Directed path spaces on skeleta of tori

Krzysztof Ziemiański
University of Warsaw (joint work with Martin Raussen)

Applied Topology in Bedlewo 23 July 2013

Directed spaces

Definition

A d-space is a pair $(X, \vec{P}(X))$, where

- X is a topological space,
- $\vec{P}(X)$ is a collection of paths on X called d-paths,
such that
- constant paths are d-paths,
- increasing reparametrizations of d-paths are d-paths,
- concatentations of d-paths are d-paths.

Directed spaces

Definition

A d-space is a pair $(X, \vec{P}(X))$, where

- X is a topological space,
- $\vec{P}(X)$ is a collection of paths on X called d-paths,
such that
- constant paths are d-paths,
- increasing reparametrizations of d-paths are d-paths,
- concatentations of d-paths are d-paths.

For $x, y \in X$ denote

$$
\vec{P}(X)_{x}^{y}:=\{\alpha \in \vec{P}(X): \alpha(0)=x, \alpha(1)=y\}
$$

Directed spaces

Definition

A d-space is a pair $(X, \vec{P}(X))$, where

- X is a topological space,
- $\vec{P}(X)$ is a collection of paths on X called d-paths, such that
- constant paths are d-paths,
- increasing reparametrizations of d-paths are d-paths,
- concatentations of d-paths are d-paths.

For $x, y \in X$ denote

$$
\vec{P}(X)_{x}^{y}:=\{\alpha \in \vec{P}(X): \alpha(0)=x, \alpha(1)=y\} .
$$

A trace space is

$$
\vec{T}(X)_{x}^{y}:=\vec{P}(X)_{x}^{y} / \text { increasing reparametrizations }
$$

Examples of directed spaces

Examples of directed spaces:

- a full d-space $(X, P(X))$,
- a trivial d-space (X, X),
- a directed Euclidean space

$$
\overrightarrow{\mathbb{R}^{n}}:=\left(\mathbb{R}^{n}, \text { paths with non-decreasing coordinates }\right)
$$

- a directed cube $\overrightarrow{l^{n}} \subseteq \mathbb{R}^{n}$
- a directed torus $\vec{T}^{n}=\overrightarrow{\mathbb{R}}^{n} / \mathbb{Z}^{n}$

Application: PV-programs

Motivation: The behaviour of a computer program is described by a directed space X such that:

- points of X are possible states of a program,
- d-paths are possible executions.

Application: PV-programs

Motivation: The behaviour of a computer program is described by a directed space X such that:

- points of X are possible states of a program,
- d-paths are possible executions.

PV-programs

- Processes: A_{1}, \ldots, A_{n}
- Resources: x_{1}, \ldots, x_{m} having arities c_{1}, \ldots, c_{m}
- Every process performs a sequence of operations $P x_{i}$ (locking the resource x_{i}) and $V x_{i}$ (releasing the resource x_{i})
- at most c_{i} processes may lock a resource x_{i} at time

Application: PV-programs

Motivation: The behaviour of a computer program is described by a directed space X such that:

- points of X are possible states of a program,
- d-paths are possible executions.

PV-programs

- Processes: A_{1}, \ldots, A_{n}
- Resources: x_{1}, \ldots, x_{m} having arities c_{1}, \ldots, c_{m}
- Every process performs a sequence of operations $P x_{i}$ (locking the resource x_{i}) and $V x_{i}$ (releasing the resource x_{i})
- at most c_{i} processes may lock a resource x_{i} at time

If processes contain no loops, the corresponding directed space X is a directed cube \vec{l}^{n} with a collection of rectangular areas removed.

Example: Swiss cross

$A_{1}: ~ P a ~ P b V b V a, \quad A_{2}: ~ P b$ Pa Va Vb

The main problem

- We have n processes X_{1}, \ldots, X_{n}
- Every process performs a loop (Pa Va) ${ }^{*}$
- The resource a has arity $n-1$.

The main problem

- We have n processes X_{1}, \ldots, X_{n}
- Every process performs a loop (Pa Va)*
- The resource a has arity $n-1$.

Goal: Calculate the homotopy type (or, at least, homology) of the space of possible executions of these processes.

The main problem

- We have n processes X_{1}, \ldots, X_{n}
- Every process performs a loop (Pa Va)*
- The resource a has arity $n-1$.

Goal: Calculate the homotopy type (or, at least, homology) of the space of possible executions of these processes.

The corresponding directed space is an ($n-1$)-skeleton of the directed n-torus. Hence we need to calculate

$$
H_{*}\left(\vec{P}\left(\vec{T}_{(n-1)}^{n}\right)_{0}^{0}\right)
$$

Universal cover

Universal cover. After passing to universal cover we obtain a decomposition

$$
\vec{P}\left(\vec{T}_{(n-1)}^{n}\right)_{0}^{0} \cong \coprod_{0 \leq \mathbf{k} \in \vec{\pi}_{1}\left(\vec{T}^{n}\right)} \vec{P}\left(\overrightarrow{\mathbb{R}}_{(n-1)}^{n}\right)_{0}^{\mathbf{k}}
$$

Universal cover

Universal cover. After passing to universal cover we obtain a decomposition

$$
\vec{P}\left(\vec{T}_{(n-1)}^{n}\right)_{0}^{0} \cong \coprod_{0 \leq \mathbf{k} \in \vec{\pi}_{1}\left(\vec{T}^{n}\right)} \vec{P}\left(\overrightarrow{\mathbb{R}}_{(n-1)}^{n}\right)_{0}^{\mathbf{k}}
$$

Case $n=2$. The space $\vec{P}\left(\overrightarrow{\mathbb{R}}_{(1)}^{2}\right)_{(0,0)}^{(k, l)}$ is homotopy equivalent to a discrete space with $\binom{k+\prime}{k}$ components.

Euclidean cubical complexes

Notation: Bold letters denote sequences, e.g. $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{aligned}
& \mathbf{x} \leq \mathbf{y} \Leftrightarrow x_{i} \leq y_{i} \\
& \mathbf{x}<\mathbf{y} \Leftrightarrow \mathbf{x} \leq \mathbf{y} \wedge \mathbf{x} \neq \mathbf{y} \\
& \mathbf{x}<\mathbf{y} \Leftrightarrow x_{i}<y_{i}
\end{aligned}
$$

Definition

An elementary cube is a subset of \mathbb{R}^{n} which has the form

$$
[\mathbf{k}, \mathbf{k}+\mathbf{j}]:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{k} \leq \mathbf{x} \leq \mathbf{k}+\mathbf{j}\right\}
$$

where $\mathbf{k} \in \mathbb{Z}^{n}$ and $\mathbf{j} \in\{0,1\}^{n}$.

Euclidean cubical complexes (2)

Definition

A subset $K \subseteq \mathbb{R}^{n}$ is a Euclidean cubical complex if it is a sum of elementary cubes.

Equivalently, a Euclidean cubical complex is a subset of a cubical set \mathbb{R}^{n}.

Examples:

Euclidean cubical complexes (2)

Definition

A subset $K \subseteq \mathbb{R}^{n}$ is a Euclidean cubical complex if it is a sum of elementary cubes.

Equivalently, a Euclidean cubical complex is a subset of a cubical set \mathbb{R}^{n}.
Examples:

Main problem: $H^{*}\left(\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}\right)=$?

- Find a presentation of $\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}$ as a homotopy colimit of spaces $\vec{P}\left([\mathbf{0}, \mathbf{I}]_{(n-1)}\right)_{0}^{\mathbf{l}}$ for $\mathbf{I}<\mathbf{k}$.
- Find a presentation of $\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}$ as a homotopy colimit of spaces $\vec{P}\left([\mathbf{0}, \mathbf{I}]_{(n-1)}\right)_{\mathbf{0}}^{\mathbf{1}}$ for $\mathbf{I}<\mathbf{k}$.
- Guess the formula for $H_{*}\left(\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}\right)$.
- Find a presentation of $\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}$ as a homotopy colimit of spaces $\vec{P}\left([\mathbf{0}, \mathbf{I}]_{(n-1)}\right)_{\mathbf{0}}^{\mathbf{1}}$ for $\mathbf{I}<\mathbf{k}$.
- Guess the formula for $H_{*}\left(\vec{P}\left([\mathbf{0}, \mathbf{k}]_{(n-1)}\right)_{0}^{\mathbf{k}}\right)$.
- Proceed inductively.

Homotopy colimits

- \mathcal{C} - a small category

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

A homotopy colimit is a quotient

$$
\operatorname{hocolim}_{\mathcal{C}} F=\coprod_{c_{0} \rightarrow \cdots \rightarrow c_{n}} \Delta^{n} \times F\left(c_{0}\right) / \sim
$$

where the relation \sim is generated by suitable simplicial relations.

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

A homotopy colimit is a quotient

$$
\operatorname{hocolim}_{\mathcal{C}} F=\coprod_{c_{0} \rightarrow \cdots \rightarrow c_{n}} \Delta^{n} \times F\left(c_{0}\right) / \sim
$$

where the relation \sim is generated by suitable simplicial relations.

- Homotopy colimits are not colimits in a categorical sense

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

A homotopy colimit is a quotient

$$
\operatorname{hocolim}_{\mathcal{C}} F=\coprod_{c_{0} \rightarrow \cdots \rightarrow c_{n}} \Delta^{n} \times F\left(c_{0}\right) / \sim
$$

where the relation \sim is generated by suitable simplicial relations.

- Homotopy colimits are not colimits in a categorical sense
- Homotopy equivalent diagrams have homotopy equivalent homotopy colimits (not true for colimits)

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

A homotopy colimit is a quotient

$$
\operatorname{hocolim}_{\mathcal{C}} F=\coprod_{c_{0} \rightarrow \cdots \rightarrow c_{n}} \Delta^{n} \times F\left(c_{0}\right) / \sim
$$

where the relation \sim is generated by suitable simplicial relations.

- Homotopy colimits are not colimits in a categorical sense
- Homotopy equivalent diagrams have homotopy equivalent homotopy colimits (not true for colimits)
- In some cases hocolim $F \simeq \operatorname{colim}_{\mathcal{C}} F$

Homotopy colimits

- \mathcal{C} - a small category
- $F: \mathcal{C} \rightarrow \mathbf{S p}$ - a functor

A homotopy colimit is a quotient

$$
\operatorname{hocolim}_{\mathcal{C}} F=\coprod_{c_{0} \rightarrow \cdots \rightarrow c_{n}} \Delta^{n} \times F\left(c_{0}\right) / \sim
$$

where the relation \sim is generated by suitable simplicial relations.

- Homotopy colimits are not colimits in a categorical sense
- Homotopy equivalent diagrams have homotopy equivalent homotopy colimits (not true for colimits)
- In some cases hocolim $F \simeq \operatorname{colim}_{\mathcal{C}} F$
- Homology of homotopy colimit is calculated by the spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(\mathcal{C} ; H_{t}(F(-))\right) \Rightarrow H_{s+t}\left(\operatorname{hocolim}_{\mathcal{C}} F\right)
$$

Homotopy decompositions

Given space X can be presented as a homotopy colimit in many different ways. Which one is useful?

Homotopy decompositions

Given space X can be presented as a homotopy colimit in many different ways. Which one is useful?
Extreme case 1:

- if \mathcal{C} is a trivial category, then hocolim $_{\mathcal{C}} X=X$.
- trivial category, difficult spaces
- useless

Homotopy decompositions

Given space X can be presented as a homotopy colimit in many different ways. Which one is useful?
Extreme case 1:

- if \mathcal{C} is a trivial category, then hocolim $_{\mathcal{C}} X=X$.
- trivial category, difficult spaces
- useless

Extreme case 2:

- if $F(c)$ is contractible for all $c \in \mathcal{C}$, then $\operatorname{hocolim}_{\mathcal{C}} F \simeq N \mathcal{C}$
- difficult category, trivial spaces
- useful in many cases $(K(G, 1)$, schedule decomposition, ...)

Homotopy decompositions

Given space X can be presented as a homotopy colimit in many different ways. Which one is useful?
Extreme case 1:

- if \mathcal{C} is a trivial category, then hocolim $_{\mathcal{C}} X=X$.
- trivial category, difficult spaces
- useless

Extreme case 2:

- if $F(c)$ is contractible for all $c \in \mathcal{C}$, then $\operatorname{hocolim}_{\mathcal{C}} F \simeq N \mathcal{C}$
- difficult category, trivial spaces
- useful in many cases $(K(G, 1)$, schedule decomposition, \ldots) Usually, the most effective are decompositions for which both the category and the values are non-trivial (but simplier than the original space X).

Homotopy decomposition - an example

- $\left\{U_{i}\right\}_{i \in I}$ - an open cover of X

Homotopy decomposition - an example

- $\left\{U_{i}\right\}_{i \in I}$ - an open cover of X
- $\mathcal{C}=\left(2^{\prime}\right)^{o p}$ - the category of subsets of the indexing set I, morphisms - inclusions reversed

Homotopy decomposition - an example

- $\left\{U_{i}\right\}_{i \in I}$ - an open cover of X
- $\mathcal{C}=\left(2^{l}\right)^{o p}$ - the category of subsets of the indexing set I, morphisms - inclusions reversed
- Nerve Lemma generalized [Segal'68]

$$
\operatorname{hocolim}_{J \in\left(2^{\prime}\right)^{\text {op }}} \bigcap_{j \in J} U_{j} \simeq \operatorname{colim}_{J \in\left(2^{\prime}\right)^{\text {op }}} \bigcap_{j \in J} U_{j}=X
$$

Homotopy decomposition - an example

- $\left\{U_{i}\right\}_{i \in I}$ - an open cover of X
- $\mathcal{C}=\left(2^{l}\right)^{o p}$ - the category of subsets of the indexing set I, morphisms - inclusions reversed
- Nerve Lemma generalized [Segal'68]

$$
\operatorname{hocolim}_{J \in\left(2^{\prime}\right)^{\text {op }}} \bigcap_{j \in J} U_{j} \simeq \operatorname{colim}_{J \in\left(2^{\prime}\right)^{\text {op }}} \bigcap_{j \in J} U_{j}=X
$$

- You can skip objects $J \subseteq I$ such that $\bigcap_{j \in J} U_{j}=\emptyset$.

A recursive description of path spaces - a cover

Fix $\mathbf{0}<\mathbf{k} \in \mathbb{Z}^{n}$ and a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{k}]$.

Fix $\mathbf{0}<\mathbf{k} \in \mathbb{Z}^{n}$ and a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{k}]$.

$$
\Delta_{K}:=\left\{\mathbf{x} \in K: \sum x_{i}=-\varepsilon+\sum k_{i}\right\} \subseteq \Delta^{n-1}
$$

A recursive description of path spaces - a cover

Fix $\mathbf{0}<\mathbf{k} \in \mathbb{Z}^{n}$ and a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{k}]$.

$$
\Delta_{K}:=\left\{\mathbf{x} \in K: \sum x_{i}=-\varepsilon+\sum k_{i}\right\} \subseteq \Delta^{n-1}
$$

Define a section map

$$
\sec : \vec{P}(K)_{0}^{\mathbf{k}} \ni \alpha \mapsto \Delta_{K} \cap \operatorname{im} \alpha \in \Delta_{K}
$$

A recursive description of path spaces - a cover

Fix $\mathbf{0}<\mathbf{k} \in \mathbb{Z}^{n}$ and a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{k}]$.

$$
\Delta_{K}:=\left\{\mathbf{x} \in K: \sum x_{i}=-\varepsilon+\sum k_{i}\right\} \subseteq \Delta^{n-1}
$$

Define a section map

$$
\sec : \vec{P}(K)_{0}^{\mathbf{k}} \ni \alpha \mapsto \Delta_{K} \cap \operatorname{im} \alpha \in \Delta_{K}
$$

Cover Δ_{K} with stars of vertices $\mathrm{st}_{e_{i}}$. This induces a cover of $\vec{P}(K)_{0}^{\mathrm{k}}$ with its counterimages $U_{i}:=\sec ^{-1}\left(\mathrm{st}_{e_{i}}\right)$.

A recursive description of path spaces - a cover

Fix $\mathbf{0}<\mathbf{k} \in \mathbb{Z}^{n}$ and a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{k}]$.

$$
\Delta_{K}:=\left\{\mathbf{x} \in K: \sum x_{i}=-\varepsilon+\sum k_{i}\right\} \subseteq \Delta^{n-1}
$$

Define a section map

$$
\sec : \vec{P}(K)_{0}^{\mathbf{k}} \ni \alpha \mapsto \Delta_{K} \cap \operatorname{im} \alpha \in \Delta_{K}
$$

Cover Δ_{K} with stars of vertices $\mathrm{st}_{e_{i}}$. This induces a cover of $\vec{P}(K)_{0}^{\mathrm{k}}$ with its counterimages $U_{i}:=\sec ^{-1}\left(\mathrm{st}_{e_{i}}\right)$.

Intuitively: The set U_{i} contains paths $\alpha:[0,1] \rightarrow K$ such that i-th coordinate of $\alpha(t)$ is less than k_{i} for $\alpha(t)$ close to \mathbf{k} (process i goes last).

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}.

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathrm{j}} \vec{P}(K)_{0}^{\mathrm{k}}:=\sec ^{-1}\left(s t_{\mathrm{j}}\right)
$$

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}}:=\sec ^{-1}\left(s t_{\mathbf{j}}\right)
$$

Note that:

- $U_{i}=F_{(0 \ldots, 1, \ldots, 0)} \vec{P}(K)_{0}^{\mathbf{k}}$

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}}:=\sec ^{-1}\left(s t_{\mathbf{j}}\right)
$$

Note that:

- $U_{i}=F_{(0 \ldots, 1, \ldots, 0)} \vec{P}(K)_{0}^{\mathbf{k}}$
- $F_{\mathbf{j} \cap \mathrm{j}^{\prime}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}}=F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \cap F_{\mathbf{j}^{\prime}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}}$

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}}:=\sec ^{-1}\left(s t_{\mathbf{j}}\right)
$$

Note that:

- $U_{i}=F_{(0 \ldots, 1, \ldots, 0)} \vec{P}(K)_{0}^{\mathbf{k}}$
- $F_{\mathrm{j} \cap \mathrm{j}^{\prime}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}}=F_{\mathrm{j}} \vec{P}(K)_{0}^{\mathbf{k}} \cap F_{\mathbf{j}^{\prime}} \vec{P}(K)_{0}^{\mathbf{k}}$
- $\mathbf{j} \in \mathcal{J}_{K}$ iff $[\mathbf{k}-\mathbf{j}, \mathbf{k}] \nsubseteq K$.

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathrm{j}} \vec{P}(K)_{0}^{\mathbf{k}}:=\sec ^{-1}\left(s t_{\mathrm{j}}\right)
$$

Note that:

- $U_{i}=F_{(0 \ldots, 1, \ldots, 0)} \vec{P}(K)_{0}^{\mathrm{k}}$
- $F_{\mathrm{j} \cap \mathrm{j}^{\prime}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}}=F_{\mathrm{j}} \vec{P}(K)_{0}^{\mathbf{k}} \cap F_{\mathbf{j}^{\prime}} \vec{P}(K)_{0}^{\mathbf{k}}$
- $\mathbf{j} \in \mathcal{J}_{K}$ iff $[\mathbf{k}-\mathbf{j}, \mathbf{k}] \nsubseteq K$.

Proposition

$$
\vec{P}(K)_{0}^{\mathbf{k}} \simeq \operatorname{hocolim}_{\mathrm{j} \in \mathcal{J}_{k}} F_{\mathrm{j}} \vec{P}(K)_{0}^{\mathrm{k}} .
$$

A homotopy colimit

Let $\mathcal{J}_{K} \subseteq\{1 \rightarrow 0\}^{n}$ be an inverse category of subsimplices of Δ_{K}. For $\mathbf{j} \in \mathcal{J}_{K}$ define

$$
F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}}:=\sec ^{-1}\left(s t_{\mathbf{j}}\right)
$$

Note that:

$$
\begin{aligned}
& \text { - } U_{i}=F_{(0 \ldots, 1, \ldots, 0)} \vec{P}(K)_{0}^{\mathbf{k}} \\
& \text { - } F_{\mathrm{j} \cap \mathbf{j}^{\prime}} \vec{P}(K)_{0}^{\mathbf{k}}=F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \cap F_{\mathbf{j}^{\prime}} \vec{P}(K)_{0}^{\mathbf{k}} \\
& \text { - } \mathbf{j} \in \mathcal{J}_{K} \text { iff }[\mathbf{k}-\mathbf{j}, \mathbf{k}] \nsubseteq K .
\end{aligned}
$$

Proposition

$$
\vec{P}(K)_{\mathbf{0}}^{\mathbf{k}} \simeq \text { hocolim }_{\mathbf{j} \in \mathcal{J}_{K}} F_{\mathbf{j}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}}
$$

Proposition

For every $\mathbf{j} \in \mathcal{J}_{K}$

$$
F_{\mathbf{j}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}} \simeq \vec{P}(K)_{0}^{\mathbf{k}-\mathbf{j}} \simeq \vec{P}([\mathbf{0}, \mathbf{k}-\mathbf{j}] \cap K)_{0}^{\mathbf{k}-\mathbf{j}}
$$

An application - the path space of $\partial \square^{n}$

For $K=[\mathbf{0}, \mathbf{1}]_{(n-1)}$:

- $\Delta_{K}=\partial \Delta^{n-1}$
- $\mathcal{J}_{K}=\left\{\mathbf{0}<\mathbf{j}<\mathbf{1} \in\{0,1\}^{n}\right\}$
- $F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \simeq \vec{P}(K)_{0}^{\mathbf{k}-\mathbf{j}}$ is contractible for all $\mathbf{j} \in \mathcal{J}_{K}$.

Then

$$
\vec{P}(K)_{\mathbf{0}}^{\mathbf{k}} \simeq \operatorname{hocolim}_{\mathbf{j} \in \mathcal{J}_{K}} F_{\mathbf{j}} \vec{P}(K)_{\mathbf{0}}^{\mathbf{k}} \simeq N \mathcal{J}_{K} \simeq \partial \Delta^{n-1} \simeq S^{n-2}
$$

An application - the path space of $\partial \square^{n}$

For $K=[\mathbf{0}, \mathbf{1}]_{(n-1)}$:

- $\Delta_{K}=\partial \Delta^{n-1}$
- $\mathcal{J}_{K}=\left\{\mathbf{0}<\mathbf{j}<\mathbf{1} \in\{0,1\}^{n}\right\}$
- $F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \simeq \vec{P}(K)_{0}^{\mathbf{k}-\mathbf{j}}$ is contractible for all $\mathbf{j} \in \mathcal{J}_{K}$.

Then

$$
\vec{P}(K)_{\mathbf{0}}^{\mathbf{k}} \simeq \operatorname{hocolim}_{\mathbf{j} \in \mathcal{J}_{K}} F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \simeq N \mathcal{J}_{K} \simeq \partial \Delta^{n-1} \simeq S^{n-2}
$$

Let L be a simplicial complex with a set of vertices $\{1, \ldots, n\}$. Define a Euclidean cubical complex $K \subseteq[\mathbf{0}, \mathbf{1}]$ by

$$
[\mathbf{k}, \mathbf{I}] \subseteq K \Leftrightarrow \mathbf{I}<\mathbf{1} \vee\left\{i: k_{i}=0\right\} \in L
$$

Then \mathcal{J}_{K} is the category of simplices of L (reversed). Hence

$$
\vec{P}(K)_{0}^{\mathbf{k}} \simeq \operatorname{hocolim}_{\mathbf{j} \in \mathcal{J}_{K}} F_{\mathbf{j}} \vec{P}(K)_{0}^{\mathbf{k}} \simeq N \mathcal{J}_{K} \simeq|L|
$$

Homology of $\vec{P}(K)_{0}^{k}$

Fix $n \geq 3, \mathbf{k}>\mathbf{0}$ and a Euclidean cubical complex K such that

$$
[\mathbf{0}, \mathbf{k}]_{(n-1)} \subseteq K \subseteq[\mathbf{0}, \mathbf{k}]
$$

Homology of $\vec{P}(K)_{0}^{k}$

Fix $n \geq 3, \mathbf{k}>\mathbf{0}$ and a Euclidean cubical complex K such that

$$
[\mathbf{0}, \mathbf{k}]_{(n-1)} \subseteq K \subseteq[\mathbf{0}, \mathbf{k}]
$$

Definition

A cube sequence in K is a sequence

$$
\left[\mathbf{a}^{*}\right]=\left[\mathbf{0} \ll \mathbf{a}^{1} \ll \ldots, \ll \mathbf{a}^{r} \leq \mathbf{k}\right]
$$

such that $\left[\mathbf{a}^{s}-\mathbf{1}, \mathbf{a}^{s}\right] \nsubseteq K$ for $s=1, \ldots, r$.

Homology of $\vec{P}(K)_{0}^{K}$

Fix $n \geq 3, \mathbf{k}>\mathbf{0}$ and a Euclidean cubical complex K such that

$$
[\mathbf{0}, \mathbf{k}]_{(n-1)} \subseteq K \subseteq[\mathbf{0}, \mathbf{k}]
$$

Definition

A cube sequence in K is a sequence

$$
\left[\mathbf{a}^{*}\right]=\left[\mathbf{0} \ll \mathbf{a}^{1} \ll \ldots, \ll \mathbf{a}^{r} \leq \mathbf{k}\right]
$$

such that $\left[\mathbf{a}^{s}-\mathbf{1}, \mathbf{a}^{s}\right] \nsubseteq K$ for $s=1, \ldots, r$.
Let $C S_{r}(K)$ be a set of cube sequences in K having length r.
Finally, define

$$
A_{m}(K)= \begin{cases}\mathbb{Z}\left[C S_{m /(n-2)}(K)\right] & \text { for } m \equiv 0(n-2) \\ 0 & \text { otherwise }\end{cases}
$$

For a cube sequence $\left[\mathbf{a}^{*}\right]$ define $\Phi_{K}\left(\left[\mathbf{a}^{*}\right]\right) \in H_{r(n-2)}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)$ as the image of the generator in $H_{r(n-2)}\left(\left(S^{n-2}\right)^{r}\right)$ under the composition

$$
\left(S^{n-2}\right)^{r} \simeq\left(\partial \Delta^{n-1}\right)^{r} \simeq \prod_{s=1}^{r} \vec{P}(K)_{\mathbf{a}^{s}-1}^{\mathbf{a}^{s}} \xrightarrow{\text { concat }} \vec{P}(K)_{0}^{\mathbf{k}}
$$

For a cube sequence $\left[\mathbf{a}^{*}\right]$ define $\Phi_{K}\left(\left[\mathbf{a}^{*}\right]\right) \in H_{r(n-2)}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)$ as the image of the generator in $H_{r(n-2)}\left(\left(S^{n-2}\right)^{r}\right)$ under the composition

$$
\left(S^{n-2}\right)^{r} \simeq\left(\partial \Delta^{n-1}\right)^{r} \simeq \prod_{s=1}^{r} \vec{P}(K)_{\mathbf{a}^{s}-1}^{\mathbf{a}^{s}} \xrightarrow{\text { concat }} \vec{P}(K)_{0}^{\mathbf{k}}
$$

Theorem

The homomorphism

$$
\Phi_{K}: A_{*}(K) \rightarrow H_{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)
$$

is an isomorphism.

For a cube sequence $\left[\mathbf{a}^{*}\right]$ define $\Phi_{K}\left(\left[\mathbf{a}^{*}\right]\right) \in H_{r(n-2)}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)$ as the image of the generator in $H_{r(n-2)}\left(\left(S^{n-2}\right)^{r}\right)$ under the composition

$$
\left(S^{n-2}\right)^{r} \simeq\left(\partial \Delta^{n-1}\right)^{r} \simeq \prod_{s=1}^{r} \vec{P}(K)_{\mathbf{a}^{s}-1}^{\mathbf{a}^{s}} \xrightarrow{\text { concat }} \vec{P}(K)_{0}^{\mathbf{k}}
$$

Theorem

The homomorphism

$$
\Phi_{K}: A_{*}(K) \rightarrow H_{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)
$$

is an isomorphism.
Proof: Induction on \mathbf{k} using the homotopy decomposition.

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$

Assume that $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$. Denote $K_{\mathbf{j}}:=K \cap[\mathbf{0}, \mathbf{k}-\mathbf{j}]$.

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$

Assume that $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$. Denote $K_{\mathbf{j}}:=K \cap[\mathbf{0}, \mathbf{k}-\mathbf{j}]$. Now

- $\Delta_{K}=\Delta^{n-1}$
- $\mathcal{J}_{K}=\left\{\mathbf{j} \in\{0,1\}^{n}: \mathbf{0}<\mathbf{j} \leq \mathbf{1}\right\}$
- there is a spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(\mathcal{J}_{K} ; H_{t}\left(\vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}}\right)\right)=H_{s}\left(\mathcal{J}_{K} ; A_{t}\left(K_{\mathbf{j}}\right)\right) \Rightarrow H_{s+t}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right) .
$$

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$

Assume that $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$. Denote $K_{\mathbf{j}}:=K \cap[\mathbf{0}, \mathbf{k}-\mathbf{j}]$. Now

- $\Delta_{K}=\Delta^{n-1}$
- $\mathcal{J}_{K}=\left\{\mathbf{j} \in\{0,1\}^{n}: \mathbf{0}<\mathbf{j} \leq \mathbf{1}\right\}$
- there is a spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(\mathcal{J}_{K} ; H_{t}\left(\vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}}\right)\right)=H_{s}\left(\mathcal{J}_{K} ; A_{t}\left(K_{\mathbf{j}}\right)\right) \Rightarrow H_{s+t}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)
$$

This spectral sequence can be calculated since

Proposition

The functors $\mathbf{j} \mapsto A_{t}\left(K_{\mathbf{j}}\right)$ are projective in the category of functors $\mathcal{J}_{K} \rightarrow A b$.

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$

Assume that $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \subseteq K$. Denote $K_{\mathbf{j}}:=K \cap[\mathbf{0}, \mathbf{k}-\mathbf{j}]$. Now

- $\Delta_{K}=\Delta^{n-1}$
- $\mathcal{J}_{K}=\left\{\mathbf{j} \in\{0,1\}^{n}: \mathbf{0}<\mathbf{j} \leq \mathbf{1}\right\}$
- there is a spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(\mathcal{J}_{K} ; H_{t}\left(\vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}}\right)\right)=H_{s}\left(\mathcal{J}_{K} ; A_{t}\left(K_{\mathbf{j}}\right)\right) \Rightarrow H_{s+t}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)
$$

This spectral sequence can be calculated since

Proposition

The functors $\mathbf{j} \mapsto A_{t}\left(K_{\mathbf{j}}\right)$ are projective in the category of functors $\mathcal{J}_{K} \rightarrow A b$.

Hence $E_{s, t}^{2}=0$ for $s \neq 0$ and then

$$
H_{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)=E_{0, *}^{2}=\operatorname{colim}_{\mathcal{J}_{K}} A_{*}\left(K_{\mathbf{j}}\right)=A_{*}(K)
$$

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \not \subset K$

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \not \subset K$

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

$$
\Delta_{K}=\partial \Delta^{n-1}, \Delta_{L}=\Delta^{n-1}
$$

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \nsubseteq K$

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

- $\Delta_{K}=\partial \Delta^{n-1}, \Delta_{L}=\Delta^{n-1}$
- \mathcal{J}_{L} is isomorphic to \mathcal{J}_{K} with an initial object added

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

- $\Delta_{K}=\partial \Delta^{n-1}, \Delta_{L}=\Delta^{n-1}$
- \mathcal{J}_{L} is isomorphic to \mathcal{J}_{K} with an initial object added
- Both decomposition diagrams have homotopy equivalent values

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

- $\Delta_{K}=\partial \Delta^{n-1}, \Delta_{L}=\Delta^{n-1}$
- \mathcal{J}_{L} is isomorphic to \mathcal{J}_{K} with an initial object added
- Both decomposition diagrams have homotopy equivalent values
- $\operatorname{hocolim}_{\mathcal{J}_{L}} \vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}} /$ hocolim $_{\mathcal{J}_{K}} \vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}} \simeq \Sigma^{n-1} \vec{P}\left(K_{1}\right)_{0}^{\mathbf{k}-\mathbf{1}}$

Let $L=K \cup[\mathbf{k}-\mathbf{1}, \mathbf{k}]$. We will compare the decomposition diagrams of $\vec{P}(K)_{0}^{\mathbf{k}}$ and $\vec{P}(L)_{0}^{\mathbf{k}}$.

- $\Delta_{K}=\partial \Delta^{n-1}, \Delta_{L}=\Delta^{n-1}$
- \mathcal{J}_{L} is isomorphic to \mathcal{J}_{K} with an initial object added
- Both decomposition diagrams have homotopy equivalent values
- hocolim $\mathcal{J}_{\mathcal{L}} \vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}} /$ hocolim $_{\mathcal{J}_{K}} \vec{P}\left(K_{\mathbf{j}}\right)_{0}^{\mathbf{k}-\mathbf{j}} \simeq \Sigma^{n-1} \vec{P}\left(K_{1}\right)_{0}^{\mathbf{k}-\mathbf{1}}$
- There is the diagram of cofibrations

$\operatorname{hocolim}_{\mathcal{J}_{K}} \vec{P}\left(K_{\mathbf{j}}\right)_{\mathbf{0}}^{\mathbf{k}-\mathbf{j}} \stackrel{\subseteq}{\leftrightharpoons} \operatorname{hocolim}_{\mathcal{J}_{\mathcal{L}}} \vec{P}\left(K_{\mathbf{j}}\right)_{\mathbf{0}}^{\mathbf{k}-\mathbf{j}} \longrightarrow \Sigma^{n-1} \vec{P}\left(K_{1}\right)_{\mathbf{0}}^{\mathbf{k}-\mathbf{1}}$

Proof - case $[\mathbf{k}-\mathbf{1}, \mathbf{k}] \nsubseteq K$

Finally, we get a transformation of long exact sequences:

$$
\begin{aligned}
& A_{*-(n-2)}\left(K_{1}\right) \longrightarrow A_{*}(K) \longrightarrow A_{*}(L) \\
& \Sigma^{n-1} \Phi_{K_{1}} \downarrow \simeq \quad \Phi_{K} \downarrow \\
& H_{*+1}\left(\Sigma^{n-1} \vec{P}\left(K_{1}\right)_{0}^{\mathbf{k}-\mathbf{1}}\right) \rightarrow H_{*}(\vec{P}(K)) \longrightarrow H_{*}(\vec{P}(L))
\end{aligned}
$$

By Five Lemma the middle homomorphism Φ_{K} is also an isomorphism. The induction step is complete.

Cohomology ring

By Universal Coefficients Formula

$$
H^{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)=\operatorname{Hom}\left(H_{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right), \mathbb{Z}\right)=\operatorname{Hom}\left(A_{*}(K), \mathbb{Z}\right)=: A^{*}(K)
$$

Let $\overline{\left[\mathbf{a}^{*}\right]} \in A^{*}(K)$ be a generator dual to $\left[\mathbf{a}^{*}\right]$.

Proposition

The algebra $A^{*}(K)=H^{*}\left(\vec{P}(K)_{0}^{\mathbf{k}}\right)$ is generated by cube sequences of length 1.

$$
\overline{\left[\mathbf{a}^{*}\right]} \smile \overline{\left[\mathbf{b}^{*}\right]}= \begin{cases}(-1)^{s(\mathbf{a}, \mathbf{b})}\left[\mathbf{a}^{*} \cup \mathbf{b}^{*}\right] & \text { if } \mathbf{a}^{*} \cup \mathbf{b}^{*} \text { is a cube sequence } \\ 0 & \text { otherwise }\end{cases}
$$

Thank you for your attention

