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Directed spaces

Definition

A d-space is a pair (X , ~P(X )), where

X is a topological space,
~P(X ) is a collection of paths on X called d-paths,

such that

constant paths are d-paths,

increasing reparametrizations of d-paths are d-paths,

concatentations of d-paths are d-paths.

For x , y ∈ X denote

~P(X )yx := {α ∈ ~P(X ) : α(0) = x , α(1) = y}.

A trace space is

~T (X )yx := ~P(X )yx/increasing reparametrizations
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



Examples of directed spaces

Examples of directed spaces:

a full d-space (X ,P(X )),

a trivial d-space (X ,X ),

a directed Euclidean space

~Rn := (Rn, paths with non-decreasing coordinates)

a directed cube ~I n ⊆ Rn

a directed torus ~T n = ~Rn/Zn
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Application: PV-programs

Motivation: The behaviour of a computer program is described by
a directed space X such that:

points of X are possible states of a program,

d-paths are possible executions.

PV-programs

Processes: A1, . . . ,An

Resources: x1, . . . , xm having arities c1, . . . , cm

Every process performs a sequence of operations Pxi (locking
the resource xi ) and Vxi (releasing the resource xi )

at most ci processes may lock a resource xi at time

If processes contain no loops, the corresponding directed space X is
a directed cube ~I n with a collection of rectangular areas removed.
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Example: Swiss cross

A1 : Pa Pb Vb Va, A2 : Pb Pa Va Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A1

A2
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The main problem

The main problem

We have n processes X1, . . . ,Xn

Every process performs a loop (Pa Va)∗

The resource a has arity n − 1.

Goal: Calculate the homotopy type (or, at least, homology) of the
space of possible executions of these processes.

The corresponding directed space is an (n − 1)-skeleton of the
directed n-torus. Hence we need to calculate

H∗(~P(~T n
(n−1))0

0).
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Universal cover

Universal cover. After passing to universal cover we obtain a
decomposition

~P(~T n
(n−1))0

0
∼=

∐
0≤k∈~π1(~T n)

~P(~Rn
(n−1))k0

Case n = 2. The space ~P(~R2
(1))

(k,l)
(0,0) is homotopy equivalent to a

discrete space with
(k+l

k

)
components.
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Euclidean cubical complexes

Notation: Bold letters denote sequences, e.g. x = (x1, . . . , xn).

x ≤ y⇔ xi ≤ yi

x < y⇔ x ≤ y ∧ x 6= y

x� y⇔ xi < yi

Definition

An elementary cube is a subset of Rn which has the form

[k, k + j] := {x ∈ Rn : k ≤ x ≤ k + j}

where k ∈ Zn and j ∈ {0, 1}n.
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Euclidean cubical complexes (2)

Definition

A subset K ⊆ Rn is a Euclidean cubical complex if it is a sum of
elementary cubes.

Equivalently, a Euclidean cubical complex is a subset of a cubical
set Rn.
Examples:

Main problem: H∗(~P([0, k](n−1))k0) =?
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



The idea of the calculation

Find a presentation of ~P([0, k](n−1))k0 as a homotopy colimit

of spaces ~P([0, l](n−1))l0 for l < k.

Guess the formula for H∗(~P([0, k](n−1))k0).

Proceed inductively.
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Homotopy colimits

C – a small category

F : C → Sp – a functor

A homotopy colimit is a quotient

hocolimC F =
∐

c0→···→cn

∆n × F (c0)/ ∼

where the relation ∼ is generated by suitable simplicial relations.

Homotopy colimits are not colimits in a categorical sense

Homotopy equivalent diagrams have homotopy equivalent
homotopy colimits (not true for colimits)

In some cases hocolimC F ' colimC F

Homology of homotopy colimit is calculated by the spectral
sequence

E 2
s,t = Hs(C;Ht(F (−)))⇒ Hs+t(hocolimC F ).
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



Homotopy colimits

C – a small category

F : C → Sp – a functor

A homotopy colimit is a quotient

hocolimC F =
∐

c0→···→cn

∆n × F (c0)/ ∼

where the relation ∼ is generated by suitable simplicial relations.

Homotopy colimits are not colimits in a categorical sense

Homotopy equivalent diagrams have homotopy equivalent
homotopy colimits (not true for colimits)

In some cases hocolimC F ' colimC F

Homology of homotopy colimit is calculated by the spectral
sequence

E 2
s,t = Hs(C;Ht(F (−)))⇒ Hs+t(hocolimC F ).
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Homotopy decompositions

Given space X can be presented as a homotopy colimit in many
different ways. Which one is useful?

Extreme case 1:

if C is a trivial category, then hocolimC X = X .

trivial category, difficult spaces

useless

Extreme case 2:

if F (c) is contractible for all c ∈ C, then hocolimC F ' NC
difficult category, trivial spaces

useful in many cases (K (G , 1), schedule decomposition, . . . )

Usually, the most effective are decompositions for which both the
category and the values are non-trivial (but simplier than the
original space X ).
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



Homotopy decompositions

Given space X can be presented as a homotopy colimit in many
different ways. Which one is useful?
Extreme case 1:

if C is a trivial category, then hocolimC X = X .

trivial category, difficult spaces

useless

Extreme case 2:

if F (c) is contractible for all c ∈ C, then hocolimC F ' NC
difficult category, trivial spaces

useful in many cases (K (G , 1), schedule decomposition, . . . )

Usually, the most effective are decompositions for which both the
category and the values are non-trivial (but simplier than the
original space X ).
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Homotopy decomposition - an example

{Ui}i∈I – an open cover of X

C = (2I )op – the category of subsets of the indexing set I ,
morphisms – inclusions reversed

Nerve Lemma generalized [Segal’68]

hocolimJ∈(2I )op

⋂
j∈J

Uj ' colimJ∈(2I )op

⋂
j∈J

Uj = X

You can skip objects J ⊆ I such that
⋂

j∈J Uj = ∅.
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A recursive description of path spaces - a cover

Fix 0 < k ∈ Zn and a Euclidean cubical complex K ⊆ [0, k].

∆K := {x ∈ K :
∑

xi = −ε+
∑

ki} ⊆ ∆n−1

Define a section map

sec : ~P(K )k0 3 α 7→ ∆K ∩ imα ∈ ∆K

Cover ∆K with stars of vertices stei . This induces a cover of
~P(K )k0 with its counterimages Ui := sec−1(stei ).

Intuitively: The set Ui contains paths α : [0, 1]→ K such that
i-th coordinate of α(t) is less than ki for α(t) close to k (process i
goes last).
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A homotopy colimit

Let JK ⊆ {1→ 0}n be an inverse category of subsimplices of ∆K .

For j ∈ JK define
Fj~P(K )k0 := sec−1(stj)

Note that:

Ui = F(0...,1,...,0)
~P(K )k0

Fj∩j′~P(K )k0 = Fj~P(K )k0 ∩ Fj′~P(K )k0
j ∈ JK iff [k− j, k] 6⊆ K .

Proposition

~P(K )k0 ' hocolimj∈JK Fj~P(K )k0.

Proposition

For every j ∈ JK

Fj~P(K )k0 ' ~P(K )k−j0 ' ~P([0, k− j] ∩ K )k−j0 .
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An application - the path space of ∂�n

For K = [0, 1](n−1):

∆K = ∂∆n−1

JK = {0 < j < 1 ∈ {0, 1}n}
Fj~P(K )k0 ' ~P(K )k−j0 is contractible for all j ∈ JK .

Then

~P(K )k0 ' hocolimj∈JK Fj~P(K )k0 ' NJK ' ∂∆n−1 ' Sn−2

Let L be a simplicial complex with a set of vertices {1, . . . , n}.
Define a Euclidean cubical complex K ⊆ [0, 1] by

[k, l] ⊆ K ⇔ l < 1 ∨ {i : ki = 0} ∈ L

Then JK is the category of simplices of L (reversed). Hence

~P(K )k0 ' hocolimj∈JK Fj~P(K )k0 ' NJK ' |L|.
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Homology of ~P(K )k0

Fix n ≥ 3, k > 0 and a Euclidean cubical complex K such that

[0, k](n−1) ⊆ K ⊆ [0, k]

Definition

A cube sequence in K is a sequence

[a∗] = [0� a1 � . . . ,� ar ≤ k]

such that [as − 1, as ] 6⊆ K for s = 1, . . . , r .

Let CSr (K ) be a set of cube sequences in K having length r .
Finally, define

Am(K ) =

{
Z[CSm/(n−2)(K )] for m ≡ 0 (n − 2)

0 otherwise
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



The main theorem

For a cube sequence [a∗] define ΦK ([a∗]) ∈ Hr(n−2)(~P(K )k0) as the
image of the generator in Hr(n−2)((Sn−2)r ) under the composition

(Sn−2)r ' (∂∆n−1)r '
r∏

s=1

~P(K )a
s

as−1
concat−−−−→ ~P(K )k0.

Theorem

The homomorphism

ΦK : A∗(K )→ H∗(~P(K )k0)

is an isomorphism.

Proof: Induction on k using the homotopy decomposition.
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Proof - case [k− 1, k] ⊆ K

Assume that [k− 1, k] ⊆ K . Denote Kj := K ∩ [0, k− j].

Now

∆K = ∆n−1

JK = {j ∈ {0, 1}n : 0 < j ≤ 1}
there is a spectral sequence

E 2
s,t = Hs(JK ;Ht(~P(Kj)

k−j
0 )) = Hs(JK ;At(Kj))⇒ Hs+t(~P(K )k0).

This spectral sequence can be calculated since

Proposition

The functors j 7→ At(Kj) are projective in the category of functors
JK → Ab.

Hence E 2
s,t = 0 for s 6= 0 and then

H∗(~P(K )k0) = E 2
0,∗ = colimJK A∗(Kj) = A∗(K ).

Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



Proof - case [k− 1, k] ⊆ K

Assume that [k− 1, k] ⊆ K . Denote Kj := K ∩ [0, k− j]. Now

∆K = ∆n−1

JK = {j ∈ {0, 1}n : 0 < j ≤ 1}
there is a spectral sequence

E 2
s,t = Hs(JK ;Ht(~P(Kj)

k−j
0 )) = Hs(JK ;At(Kj))⇒ Hs+t(~P(K )k0).

This spectral sequence can be calculated since

Proposition

The functors j 7→ At(Kj) are projective in the category of functors
JK → Ab.

Hence E 2
s,t = 0 for s 6= 0 and then

H∗(~P(K )k0) = E 2
0,∗ = colimJK A∗(Kj) = A∗(K ).
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Proof - case [k− 1, k] 6⊆ K

Let L = K ∪ [k− 1, k]. We will compare the decomposition
diagrams of ~P(K )k0 and ~P(L)k0.

∆K = ∂∆n−1, ∆L = ∆n−1

JL is isomorphic to JK with an initial object added

Both decomposition diagrams have homotopy equivalent
values

hocolimJL
~P(Kj)

k−j
0 / hocolimJK

~P(Kj)
k−j
0 ' Σn−1~P(K1)k−10

There is the diagram of cofibrations

~P(K )k0
~P(L)k0

~P(L)k0/
~P(K )k0

hocolimJK
~P(Kj)

k−j
0 hocolimJL

~P(Kj)
k−j
0 Σn−1~P(K1)k−10

-⊆

?

'

-

?

'

?

'

-⊆ -
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Krzysztof Ziemiański University of Warsaw (joint work with Martin Raussen)Directed path spaces on skeleta of tori



Proof - case [k− 1, k] 6⊆ K

Let L = K ∪ [k− 1, k]. We will compare the decomposition
diagrams of ~P(K )k0 and ~P(L)k0.

∆K = ∂∆n−1, ∆L = ∆n−1

JL is isomorphic to JK with an initial object added

Both decomposition diagrams have homotopy equivalent
values

hocolimJL
~P(Kj)

k−j
0 / hocolimJK

~P(Kj)
k−j
0 ' Σn−1~P(K1)k−10

There is the diagram of cofibrations

~P(K )k0
~P(L)k0

~P(L)k0/
~P(K )k0

hocolimJK
~P(Kj)

k−j
0 hocolimJL

~P(Kj)
k−j
0 Σn−1~P(K1)k−10

-⊆

?

'

-

?

'

?

'

-⊆ -
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Proof - case [k− 1, k] 6⊆ K

Finally, we get a transformation of long exact sequences:

A∗−(n−2)(K1) A∗(K ) A∗(L)

H∗+1(Σn−1~P(K1)k−10 ) H∗(~P(K )) H∗(~P(L))

-

?
Σn−1ΦK1

'

-

?
ΦK

?
ΦL '

- -

By Five Lemma the middle homomorphism ΦK is also an
isomorphism. The induction step is complete.
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Cohomology ring

By Universal Coefficients Formula

H∗(~P(K )k0) = Hom(H∗(~P(K )k0),Z) = Hom(A∗(K ),Z) =: A∗(K )

Let [a∗] ∈ A∗(K ) be a generator dual to [a∗].

Proposition

The algebra A∗(K ) = H∗(~P(K )k0) is generated by cube sequences
of length 1.

[a∗] ^ [b∗] =

{
(−1)s(a,b)[a∗ ∪ b∗] if a∗ ∪ b∗ is a cube sequence

0 otherwise
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Thank you for your attention
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