Discrete Lusternik–Schnirelmann category

Nick Scoville1
joint with Seth Aaronson 2 Brian Green1

1Ursinus College
2Temple University
Introduction

The **Lusternik-Schnirelmann category** of a topological space X, denoted $\text{cat}(X)$, is the least integer m such that there exists open subsets $\{U_0, U_1, \ldots, U_m\}$ covering X with each U_i contractible in X.

Example

$\text{cat}(S^n) = 1$

In general, $\text{cat}(\Sigma X) \leq 1$.

Theorem (Lusternik, Schnirelmann 1934) If M is a smooth manifold satisfying additional properties and $f: M \to \mathbb{R}$ is smooth with m critical points, then $\text{cat}(M) + 1 \leq m$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Introduction

The **Lusternik-Schnirelmann category** of a topological space X, denoted $\text{cat}(X)$, is the least integer m such that there exists open subsets $\{U_0, U_1, \ldots, U_m\}$ covering X with each U_i contractible in X.

Example

$\text{cat}(S^n) = 1$
Introduction

The **Lusternik-Schnirelmann category** of a topological space X, denoted $\text{cat}(X)$, is the least integer m such that there exists open subsets $\{U_0, U_1, \ldots, U_m\}$ covering X with each U_i contractible in X.

Example

$\text{cat}(S^n) = 1$

In general, $\text{cat}(\Sigma X) \leq 1.$
Introduction

The Lusternik-Schnirelmann category of a topological space X, denoted $\text{cat}(X)$, is the least integer m such that there exists open subsets $\{U_0, U_1, \ldots, U_m\}$ covering X with each U_i contractible in X.

Example

$\text{cat}(S^n) = 1$
In general, $\text{cat}(\Sigma X) \leq 1$.

Theorem

(Lusternik, Schnirelmann 1934) If M is a smooth manifold satisfying additional properties and $f : M \to \mathbb{R}$ is smooth with m critical points, then $\text{cat}(M) + 1 \leq m$.
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to **collapse** onto $K - \{\sigma, \tau\}$. The complex K is said to be **collapsible** if there exists a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to **collapse** onto $K - \{\sigma, \tau\}$. The complex K is said to be **collapsible** if there exist a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.

\[\begin{tikzpicture}
 \coordinate (A) at (0,0);
 \coordinate (B) at (1,0);
 \coordinate (C) at (0.5,0.866);
 \draw (A) -- (B) -- (C) -- cycle;
\end{tikzpicture} \]
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exits a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.

![Diagram of a simplicial complex](image)
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exits a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.
Collapsibility

Recall that if a simplicial complex \(K \) contains a pair of simplicies \((\sigma, \tau)\) such that \(\sigma \) is a face of \(\tau \) and \(\sigma \) has no other cofaces, then \(K \) is said to collapse onto \(K - \{\sigma, \tau\} \). The complex \(K \) is said to be collapsible if there exists a sequence of collapses \(K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\} \).
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exits a sequence of collapses $K \to K_1 \to \ldots \to \{v\}$.
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exists a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exits a sequence of collapses $K \to K_1 \to \ldots \to \{v\}$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to \textit{collapse} onto $K - \{\sigma, \tau\}$. The complex K is said to be \textit{collapsible} if there exits a sequence of collapses $K \to K_1 \to \ldots \to \{v\}$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Collapsibility

Recall that if a simplicial complex K contains a pair of simplices (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to **collapse** onto $K - \{\sigma, \tau\}$. The complex K is said to be **collapsible** if there exits a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.

Bing's house with two rooms and the dunce cap are examples of simplicial complexes which are not collapsible, but whose geometric realization is contractible.
Collapsibility

Recall that if a simplicial complex \mathcal{K} contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then \mathcal{K} is said to collapse onto $\mathcal{K} - \{\sigma, \tau\}$. The complex \mathcal{K} is said to be collapsible if there exits a sequence of collapses $\mathcal{K} \to \mathcal{K}_1 \to \ldots \to \{v\}$.

Discrete Lusternik–Schnirelmann category Scoville, Aaronson, Green
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to **collapse** onto $K - \{\sigma, \tau\}$. The complex K is said to be **collapsible** if there exits a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Collapsibility

Recall that if a simplicial complex K contains a pair of simplicies (σ, τ) such that σ is a face of τ and σ has no other cofaces, then K is said to collapse onto $K - \{\sigma, \tau\}$. The complex K is said to be collapsible if there exits a sequence of collapses $K \rightarrow K_1 \rightarrow \ldots \rightarrow \{v\}$.

Bing’s house with two rooms and the dunce cap are examples of simplicial complexes which are not collapsible, but whose geometric realization is contractible.
Collapsibility Caveats

• W. Lickorish and J. Martin have shown that collapsibility is not invariant under barycentric subdivision.

• B. Benedetti and F. Lutz have shown the existence of a (collapsible) 3-ball with 8 vertices, but that has a collapse onto the dunce cap.

• Allowing elementary expansions (i.e. working up to simple homotopy type) would eliminate Bing's house and dunce cap as interesting examples (and “too close” to homotopy type).

• If $L \subseteq K$ and $L \downarrow L'$ is a collapse, we would like $\text{dcat}_K(L) = \text{dcat}_K(L')$.
Collapsibility Caveats

- W. Lickorish and J. Martin have shown that collapsibility is not invariant under barycentric subdivision.

- B. Benedetti and F. Lutz have shown the existence of a (collapsible) 3-ball with 8 vertices, but that has a collapse onto the dunce cap.

- Allowing elementary expansions (i.e. working up to simple homotopy type) would eliminate Bing’s house and dunce cap as interesting examples (and “too close” to homotopy type).

- If $L \subseteq K$ and $L \downarrow L'$ is a collapse, we would like $d_{cat}(L) = d_{cat}(L')$.
Collapsibility Caveats

- W. Lickorish and J. Martin have shown that collapsibility is not invariant under barycentric subdivision.
- B. Benedetti and F. Lutz have shown the existence of a (collapsible) 3-ball with 8 vertices, but that has a collapse onto the dunce cap.
Collapsibility Caveats

- W. Lickorish and J. Martin have shown that collapsibility is not invariant under barycentric subdivision.
- B. Benedetti and F. Lutz have shown the existence of a (collapsible) 3-ball with 8 vertices, but that has a collapse onto the dunce cap.
- Allowing elementary expansions (i.e. working up to simple homotopy type) would eliminate Bing’s house and dunce cap as interesting examples (and “too close” to homotopy type).
Collapsibility Caveats

- W. Lickorish and J. Martin have shown that collapsibility is not invariant under barycentric subdivision.
- B. Benedetti and F. Lutz have shown the existence of a (collapsible) 3-ball with 8 vertices, but that has a collapse onto the dunce cap.
- Allowing elementary expansions (i.e. working up to simple homotopy type) would eliminate Bing’s house and dunce cap as interesting examples (and “too close” to homotopy type).
- If $L \subseteq K$ and $L \downarrow L'$ is a collapse, we would like $\text{dcat}_K(L) = \text{dcat}_K(L')$.

Discrete Lusternik–Schnirelmann category
Scoville, Aaronson, Green
Discrete LS pre-category

Definition

Let L be a (closed) subcomplex of K. We say that L has **discrete pre-category** m, denoted $\widetilde{\text{dcat}}_K(L) = m$, if m is the least integer such that there exists $m + 1$ closed subcomplexes $\{U_0, U_1, \ldots, U_m\}$ of K each of which is collapsible such that $L \subseteq \bigcup_{i=0}^{m} U_i$.

Example

Let B be the collapsible 3-ball of Benedetti and Lutz, $D \subseteq B$ the dunce cap. Since B is collapsible, $\widetilde{\text{dcat}}_B(D) = 0$ while $\widetilde{\text{dcat}}(D) = 1$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Discrete LS pre-category

Definition

Let L be a (closed) subcomplex of K. We say that L has **discrete pre-category** m, denoted $\widehat{\text{dcat}}_K(L) = m$, if m is the least integer such that there exists $m + 1$ closed subcomplexes $\{U_0, U_1, \ldots, U_m\}$ of K each of which is collapsible such that $L \subseteq \bigcup_{i=0}^{m} U_i$.

Example

Let B be the collapsible 3-ball of Benedetti and Lutz, $D \subseteq B$ the dunce cap. Since B is collapsible, $\widehat{\text{dcat}}_B(D) = 0$ while $\widehat{\text{dcat}}(D) = 1$.
Example

Let $K =$

\[
\begin{array}{c}
\end{array}
\]
Example

Let $K =$

\[
\begin{cases}
 \text{a collapsible cover of } K. \quad \text{Hence } \tilde{\text{dcat}}(K) \leq 1.
\end{cases}
\]
Discrete LS category

If $L \downarrow L'$, then $\tilde{dcat}_K(L) \geq \tilde{dcat}_K(L')$. Can I show that $\tilde{dcat}_K(L) \leq \tilde{dcat}_K(L')$?
Discrete LS category

If $L \searrow L'$, then $\widetilde{dcat}_K(L) \geq \widetilde{dcat}_K(L')$. Can I show that $\widetilde{dcat}_K(L) \leq \widetilde{dcat}_K(L')$?

Not yet...
Discrete LS category

If $L \searrow L'$, then $\widetilde{\text{dcat}}_K(L) \geq \widetilde{\text{dcat}}_K(L')$. Can I show that $\widetilde{\text{dcat}}_K(L) \leq \widetilde{\text{dcat}}_K(L')$?

Not yet...

Definition

The **discrete category** of L in K is defined by

$$\text{dcat}_K(L) = \min \{ \text{dcat}_K(L') : L \text{ collapses to } L' \text{ in } K \}.$$
Smooth vs Discrete LS category

Since a collapse corresponds to a deformation retraction, we have that a collapsible complex is contractible. Hence
Smooth vs Discrete LS category

Since a collapse corresponds to a deformation retraction, we have that a collapsible complex is contractible. Hence

Proposition

$$\text{cat}(|K|) \leq \text{dcat}(K).$$
Smooth vs Discrete LS category

Since a collapse corresponds to a deformation retraction, we have that a collapsible complex is contractible. Hence

Proposition

\[\text{cat}(|K|) \leq \text{dcat}(K). \]

Example

\[\text{dcat}(S^n) = 1 \]
Smooth vs Discrete LS category

Since a collapse corresponds to a deformation retraction, we have that a collapsible complex is contractible. Hence

Proposition
\[\text{cat}(|K|) \leq \text{dcat}(K). \]

Example
\[\text{dcat}(S^n) = 1 \]
\[\text{dcat}(\Sigma K) \leq 1 \]
Smooth vs Discrete LS category

Since a collapse corresponds to a deformation retraction, we have that a collapsible complex is contractible. Hence

Proposition

\[\text{cat}(|K|) \leq \text{dcat}(K). \]

Example

\[\text{dcat}(S^n) = 1 \]
\[\text{dcat}(\Sigma K) \leq 1 \]
\[\text{dcat}(CK) = 0. \]
In the smooth case, it is well-known that $\text{cat}(X) \leq \text{dim}(X)$. This is not true in the discrete case, even for a 1-dimensional complex.
\[\text{dcat}(K) \not\leq \dim(K) \]

In the smooth case, it is well-known that \(\text{cat}(X) \leq \dim(X) \). This is not true in the discrete case, even for a 1-dimensional complex.

Proposition

Let \(K \) be a 1-dimensional complex with \(v \) vertices and \(e \) edges. Then \(\left\lceil \frac{e}{v-1} \right\rceil - 1 \leq \text{dcat}(K) \).
In the smooth case, it is well-known that $\text{cat}(X) \leq \dim(X)$. This is not true in the discrete case, even for a 1-dimensional complex.

Proposition

Let K be a 1-dimensional complex with v vertices and e edges. Then $\left\lceil \frac{e}{v-1} \right\rceil - 1 \leq \text{dcat}(K)$.

This is a special case of a more general combinatorial lower bound which we will discuss later.
$\text{dcat}(K) \nleq \dim(K)$

In the smooth case, it is well-known that $\text{cat}(X) \leq \dim(X)$. This is not true in the discrete case, even for a 1-dimensional complex.

Proposition

Let K be a 1-dimensional complex with v vertices and e edges. Then $\left\lceil \frac{e}{v-1} \right\rceil - 1 \leq \text{dcat}(K)$.

This is a special case of a more general combinatorial lower bound which we will discuss later.

Example

Let $K = K_n$, the complete graph on n vertices. Then

$\left\lceil \frac{e}{v-1} \right\rceil - 1 = \left\lceil \frac{n}{2} \right\rceil - 1 \leq \text{dcat}(K)$.
In the smooth case, it is well-known that $\text{cat}(X) \leq \dim(X)$. This is not true in the discrete case, even for a 1-dimensional complex.

Proposition

Let K be a 1-dimensional complex with v vertices and e edges. Then $\left\lceil \frac{e}{v-1} \right\rceil - 1 \leq d\text{cat}(K)$.

This is a special case of a more general combinatorial lower bound which we will discuss later.

Example

Let $K = K_n$, the complete graph on n vertices. Then $\left\lceil \frac{e}{v-1} \right\rceil - 1 = \left\lceil \frac{n}{2} \right\rceil - 1 \leq d\text{cat}(K)$. A collapsible cover of size $\left\lceil \frac{n}{2} \right\rceil$ can be constructed for K_n. Thus $d\text{cat}(K) = \left\lceil \frac{n}{2} \right\rceil - 1 \not\leq 1 = \dim(K)$.

$d\text{cat}(K) \not\leq \dim(K)$
Discrete Morse theory
Discrete Morse theory

Let $K =$
Discrete Morse theory

Let $K =$

![Diagram of a graph]

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Discrete Morse theory

Let $K =$

![Graph]

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Discrete Morse theory

Let $K =$
Discrete Morse theory

Let $K =$

\[\begin{array}{c}
0 \\
3 \\
5 \\
2 \\
2 \\
\end{array} \]
Discrete Morse theory

Let $K =$

![Graph diagram with nodes and edges labeled with numbers]
Discrete Morse theory

Let $K =$

![Diagram of a graph with vertices labeled 0, 2, 4, and 7, and edges connecting them. The edges and vertices are numbered 3, 5, 7, and 2 respectively.]}
Discrete Morse theory

Let $K =$
Discrete Morse theory

Let $K =$

![Graph diagram showing a discrete Morse complex with labeled vertices and edges.](image-url)
Let $K =$

![Graph diagram]
Discrete Morse theory

Let $K =$

![Graph](image-url)
Discrete Morse theory

Let $K =$

![Diagram of a discrete Morse complex]

Discrete Lusternik–Schnirelmann category
Discrete Morse theory

Let $K =$

![Diagram of a graph with labeled vertices and edges]
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = \]
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

$K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \ldots$

\[K(1) = \ldots \]
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \]

\[K(3) = \]
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \]

\[K(6) = \]

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \]

\[\cdot K(7) = \]

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

$K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15)$
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \]

\[\cdot K(14) = \]
Building a complex

The critical values are 0, 1, 3, 6, 7, 8, 9, 14, and 15.

\[K(0) = K(1) = K(3) = K(6) = K(7) = K(8) = K(9) = K(14) = K(15) = \]

\[\cdot K(15) = \]

Discrete Lusternik–Schnirelmann category Scoville, Aaronson, Green
Theorem

Let $f : K \to \mathbb{R}$ be a discrete Morse function with m critical points. Then $d_{\text{cat}}(K) + 1 \leq m$.

Proof.

Let $c_n := \min \{ a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } d_{\text{cat}}(L(a)) \geq n - 1 \}$. If c_n is a regular value of f, then there is an $\epsilon > 0$ such that $K(c_n + \epsilon) \downarrow K(c_n - \epsilon)$ in K by Forman. Hence $d_{\text{cat}}(K(c_n + \epsilon)) = d_{\text{cat}}(K(c_n - \epsilon)) \geq n - 1$ so that $c_n > c_n - \epsilon \in \{ a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } d_{\text{cat}}(L(a)) \geq n - 1 \}$ contradicting the fact that c_n is minimum. Thus each c_n is a critical value of f.

A straightforward induction argument now shows that if $c_1 < c_2 < \ldots < c_{d_{\text{cat}}(K) + 1}$ are the critical values, then $K(c_{d_{\text{cat}}(K) + 1})$ contains at least $d_{\text{cat}}(K) + 1$ critical simplices. Thus $d_{\text{cat}}(K) + 1 \leq m$.
Discrete LS Theorem

Theorem

Let $f : K \rightarrow \mathbb{R}$ be a discrete Morse function with m critical points. Then $\text{dcat}(K) + 1 \leq m$.

Proof.

Let $c_n := \min\{a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1\}$.

Discrete LS Theorem

Theorem

Let $f : K \to \mathbb{R}$ be a discrete Morse function with m critical points. Then $\text{dcat}(K) + 1 \leq m$.

Proof.

Let $c_n := \min\{a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1\}$.

Discrete Lusternik–Schnirelmann category
Scoville, Aaronson, Green
Discrete LS Theorem

Theorem

Let $f : K \to \mathbb{R}$ be a discrete Morse function with m critical points. Then $\text{dcat}(K) + 1 \leq m$.

Proof.

Let $c_n := \min\{a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1\}$. If c_n is a regular value of f, then there is an $\epsilon > 0$ such that $K(c_n + \epsilon) \searrow K(c_n - \epsilon)$ in K by R. Forman.
Theorem

Let $f : K \to \mathbb{R}$ be a discrete Morse function with m critical points. Then $\text{dcat}(K) + 1 \leq m$.

Proof.

Let $c_n := \min\{ a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1 \}$. If c_n is a regular value of f, then there is an $\epsilon > 0$ such that $K(c_n + \epsilon) \searrow K(c_n - \epsilon)$ in K by R. Forman. Hence $\text{dcat}_K(K(c_n + \epsilon)) = \text{dcat}_K(K(c_n - \epsilon)) \geq n - 1$ so that $c_n > c_n - \epsilon \in \{ a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1 \}$ contradicting the fact that c_n is minimum. Thus each c_n is a critical value of f.
Discrete LS Theorem

Theorem

Let $f : K \to \mathbb{R}$ be a discrete Morse function with m critical points. Then $\text{dcat}(K) + 1 \leq m$.

Proof.

Let $c_n := \min\{a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1\}$. If c_n is a regular value of f, then there is an $\epsilon > 0$ such that $K(c_n + \epsilon) \searrow K(c_n - \epsilon)$ in K by R. Forman. Hence $\text{dcat}_K(K(c_n + \epsilon)) = \text{dcat}_K(K(c_n - \epsilon)) \geq n - 1$ so that $c_n > c_n - \epsilon \in \{a \in \mathbb{R} : \exists L(a) \subseteq K \text{ s.t. } \text{dcat}_K(L(a)) \geq n - 1\}$ contradicting the fact that c_n is minimum. Thus each c_n is a critical value of f. A straightforward induction argument now shows that if $c_1 < c_2 < \ldots < c_{\text{dcat}(K)+1}$ are the critical values, then $K(c_{\text{dcat}(K)+1}) \subseteq K$ contains at least $\text{dcat}(K) + 1$ critical simplices. Thus $\text{dcat}(K) + 1 \leq m$.
Let K be a simplicial complex of dimension n or $n+1$, and let c_K^i denote the number of simplicies of K of dimension i. Let $E(c_K) := c_K^0 + c_K^2 + \ldots + c_K^n$ and $O(c_K) := c_K^1 + c_K^3 + \ldots + c_K^{n+1}$.

Proposition

Let K be a simplicial complex of dimension n with c_i the number of simplicies of K of dimension i. If $E(c_K) - 1 \geq O(c_K)$, then $\lceil E(c_K) - 1 \rceil - 1 \leq \text{dcat}(K)$. If $E(c_K) - 1 \leq O(c_K)$, then $\lceil O(c_K) E(c_K) - 1 \rceil - 1 \leq \text{dcat}(K)$.
Let K be a simplicial complex of dimension n or $n+1$, and let c^K_i denote the number of simplicies of K of dimension i. Let $E(c^K) := c^K_0 + c^K_2 + \ldots + c^K_n$ and $O(c^K) := c^K_1 + c^K_3 + \ldots + c^K_{n\pm1}$.

Proposition

Let K be a simplicial complex of dimension n with c^K_i the number of simplicies of K of dimension i. If $E(c^K) - 1 \geq O(c^K)$, then $\lceil E(c^K) - 1 \rceil - 1 \leq d_{\text{cat}}(K)$. If $E(c^K) - 1 \leq O(c^K)$, then $\lceil O(c^K) E(c^K) - 1 \rceil - 1 \leq d_{\text{cat}}(K)$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Lower bound

Let K be a simplicial complex of dimension n or $n+1$, and let c^K_i denote the number of simplices of K of dimension i. Let $E(c^K) := c^K_0 + c^K_2 + \ldots + c^K_n$ and $O(c^K) := c^K_1 + c^K_3 + \ldots + c^K_{n\pm 1}$.

Proposition

Let K be a simplicial complex of dimension n with c_i the number of simplices of K of dimension i. If $E(c^K) - 1 \geq O(c^K)$, then

$$\left\lceil \frac{E(c^K) - 1}{O(c^K)} \right\rceil - 1 \leq \text{dcat}(K).$$

If $E(c^K) - 1 \leq O(c^K)$, then

$$\left\lceil \frac{O(c^K)}{E(c^K) - 1} \right\rceil - 1 \leq \text{dcat}(K).$$
Computation

Let K be a simplicial complex.
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
2. Let $U = \emptyset$. Pick random top dimensional subcomplex Δ and add to U, remove from V.

The set U obtained in the above algorithm is a collapsible cover of K so that $d_{\text{cat}}(K) \leq |U| - 1$.
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
2. Let $U = \emptyset$. Pick random top dimensional subcomplex Δ and add to U, remove from V.
3. Expand along 0-simplicies, then 1-simplicies, 2-simplicies, etc. Add to U, remove from V.

The set U obtained in the above algorithm is a collapsible cover of K so that $d_{\text{cat}}(K) \leq |U| - 1$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
2. Let $U = \emptyset$. Pick random top dimensional subcomplex Δ and add to U, remove from V.
3. Expand along 0-simplicies, then 1-simplicies, 2-simplicies, etc. Add to U, remove from V.

The set U obtained in the above algorithm is a collapsible cover of K so that $d_{\text{cat}}(K) \leq |U| - 1$.

Discrete Lusternik–Schnirelmann category
Scoville, Aaronson, Green
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
2. Let $U = \emptyset$. Pick random top dimensional subcomplex Δ and add to U, remove from V.
3. Expand along 0-simplicies, then 1-simplicies, 2-simplicies, etc. Add to U, remove from V.

End when $V = \emptyset$.

The set U obtained in the above algorithm is a collapsible cover of K so that $d_{\text{cat}}(K) \leq |U| - 1$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Computation

Let K be a simplicial complex.

1. Initialize $V := K$ and $U := \emptyset$.
2. Let $U = \emptyset$. Pick random top dimensional subcomplex Δ and add to U, remove from V.
3. Expand along 0-simplices, then 1-simplices, 2-simplices, etc. Add to U, remove from V.

End when $V = \emptyset$.

The set U obtained in the above algorithm is a collapsible cover of K so that $\text{dcat}(K) \leq |U| - 1$.

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Example

Discrete Lusternik–Schnirelmann category
Example
Example

Discrete Lusternik–Schnirelmann category
Example
Example

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green
Example
Example
Example

Discrete Lusternik–Schnirelmann category

Scoville, Aaronson, Green