

Borel-Cantelli Lemma implies almost surely
\[
L(\{E(\omega)\}) = \begin{cases} 0 & \text{if } \sum_{n=1}^{\infty} l_n < \infty \\ 1 & \text{if } \sum_{n=1}^{\infty} l_n = \infty \end{cases}
\]
Sizes of covering sets

- The roles of the two measures
 \(\mathbb{P} \): measures the randomness of the initial points of the random intervals
 \(\mathcal{L} \): measures the lengths of the random intervals

- General model:
 \(\mathbb{T} \rightarrow \) any space
 \(\{\xi_n\} \rightarrow \) a stochastic process or the orbit of the dynamical system
 \(\mathcal{L} \rightarrow \) other measure

Kahane (1985)
\(E \) is almost surely dense on \(\mathbb{T} \) and is of second category.

Borel-Cantelli Lemma implies almost surely
\[\mathcal{L}(E(\omega)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{\infty} l_n < \infty \\ 1 & \text{if } \sum_{n=1}^{\infty} l_n = \infty \end{cases} \]
Sizes of covering sets

- The roles of the two measures
 \(\mathbb{P} \) : measures the randomness of the initial points of the random intervals
 \(\mathcal{L} \) : measures the lengths of the random intervals

- General model:
 \(\mathbb{I} \rightarrow \) any space
 \(\{\xi_n\} \rightarrow \) a stochastic process or the orbit of the dynamical system
 \(\mathcal{L} \rightarrow \) other measure

- Questions: How can we describe the covering set \(E(\omega) \)?

Kahane (1985): \(E \) is almost surely dense on \(\mathbb{T} \) and is of second category. Borel-Cantelli Lemma implies almost surely

\[
\mathcal{L}(E(\omega)) = \begin{cases}
1 & \text{if } \sum_{n=1}^{\infty} l_n = \infty \\
0 & \text{if } \sum_{n=1}^{\infty} l_n < \infty
\end{cases}
\]
Sizes of covering sets

- **the roles of the two measures**
 - \(\mathbb{P} \) : measures the randomness of the initial points of the random intervals
 - \(\mathcal{L} \) : measures the lengths of the random intervals

- **General model**:
 - \(\mathbb{T} \rightarrow \) any space
 - \(\{\xi_n\} \rightarrow \) a stochastic process or the orbit of the dynamical system
 - \(\mathcal{L} \rightarrow \) other measure

- **Questions**: How can we describe the covering set \(E(\omega) \)?

- **Kahane (1985)**
 - \(E \) is almost surely dense on \(\mathbb{T} \) and is of second category.
Sizes of covering sets

- **the roles of the two measures**
 - \mathbb{P}: measures the randomness of the initial points of the random intervals
 - \mathcal{L}: measures the lengths of the random intervals

- **General model**:
 - $\mathbb{T} \rightarrow$ any space
 - $\{\xi_n\} \rightarrow$ a stochastic process or the orbit of the dynamical system
 - $\mathcal{L} \rightarrow$ other measure

- **Questions**: How can we describe the covering set $E(\omega)$?

- **Kahane (1985)**
 - E is almost surely dense on \mathbb{T} and is of second category.

- **Borel-Cantelli Lemma implies** almost surely

$$\mathcal{L}(E(\omega)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{\infty} l_n < \infty \\ 1 & \text{if } \sum_{n=1}^{\infty} l_n = \infty. \end{cases}$$
Hitting probability of covering set

\[\dim_H(E) = \alpha := \inf \left\{ s > 0 : \sum_{n=1}^{\infty} l_n^s < \infty \right\} \]
Hitting probability of covering set

\[\text{dim}_H(E) = \alpha := \inf \left\{ s > 0 : \sum_{n=1}^{\infty} l_n^s < \infty \right\} \]

Question:
Given a sequence \(\{l_n\} \) with \(\sum_{n=1}^{\infty} l_n < +\infty \), under what conditions on measurable set \(G \), we have

\[\mathbb{P}(E \cap G \neq \emptyset) > 0? \]
Hitting probability of covering set

- It can be shown that

\[\limsup_{k \to \infty} \frac{\log_2 n_k}{k} = \alpha, \]

where

\[n_k = \# \left\{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \right\} \quad (k \geq 2). \]
Hitting probability of covering set

- It can be shown that

\[\lim_{k \to \infty} \sup \frac{\log_2 n_k}{k} = \alpha, \]

where

\[n_k = \# \left\{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \right\} \quad (k \geq 2). \]

- **Condition (C)**: There exists an increasing sequence of positive integers \(\{k_i\} \) such that

\[\lim_{i \to \infty} \frac{k_{i+1}}{k_i} = 1 \quad \text{and} \quad \lim_{i \to \infty} \frac{\log_2 n_{k_i}}{k_i} = \alpha < 1. \]
Hitting probability of covering set

It can be shown that

$$\lim_{k \to \infty} \sup \frac{\log_2 n_k}{k} = \alpha,$$

where

$$n_k = \# \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \quad (k \geq 2).$$

Condition (C): There exists an increasing sequence of positive integers \(\{k_i\} \) such that

$$\lim_{i \to \infty} \frac{k_{i+1}}{k_i} = 1 \quad \text{and} \quad \lim_{i \to \infty} \frac{\log_2 n_{k_i}}{k_i} = \alpha < 1.$$

Examples: \(l_n = \frac{a}{n^\gamma}, a > 0, \gamma > 1 \); \(l_n = \frac{1}{\beta n}, \beta > 1 \).
Hitting probability of covering set

Theorem

Let E be the random covering set associated with the sequence $\{l_n\}$. If the condition (C) holds, then for every measurable set $G \subset \mathbb{T}$, we have

$$\mathbb{P}(E \cap G \neq \emptyset) = \begin{cases} 0 & \text{if } \text{dim}_P(G) < 1 - \alpha, \\ 1 & \text{if } \text{dim}_P(G) > 1 - \alpha. \end{cases}$$

Remark

The conclusion $\text{dim}_P(G) < 1 - \alpha$ implies $\mathbb{P}(E \cap G \neq \emptyset) = 0$ holds even without the condition (C).
Theorem

Let E be the random covering set associated with the sequence $\{l_n\}$ which satisfies the condition (C). If $\dim_P(G') > 1 - \alpha$, then

$$\dim_P(E \cap G) = \dim_P(G) \quad a.s.$$

and

$$\dim_H(G') - (1 - \alpha) \leq \dim_H(E \cap G) \leq \dim_P(G) - (1 - \alpha) \quad a.s.$$

In particular, if $\dim_H(G) = \dim_P(G')$, then

$$\dim_H(E \cap G) = \dim_H(G') - (1 - \alpha) \quad a.s.$$
Construction of limsup random fractal subset
Limsup random fractal

- dyadic intervals

\[\mathcal{D}_k = \left\{ \left[\frac{i}{2^k}, \frac{i + 1}{2^k} \right] : i \in \mathbb{N} \right\} \]
Limsup random fractal

- dyadic intervals
 \[D_k = \left\{ \left[\frac{i}{2^k}, \frac{i+1}{2^k} \right] : i \in \mathbb{N} \right\} \]

- random variables \((n \geq 1, J \in D_k)\)
 \[Z_k(J) = \begin{cases}
 1 & \text{if } J \text{ is picked,} \\
 0 & \text{otherwise.}
 \end{cases} \]
Limsup random fractal

- dyadic intervals
 \[\mathcal{D}_k = \left\{ \left[\frac{i}{2^k}, \frac{i+1}{2^k} \right] : i \in \mathbb{N} \right\} \]

- random variables \((n \geq 1, J \in \mathcal{D}_k)\)
 \[Z_k(J) = \begin{cases} 1 & \text{if } J \text{ is picked}, \\ 0 & \text{otherwise}. \end{cases} \]

- \(k\)-th level
 \[A(k) = \bigcup_{J \in \mathcal{D}_k, Z_k(J) = 1} J^o \]
Limsup random fractal

- dyadic intervals
 \[D_k = \left\{ \left[\frac{i}{2^k}, \frac{i + 1}{2^k} \right] : i \in \mathbb{N} \right\} \]

- random variables \((n \geq 1, J \in D_k)\)
 \[Z_k(J) = \begin{cases}
 1 & \text{if } J \text{ is picked,} \\
 0 & \text{otherwise.}
 \end{cases} \]

- \(k\)-th level
 \[A(k) = \bigcup_{J \in D_k, Z_k(J) = 1} J^o \]

- limsup random fractal (see Khoshnevisan, Peres, and Xiao, 2000)
 \[A = \limsup_{k \to \infty} A(k) \]
Construction of subset

\[\dim_{p}(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]
Construction of subset

\[\dim_p(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]

\[\mathcal{I}_k = \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \]
Construction of subset

\[\dim_p(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]

\[\mathcal{T}_k = \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \]

For every \(J \in \mathcal{D}_k \), define

\[Z_k(J) = \begin{cases}
1 & \text{if } \exists \ n \in \mathcal{T}_k \text{ such that } J \subset I_n = (\xi_n, \xi_n + l_n), \\
0 & \text{otherwise.}
\end{cases} \]
Construction of subset

\[\dim_p(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]

\[\mathcal{I}_k = \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \]

For every \(J \in \mathcal{D}_k \), define

\[Z_k(J) = \begin{cases}
1 & \text{if } \exists n \in \mathcal{I}_k \text{ such that } J \subset I_n = (\xi_n, \xi_n + l_n), \\
0 & \text{otherwise.}
\end{cases} \]

\[A(k) = \bigcup_{\substack{J \in \mathcal{D}_k \\ Z_k(J) = 1}} J \subset \bigcup_{n \in \mathcal{I}_k} I_n \]
Construction of subset

\[\dim_p(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]

\[\mathcal{I}_k = \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \]

For every \(J \in \mathcal{D}_k \), define

\[Z_k(J) = \begin{cases} 1 & \text{if } \exists n \in \mathcal{I}_k \text{ such that } J \subset I_n = (\xi_n, \xi_n + l_n), \\ 0 & \text{otherwise}. \end{cases} \]

\[A(k) = \bigcup_{J \in \mathcal{D}_k : Z_k(J) = 1} J \subset \bigcup_{n \in \mathcal{I}_k} I_n \]

\[E_* := \limsup_{k \to \infty} A(k) \]
Construction of subset

\[\dim_p(G) > 1 - \alpha \implies \mathbb{P}(E \cap G \neq \emptyset) = 1 \]

\[\mathcal{Z}_k = \{ n \in \mathbb{N} : l_n \in [2^{-k+1}, 2^{-k+2}) \} \]

- For every \(J \in \mathcal{D}_k \), define

\[Z_k(J) = \begin{cases}
1 & \text{if } \exists n \in \mathcal{Z}_k \text{ such that } J \subset I_n = (\xi_n, \xi_n + l_n), \\
0 & \text{otherwise}. \end{cases} \]

\[A(k) = \bigcup_{J \in \mathcal{D}_k} J \subset \bigcup_{n \in \mathcal{Z}_k} I_n \]

\[E_* := \limsup_{k \to \infty} A(k) \]

\[E_* \subset E \]
Thanks for your attention!