Module category weight of compact Lie groups

Younggi Choi

Seoul National University, Seoul, KOREA

Applied Topology 2013 July 26, 2013

First of all I would like to thank the organizers of this wonderful meeting

and

I also would like to give special congratulations to Prof. Yuli Rudyak on his 65th birthday.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Def: Lusternik–Schnirelmann category

Definition

The Lusternik–Schnirelmann category of a space X, cat(X), is defined to be minimal number n such that there exists an open covering $\{U_1, \ldots, U_{n+1}\}$ of X with each U_i contractible in X.

This homotopy invariant is not yet determined even for all compact simple Lie groups. Among them, only SU(n) is known for the general case n.

Def: Lusternik–Schnirelmann category

Definition

The Lusternik–Schnirelmann category of a space X, cat(X), is defined to be minimal number n such that there exists an open covering $\{U_1, \ldots, U_{n+1}\}$ of X with each U_i contractible in X.

This homotopy invariant is not yet determined even for all compact simple Lie groups. Among them, only SU(n) is known for the general case *n*.

Every space X has a filtration given by the X-projective k-space $P^k(\Omega X)$ of its loop space ΩX . Then there is a sequence of quasi-fibration

$$\{p_k: E^k(\Omega X) \to P^{k-1}(\Omega X); k \geq 1\}$$

with the fibre ΩX such that E^k has the homotopy type of the k-fold join of ΩX and P^k has the homotopy type of the mapping cone of p_k .

Remark: The space $P^k(\Omega X)$ is homotopy equivalent to the k-th Ganea space $G_k(X)$.

- ロト・日本・日本・日本・日本・日本

Every space X has a filtration given by the X-projective k-space $P^k(\Omega X)$ of its loop space ΩX . Then there is a sequence of quasi-fibration

$$\{p_k: E^k(\Omega X) \to P^{k-1}(\Omega X); k \geq 1\}$$

with the fibre ΩX such that E^k has the homotopy type of the k-fold join of ΩX and P^k has the homotopy type of the mapping cone of p_k .

Remark: The space $P^k(\Omega X)$ is homotopy equivalent to the *k*-th Ganea space $G_k(X)$.

Ganea fibration

The Rothenberg–Steenrod spectral sequence associated with the filtration of $P^{\infty}(\Omega X) \simeq X$ given by $\{P^m(\Omega X) | m \ge 0\}$ coincides with the Rothenberg–Steenrod spectral sequence associated with that of $G_{\infty}(X) \simeq X$ given by $\{G_m(X) | m \ge 0\}$.

Ganea fibration

The Rothenberg–Steenrod spectral sequence associated with the filtration of $P^{\infty}(\Omega X) \simeq X$ given by $\{P^m(\Omega X) | m \ge 0\}$ coincides with the Rothenberg–Steenrod spectral sequence associated with that of $G_{\infty}(X) \simeq X$ given by $\{G_m(X) | m \ge 0\}$.

Let $e_m : P^m(\Omega X) \to P^{\infty}(\Omega X) \simeq X$ be the inclusion map, then we can pose the following problems:

• Find the minimal number *m* such that $(e_m)^* : H^*(X; \mathbf{F}_p) \to H^*(P^m(\Omega X); \mathbf{F}_p)$ is a monomorphism.

② Find the minimal number *m* such that (*e_m*)* : *H**(*X*; *F_ρ*) → *H**(*P^m*(Ω*X*); *F_ρ*) is a split monomorphism of modules over the Steenrod algebra, that is, there is a epimorphism φ_m : *H**(*P^m*(Ω*X*); *F_ρ*) → *H**(*X*; *F_ρ*) which preserves all Steenrod actions and φ_m ∘ (*e_m*)* ≅ 1_{*H**(*X*; *F_ρ*).}

• Find the minimal number *m* such that there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Let $e_m : P^m(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the inclusion map, then we can pose the following problems:

• Find the minimal number *m* such that $(e_m)^* : H^*(X; \mathbf{F}_p) \to H^*(P^m(\Omega X); \mathbf{F}_p)$ is a monomorphism.

Find the minimal number *m* such that

 (*e_m*)*: *H**(*X*; *F_ρ*) → *H**(*P^m*(Ω*X*); *F_ρ*) is a split
 monomorphism of modules over the Steenrod algebra, that
 is, there is a epimorphism
 φ_m: *H**(*P^m*(Ω*X*); *F_ρ*) → *H**(*X*; *F_ρ*) which preserves all
 Steenrod actions and φ_m ∘ (*e_m*)* ≅ 1<sub>*H**(*X*; *F_ρ*).

</sub>

(日) (日) (日) (日) (日) (日) (日)

③ Find the minimal number *m* such that there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Let $e_m : P^m(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the inclusion map, then we can pose the following problems:

• Find the minimal number *m* such that $(e_m)^* : H^*(X; \mathbf{F}_p) \to H^*(P^m(\Omega X); \mathbf{F}_p)$ is a monomorphism.

Find the minimal number *m* such that (*e_m*)* : *H**(*X*; *F_p*) → *H**(*P^m*(Ω*X*); *F_p*) is a split monomorphism of modules over the Steenrod algebra, that is, there is a epimorphism φ_m : *H**(*P^m*(Ω*X*); *F_p*) → *H**(*X*; *F_p*) which preserves all Steenrod actions and φ_m ∘ (*e_m*)* ≅ 1_{*H**(*X*; *F_p*).}

(日) (日) (日) (日) (日) (日) (日)

■ Find the minimal number *m* such that there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Let $e_m : P^m(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the inclusion map, then we can pose the following problems:

• Find the minimal number *m* such that $(e_m)^* : H^*(X; \mathbf{F}_p) \to H^*(P^m(\Omega X); \mathbf{F}_p)$ is a monomorphism.

Find the minimal number *m* such that (*e_m*)* : *H**(*X*; *F_p*) → *H**(*P^m*(Ω*X*); *F_p*) is a split monomorphism of modules over the Steenrod algebra, that is, there is a epimorphism φ_m : *H**(*P^m*(Ω*X*); *F_p*) → *H**(*X*; *F_p*) which preserves all Steenrod actions and φ_m ∘ (*e_m*)* ≅ 1_{*H**(*X*; *F_p*).}

Solution Find the minimal number *m* such that there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

We can define another homotopy invariants such as

category weight $wgt(X; \mathbf{F}_p)$,

module category weight $Mwgt(X; \mathbf{F}_p)$:

 $wgt(X; \mathbf{F}_p) = \min\{m | (e_m)^* \text{ is a monomorphism}\},\$ $Mwgt(X; \mathbf{F}_p) = \min\{m | \text{ there is such a epimorphism } \phi_m\}.$

Let X be a connected space. Then $cat(X) \leq m$ if and only if there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Then, we have the following relation: $cup(X; \mathbf{F}_p) \leq wgt(X; \mathbf{F}_p) \leq Mwgt(X; \mathbf{F}_p) \leq cat(X), \quad z \to z \to z$

We can define another homotopy invariants such as

category weight $wgt(X; \mathbf{F}_p)$,

module category weight $Mwgt(X; \mathbf{F}_{p})$:

 $wgt(X; \mathbf{F}_p) = \min\{m | (e_m)^* \text{ is a monomorphism}\},\$ $Mwgt(X; \mathbf{F}_p) = \min\{m | \text{ there is such a epimorphism } \phi_m\}.$

Ganea

Let X be a connected space. Then $cat(X) \leq m$ if and only if there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

We can define another homotopy invariants such as

category weight $wgt(X; \mathbf{F}_p)$,

module category weight $Mwgt(X; \mathbf{F}_{p})$:

$$wgt(X; \mathbf{F}_p) = \min\{m | (e_m)^* \text{ is a monomorphism}\},\$$

 $Mwgt(X; \mathbf{F}_p) = \min\{m | \text{ there is such a epimorphism } \phi_m\}.$

[Ganea]

Let X be a connected space. Then $cat(X) \le m$ if and only if there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Then, we have the following relation: $cup(X; \mathbf{F}_{p}) \leq wgt(X; \mathbf{F}_{p}) \leq Mwgt(X; \mathbf{F}_{p}) \leq cat(X), \quad z \in \mathbb{R}^{n}$

We can define another homotopy invariants such as

category weight $wgt(X; \mathbf{F}_{p})$,

module category weight $Mwgt(X; \mathbf{F}_{p})$:

$$wgt(X; \mathbf{F}_p) = \min\{m | (\mathbf{e}_m)^* \text{ is a monomorphism}\},\$$

 $Mwgt(X; \mathbf{F}_p) = \min\{m | \text{ there is such a epimorphism } \phi_m\}.$

[Ganea]

Let *X* be a connected space. Then $cat(X) \leq m$ if and only if there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

We can define another homotopy invariants such as

category weight $wgt(X; \mathbf{F}_p)$,

module category weight $Mwgt(X; \mathbf{F}_{p})$:

$$wgt(X; \mathbf{F}_p) = \min\{m | (\mathbf{e}_m)^* \text{ is a monomorphism}\},\$$

 $Mwgt(X; \mathbf{F}_p) = \min\{m | \text{ there is such a epimorphism } \phi_m\}.$

[Ganea]

Let *X* be a connected space. Then $cat(X) \leq m$ if and only if there is a map $\sigma : X \to P^m(\Omega X)$ such that $e_m \circ \sigma \simeq 1_X$.

Then, we have the following relation: $cup(X; \mathbf{F}_p) \le wgt(X; \mathbf{F}_p) \le Mwgt(X; \mathbf{F}_p) \le cat(X).$

Main object

Main object

The aim of this talk is to compute the module category weight of simply connected compact simple Lie groups to give a lower bound for the Lusternik–Schnirelmann category of them.

However, the classical types are not so interesting except the case of Spin(n) with F_2 coefficients. Here we will explain exceptional Lie groups cases, G_2 , F_4 , E_6 , E_7 , E_8 and mention the result of Spin(n) with F_2 coefficients without explanation.

Main object

Main object

The aim of this talk is to compute the module category weight of simply connected compact simple Lie groups to give a lower bound for the Lusternik–Schnirelmann category of them.

However, the classical types are not so interesting except the case of Spin(n) with F_2 coefficients. Here we will explain exceptional Lie groups cases, G_2 , F_4 , E_6 , E_7 , E_8 and mention the result of Spin(n) with F_2 coefficients without explanation.

Remark 1: Toomer calculated the difference $cup(X; \mathbf{F}_p) - wgt(X; \mathbf{F}_p)$ of any simply connected compact simple Lie group. In fact, it is precisely F_4, E_6, E_7, E_8 which yield a positive difference.

Remark 2: On the other hands, Iwase and Kono determined cat(Spin(9)) = 8 by computing the lower bound of the difference between the category weight and the module category weight of Spin(9), which is $Mwgt(Spin(9); \mathbf{F}_2) - wgt(Spin(9); \mathbf{F}_2) \ge 2.$

Remark 1: Toomer calculated the difference $cup(X; \mathbf{F}_p) - wgt(X; \mathbf{F}_p)$ of any simply connected compact simple Lie group. In fact, it is precisely F_4 , E_6 , E_7 , E_8 which yield a positive difference.

Remark 2: On the other hands, Iwase and Kono determined cat(Spin(9)) = 8 by computing the lower bound of the difference between the category weight and the module category weight of Spin(9), which is $Mwgt(Spin(9); \mathbf{F}_2) - wgt(Spin(9); \mathbf{F}_2) \ge 2.$

Rothenberg–Steenrod spectral sequence

For a simply connected space X and given a path–loop fibration, $\Omega X \rightarrow PX \rightarrow X$, we consider the Rothenberg–Steenrod spectral sequence $\{E_r^{*,*}, d_r\}$ converging to $H^*(X; \mathbf{F}_p)$ with

$$E_2 \cong \operatorname{Cotor}_{H^*(\Omega X; \boldsymbol{F}_p)}(\boldsymbol{F}_p, \boldsymbol{F}_p)$$
$$E_{\infty}^{s,t} \cong F^s H^{s+t}(X; \boldsymbol{F}_p) / F^{s+1} H^{s+t}(X; \boldsymbol{F}_p)$$

where $F^{q+1}H^n(X; \mathbf{F}_p) \cong \ker\{(\mathbf{e}_q)^* : H^n(X; \mathbf{F}_p) \to H^n(P^q(\Omega X); \mathbf{F}_p)\}$

Hence for all $s \ge m + 1$,

$$\begin{aligned} E_{\infty}^{s,*} &= 0 \quad \Leftrightarrow \quad F^{s}H^{*}(X; \boldsymbol{F}_{\rho}) = F^{s+1}H^{*}(X; \boldsymbol{F}_{\rho}) \\ & \Leftrightarrow \quad \ker \ (\boldsymbol{e_{s-1}})^{*} = \ker \ (\boldsymbol{e_{s}})^{*}. \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Since $wgt(X; \mathbf{F}_p)$ is the minimum number m such that $\ker(e_m)^* = 0$, $wgt(X; \mathbf{F}_p)$ can be defined as the minimal number m such that $E_{\infty}^{s,*} = 0$ for all $s \ge m + 1$. Hence $wgt(X; \mathbf{F}_p)$ is $f_p(X)$, which is called the \mathbf{F}_p -filtration length of X. Hence for all $s \ge m + 1$,

$$\begin{aligned} E_{\infty}^{s,*} &= 0 \quad \Leftrightarrow \quad F^{s}H^{*}(X; \boldsymbol{F}_{\rho}) = F^{s+1}H^{*}(X; \boldsymbol{F}_{\rho}) \\ & \Leftrightarrow \quad \ker \ (\boldsymbol{e}_{s-1})^{*} = \ker \ (\boldsymbol{e}_{s})^{*}. \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

Since $wgt(X; \mathbf{F}_p)$ is the minimum number *m* such that $\ker(e_m)^* = 0$, $wgt(X; \mathbf{F}_p)$ can be defined as the minimal number *m* such that $E_{\infty}^{s,*} = 0$ for all $s \ge m + 1$. Hence $wgt(X; \mathbf{F}_p)$ is $f_p(X)$, which is called the \mathbf{F}_p -filtration length of *X*.

The coalgebra structure of $H^*(\Omega G)$

We analyze the Rothenberg–Steenrod spectral sequence converging to $H^*(G)$ with $E_2^{*,*} \cong \operatorname{Cotor}_{H^*(\Omega G)}(F_2, F_2)$ in order to get module category weight of exceptional Lie groups *G*. This requires understanding of the coalgebra structure of $H^*(\Omega G)$.

Theorem

The coalgebra structure of the mod 2 cohomology of the loop spaces of exceptional Lie groups are as follows.

 $\begin{aligned} H^*(\Omega G_2; \mathbb{F}_2) &\cong & E(a_2) \otimes \Gamma(a_4, b_{10}) \\ H^*(\Omega F_4; \mathbb{F}_2) &\cong & E(a_2) \otimes \Gamma(a_4, b_{10}, a_{14}, a_{16}, a_{22}) \\ H^*(\Omega E_6; \mathbb{F}_2) &\cong & E(a_2) \otimes \Gamma(a_4, a_8, b_{10}, a_{14}, a_{16}, a_{22}) \\ H^*(\Omega E_7; \mathbb{F}_2) &\cong & E(a_2, a_4, a_8) \otimes \Gamma(b_{10}, a_{14}, a_{16}, b_{18}, a_{22}, a_{26}, b_{34}) \\ H^*(\Omega E_8; \mathbb{F}_2) &\cong & E(a_2, a_4, a_8, a_{14}) \otimes \Gamma(a_{16}, a_{22}, a_{26}, a_{28}, b_{34}, b_{38}, b_{46}, b_{58} \end{aligned}$

especially we have $Sq^4b_{10} = a_{14}$ and $Sq^8b_{18} = a_{26}$

The coalgebra structure of $H^*(\Omega G)$

We analyze the Rothenberg–Steenrod spectral sequence converging to $H^*(G)$ with $E_2^{*,*} \cong \operatorname{Cotor}_{H^*(\Omega G)}(F_2, F_2)$ in order to get module category weight of exceptional Lie groups *G*. This requires understanding of the coalgebra structure of $H^*(\Omega G)$.

Theorem

The coalgebra structure of the mod 2 cohomology of the loop spaces of exceptional Lie groups are as follows.

$H^*(\Omega G_2; \mathbb{F}_2)$	\cong	$E(a_2)\otimes \Gamma(a_4,b_{10})$
$H^*(\Omega F_4; \mathbb{F}_2)$	\cong	$E(a_2)\otimes \Gamma(a_4,b_{10},a_{14},a_{16},a_{22})$
$H^*(\Omega E_6; \mathbb{F}_2)$	\cong	$E(a_2)\otimes \Gamma(a_4,a_8,b_{10},a_{14},a_{16},a_{22})$
$H^*(\Omega E_7; \mathbb{F}_2)$	\cong	$E(a_2, a_4, a_8) \otimes \Gamma(b_{10}, a_{14}, a_{16}, b_{18}, a_{22}, a_{26}, b_{34})$
$H^*(\Omega E_8; \mathbb{F}_2)$	\cong	$E(a_2, a_4, a_8, a_{14}) \otimes \Gamma(a_{16}, a_{22}, a_{26}, a_{28}, b_{34}, b_{38}, b_{46}, b_{58})$

especially we have $Sq^4b_{10} = a_{14}$ and $Sq^8b_{18} = a_{26}$.

$E_2 = \operatorname{Cotor}_{H^*(\Omega G; F_2)}(F_2, F_2)$

Theorem

 $\operatorname{Cotor}_{H^*(\Omega G; \mathbf{F}_2)}(\mathbf{F}_2, \mathbf{F}_2)$ of the exceptional Lie groups G are as follows.

(ロ) (同) (三) (三) (三) (三) (○) (○)

especially we have $Sq^4z_{11} = x_{15}$ and $Sq^8z_{19} = x_{27}$.

Differentials

Then from information of $H^*(G; \mathbf{F}_2)$, we can analyze non trivial differentials of the Rothenberg–Steenrod spectral sequence converging to $H^*(G; \mathbf{F}_2)$ as follows:

$$\begin{array}{rcl} d_3(z_{11}) &=& x_3^4 & \text{ for } G = G_2, F_4, E_6, E_7 \\ d_3(z_{19}) &=& x_5^4 & \text{ for } G = E_7 \\ d_3(z_{35}) &=& x_9^4 & \text{ for } G = E_7, E_8 \\ d_7(z_{39}) &=& x_5^8 & \text{ for } G = E_8 \\ d_{15}(z_{47}) &=& x_3^{16} & \text{ for } G = E_8 \\ d_3(z_{59}) &=& x_{15}^4 & \text{ for } G = E_8. \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Differentials

Then from information of $H^*(G; \mathbf{F}_2)$, we can analyze non trivial differentials of the Rothenberg–Steenrod spectral sequence converging to $H^*(G; \mathbf{F}_2)$ as follows:

$$\begin{array}{rcl} d_3(z_{11}) &=& x_3^4 & \text{ for } G = G_2, F_4, E_6, E_7 \\ d_3(z_{19}) &=& x_5^4 & \text{ for } G = E_7 \\ d_3(z_{35}) &=& x_9^4 & \text{ for } G = E_7, E_8 \\ d_7(z_{39}) &=& x_5^8 & \text{ for } G = E_8 \\ d_{15}(z_{47}) &=& x_{3}^{16} & \text{ for } G = E_8 \\ d_3(z_{59}) &=& x_{15}^4 & \text{ for } G = E_8. \end{array}$$

$H^*(P^m(\Omega G); \mathbf{F}_2)$

Consider the spectral sequence of Stasheff's type converging to $H^*(P^m(\Omega G); \mathbf{F}_2)$. Let $A = H^*(G; \mathbf{F}_2)$. Then for low *m* such as $1 \le m \le 3$, we have the following:

$$H^{*}(P^{m}(\Omega G); \mathbf{F}_{2}) = A^{[m]} \oplus \sum_{i} z_{4i+3} \cdot A^{[m-1]} \oplus S_{m}, \begin{cases} i = 3, \text{ for } G = G_{2}, F_{4}, E_{6} \\ i = 3, 4, 8, \text{ for } G = E_{7} \\ i = 8, 9, 11, 14, \text{ for } G = E_{8} \end{cases}$$

as modules where $A^{[m]}$, $(m \ge 0)$ denotes the quotient module $A/D^{m+1}(A)$ of A by the submodule $D^{m+1}(A) \subseteq A$ generated by all the products of m + 1 elements in positive dimensions in A, $z_{4i+3} \cdot A^{[m-1]}$ denotes a submodule corresponding to a submodule in $A \otimes E(z_{4i+3})$ and S_m satisfies $S_m \cdot \tilde{H}^*(P^m(\Omega G); \mathbf{F}_2) = 0$ and $S_m|_{P^{m-1}(\Omega G)} = 0$.

Module Category Weight for F₂ coefficients

Theorem

The module category weights with respect to F_2 coefficients are as follows:

Module Category Weight for F₂ coefficients

Theorem

The module category weights with respect to F_2 coefficients are as follows:

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• The case of
$$\overline{H}_{4}$$

 $H^{*}(\overline{H}_{4}:\overline{F}_{2}) = \overline{\mathbb{E}} [\overline{\mathcal{I}}_{3} \frac{1}{\mathcal{I}}_{3}} \otimes E(\overline{\mathcal{I}}_{3}^{2} \overline{\mathcal{I}}_{3}, \overline{\mathcal{I}}_{3}, \overline{\mathcal{I}}_{3}, \overline{\mathcal{I}}_{3}^{S}, \overline{\mathcal{I}}_{3}^{S})$
 $E_{2} = \int \operatorname{Tor}_{H^{*}}(\overline{F}_{4}:\overline{F}_{2}) = E(\overline{\mathcal{I}}_{2}) \otimes \overline{\Gamma}(\overline{\mathcal{I}}_{4}, \overline{\mathcal{I}}_{10}, \overline{\mathcal{I}}_{14}, \overline{\mathcal{I}}_{10}, \overline{\mathcal{I}}_{22})$
 $H^{*}(\Omega\overline{H}_{4}:\overline{F}_{2}) = E(\overline{\mathcal{I}}_{2}) \otimes \overline{\Gamma}(\overline{\mathcal{I}}_{4}, \overline{\mathcal{I}}_{10}, \overline{\mathcal{I}}_{14}, \overline{\mathcal{I}}_{10}, \overline{\mathcal{I}}_{22})$
 $. S_{3}^{4} \overline{\mathcal{I}}_{10} = \overline{\mathcal{I}}_{14}$
 $E_{2} \int = \operatorname{Cotor}_{H^{*}}(\overline{\mathcal{I}}_{14}:\overline{F}_{2})^{(\overline{E},\overline{E}_{2})}$
 $\overline{E}_{2} = \overline{F}_{2}\overline{\mathcal{I}}_{3}] \otimes E(\overline{\mathcal{I}}_{5}, \overline{\mathcal{I}}_{11}, \overline{\mathcal{I}}_{5}, \overline{\mathcal{I}}_{23}) \Longrightarrow H^{*}(\overline{F}_{4}:\overline{F}_{2})$

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$\begin{array}{rcl} H^{\star}(P^{2}(Q\overline{H}_{4}):\overline{F}_{2}) & : & \text{Spectral sequence of Stasheff's type} \\ & \begin{array}{c} S_{4}^{4} z_{1} & = z_{15} & \text{in } H^{\star}(P^{2}(Q\overline{H}_{4}):\overline{F}_{2}) \\ & \begin{array}{c} S_{7}^{4} z_{1} & = z_{15} & \text{in } H^{\star}(P^{2}(Q\overline{H}_{4}):\overline{F}_{2}) \\ & \begin{array}{c} S_{4}^{4} z_{11} & = z_{15} + w & \text{in } H^{\star}(P^{3}(Q\overline{H}_{4}):\overline{F}_{2}) \\ & \end{array} \\ & \begin{array}{c} S_{4}^{4} z_{11} & = z_{15} + w & \text{in } H^{\star}(P^{3}(Q\overline{H}_{4}):\overline{F}_{2}) \\ & \end{array} \\ & \begin{array}{c} Suppose & \text{that} & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & epirmorphism \\ & \end{array} \\ & \begin{array}{c} \widetilde{F}_{7} & : & H^{\star}(P^{7}(Q\overline{H}_{4}):\overline{F}_{2}) & \longrightarrow & H^{\star}(\overline{H}_{4}:\overline{H}_{2}) \\ \end{array} \end{array} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Then consider $H^*(P^7(QF_4):F_2)$ ----> H*(F4:F,) x3 x5 x15 x23 > tate the tas 54) \$4 23 × ZIS × 23 # · Mwgt(F4: F2) ≥8

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

$wgt(X; F_2)$	$Mwgt(X; \mathbf{F}_2)$	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Х	$wgt(X; \mathbf{F}_2)$	$Mwgt(X; \mathbf{F}_2)$	cat(X)
G ₂	4	≥ 4	4
F ₄	6	\geq 8	?
E ₆	8	≥ 10	?
E ₇	13	\geq 15	?
E ₈	32	≥ 32	?

Х	$wgt(X; \mathbf{F}_2)$	$Mwgt(X; \mathbf{F}_2)$	cat(X)
G ₂	4	≥ 4	4
F ₄	6	<u>></u> 8	?
E ₆	8	<u>> 10</u>	?
E ₇	13	<u>> 15</u>	?
E ₈	32	≥ 32	?

Х	$wgt(X; \mathbf{F}_2)$	$Mwgt(X; \mathbf{F}_2)$	cat(X)
G ₂	4	≥ 4	4
F ₄	6	<u>></u> 8	?
E ₆	8	≥ 10	?
E ₇	13	<u>> 15</u>	?
E ₈	32	≥ 32	?

Х	$wgt(X; \mathbf{F}_2)$	$Mwgt(X; \mathbf{F}_2)$	cat(X)
G ₂	4	≥ 4	4
F ₄	6	≥ 8	?
E ₆	8	≥ 10	?
E ₇	13	≥ 15	?
E ₈	32	≥ 32	?

Х	$wgt(X; \mathbf{F}_2)$	$Mwgt(X; \mathbf{F}_2)$	cat(X)
G ₂	4	≥ 4	4
F ₄	6	≥ 8	?
E ₆	8	≥ 10	?
E ₇	13	≥ 15	?
E ₈	32	≥ 32	?

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The coalgebra structure of $H^*(\Omega G; \mathbb{F}_3)$

Theorem

The coalgebra structure of the mod 3 cohomology of the loop spaces of exceptional Lie groups are as follows.

 $\begin{array}{rcl} H^{*}(\Omega G_{2};\mathbb{F}_{3}) &\cong & \Gamma(a_{2},a_{10}) \\ H^{*}(\Omega F_{4};\mathbb{F}_{3}) &\cong & \mathbb{F}_{3}[a_{2}]/(a_{2}^{3})\otimes\Gamma(a_{6},a_{10},a_{14},b_{22}) \\ H^{*}(\Omega E_{6};\mathbb{F}_{3}) &\cong & \mathbb{F}_{3}[a_{2}]/(a_{2}^{3})\otimes\Gamma(a_{6},a_{8},a_{10},a_{14},a_{16},b_{22}) \\ H^{*}(\Omega E_{7};\mathbb{F}_{3}) &\cong & \mathbb{F}_{3}[a_{2}]/(a_{2}^{3})\otimes\Gamma(a_{6},a_{10},a_{14},a_{18},b_{22},a_{26},a_{34}) \\ H^{*}(\Omega E_{8};\mathbb{F}_{3}) &\cong & \mathbb{F}_{3}[a_{2}]/(a_{2}^{3})\otimes\mathbb{F}_{3}[a_{6}]/(a_{6}^{3})\otimes\Gamma(a_{14},a_{18},b_{22},a_{26},a_{34},a_{38},a_{46},b_{58}) \end{array}$

especially we have $\mathcal{P}^1 b_{22} = a_{26}$.

$E_2 = \operatorname{Cotor}_{H^*(\Omega G; \mathcal{F}_3)}(\mathcal{F}_3, \mathcal{F}_3)$

Theorem

 $\operatorname{Cotor}_{H^*(\Omega G; \mathbf{F}_3)}(\mathbf{F}_3, \mathbf{F}_3)$ of the exceptional Lie groups G are as follows.

especially we have $\mathcal{P}^1 z_{23} = x_{27}$.

Then from information of $H^*(G; \mathbf{F}_3)$, we can analyze non trivial differentials of the Rothenberg–Steenrod spectral sequence converging to $H^*(G; \mathbf{F}_3)$ as follows:

$$d_3(z_{23}) = (\beta \mathcal{P}^1 x_3)^3, \text{ for } G = F_4, E_6, E_7$$

$$d_3(z_{59}) = (\beta \mathcal{P}^3 \mathcal{P}^1 x_3)^3, \text{ for } G = E_8$$

Let $A = H^*(G; \mathbf{F}_3)$. Then for low *m* such as $1 \le m \le 3$, we have the following:

$$H^*(P^m(\Omega G); \mathbf{F}_3) = A^{[m]} \oplus \sum_i Z_{4i+3} \cdot A^{[m-1]} \oplus S_m \begin{cases} i = 5, \text{ for } G = F_4, E_6, E_7 \\ i = 5, 14, \text{ for } G = E_8 \end{cases}$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

Then from information of $H^*(G; \mathbf{F}_3)$, we can analyze non trivial differentials of the Rothenberg–Steenrod spectral sequence converging to $H^*(G; \mathbf{F}_3)$ as follows:

$$d_3(z_{23}) = (\beta \mathcal{P}^1 x_3)^3, \text{ for } G = F_4, E_6, E_7$$

$$d_3(z_{59}) = (\beta \mathcal{P}^3 \mathcal{P}^1 x_3)^3, \text{ for } G = E_8$$

Let $A = H^*(G; \mathbf{F}_3)$. Then for low *m* such as $1 \le m \le 3$, we have the following:

$$H^*(P^m(\Omega G); \mathbf{F}_3) = A^{[m]} \oplus \sum_i Z_{4i+3} \cdot A^{[m-1]} \oplus S_m \begin{cases} i = 5, \text{ for } G = F_4, E_6, E_7 \\ i = 5, 14, \text{ for } G = E_8 \end{cases}$$

Then from information of $H^*(G; \mathbf{F}_3)$, we can analyze non trivial differentials of the Rothenberg–Steenrod spectral sequence converging to $H^*(G; \mathbf{F}_3)$ as follows:

$$d_3(z_{23}) = (\beta \mathcal{P}^1 x_3)^3, \text{ for } G = F_4, E_6, E_7$$

$$d_3(z_{59}) = (\beta \mathcal{P}^3 \mathcal{P}^1 x_3)^3, \text{ for } G = E_8$$

Let $A = H^*(G; \mathbf{F}_3)$. Then for low *m* such as $1 \le m \le 3$, we have the following:

$$H^{*}(P^{m}(\Omega G); \boldsymbol{F}_{3}) = A^{[m]} \oplus \sum_{i} z_{4i+3} \cdot A^{[m-1]} \oplus S_{m} \begin{cases} i = 5, \text{ for } G = F_{4}, E_{6}, E_{7} \\ i = 5, 14, \text{ for } G = E_{8} \end{cases}$$

Module Category Weight for *F*₃ coefficients

Theorem

The module category weights with respect to F_3 coefficients are as follows:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Module Category Weight for *F*³ coefficients

Theorem

The module category weights with respect to F_3 coefficients are as follows:

・ロン ・雪 と ・ ヨ と ・ ヨ と

-

From above Theorem, $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^1(\Omega E_7); \mathbf{F}_3)$. Then $\mathcal{P}^1 z_{23} = x_{27}$ modulo S_2 in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$. Since S_2 is even-dimensional, the modulo S_2 is trivial and $\mathcal{P}^1 z_{22} = x_{27}$ in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$.

So in $H^*(P^{12}(\Omega E_7); F_3)$, we have

 $\mathcal{P}^{1}((\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}) = (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}$

Note that the filtration lengths of $\beta \mathcal{P}^1 x_3$ are 2.

Let $\phi_m : H^*(P^m(\Omega E_7); \mathbf{F}_p) \to H^*(E_7; \mathbf{F}_p)$ be a epimorphism which preserves all Steenrod actions and $\phi_m \circ (e_m)^* \cong 1_{H^*(E_7; \mathbf{F}_p)}$. Suppose that there are epimorphisms $\phi_{12} : H^*(P^{12}(\Omega E_7); \mathbf{F}_3) \to H^*(E_7; \mathbf{F}_3).$

From above Theorem, $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^1(\Omega E_7); \mathbf{F}_3)$. Then $\mathcal{P}^1 z_{23} = x_{27}$ modulo S_2 in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$. Since S_2 is even-dimensional, the modulo S_2 is trivial and $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$.

So in $H^*(P^{12}(\Omega E_7); F_3)$, we have

 $\mathcal{P}^{1}((\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}) = (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}$

Note that the filtration lengths of $\beta \mathcal{P}^1 x_3$ are 2.

Let $\phi_m : H^*(P^m(\Omega E_7); \mathbf{F}_p) \to H^*(E_7; \mathbf{F}_p)$ be a epimorphism which preserves all Steenrod actions and $\phi_m \circ (e_m)^* \cong 1_{H^*(E_7; \mathbf{F}_p)}$. Suppose that there are epimorphisms $\phi_{12} : H^*(P^{12}(\Omega E_7); \mathbf{F}_3) \to H^*(E_7; \mathbf{F}_3).$

From above Theorem, $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^1(\Omega E_7); \mathbf{F}_3)$. Then $\mathcal{P}^1 z_{23} = x_{27}$ modulo S_2 in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$. Since S_2 is even-dimensional, the modulo S_2 is trivial and $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$.

So in $H^*(P^{12}(\Omega E_7); \mathbf{F}_3)$, we have

 $\mathcal{P}^{1}((\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}) = (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}$

Note that the filtration lengths of $\beta \mathcal{P}^1 x_3$ are 2.

Let $\phi_m : H^*(P^m(\Omega E_7); \mathbf{F}_p) \to H^*(E_7; \mathbf{F}_p)$ be a epimorphism which preserves all Steenrod actions and $\phi_m \circ (e_m)^* \cong \mathbf{1}_{H^*(E_7; \mathbf{F}_p)}$. Suppose that there are epimorphisms $\phi_{12} : H^*(P^{12}(\Omega E_7); \mathbf{F}_3) \to H^*(E_7; \mathbf{F}_3).$

From above Theorem, $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^1(\Omega E_7); \mathbf{F}_3)$. Then $\mathcal{P}^1 z_{23} = x_{27}$ modulo S_2 in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$. Since S_2 is even-dimensional, the modulo S_2 is trivial and $\mathcal{P}^1 z_{23} = x_{27}$ in $H^*(\mathcal{P}^2(\Omega E_7); \mathbf{F}_3)$.

So in $H^*(P^{12}(\Omega E_7); \mathbf{F}_3)$, we have

$$\mathcal{P}^{1}((\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}) = (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}$$

Note that the filtration lengths of $\beta \mathcal{P}^1 x_3$ are 2.

Let $\phi_m : H^*(P^m(\Omega E_7); \mathbf{F}_p) \to H^*(E_7; \mathbf{F}_p)$ be a epimorphism which preserves all Steenrod actions and $\phi_m \circ (\mathbf{e}_m)^* \cong \mathbf{1}_{H^*(E_7; \mathbf{F}_p)}$. Suppose that there are epimorphisms $\phi_{12} : H^*(P^{12}(\Omega E_7); \mathbf{F}_3) \to H^*(E_7; \mathbf{F}_3).$

Then we have the following diagrams:

 $\begin{array}{cccc} H^{*}(P^{12}(\Omega E_{7}); \mathbf{F}_{3}) & \stackrel{\phi_{12}}{\longrightarrow} & H^{*}(E_{7}; \mathbf{F}_{3}) \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} & \longmapsto & (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} \\ & \mathcal{P}^{1} \uparrow & & \mathcal{P}^{1} \uparrow \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35} & \longmapsto & 0 \end{array}$

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms. This means that $(e_{12})^*$, can not be split monomorphisms of all Steenrod algebra module. Hence we obtain that

$$Mwgt(E_7; F_3) \ge 13.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Then we have the following diagrams:

$$\begin{array}{cccc} H^{*}(\mathcal{P}^{12}(\Omega E_{7}); \mathbf{F}_{3}) & \stackrel{\phi_{12}}{\longrightarrow} & H^{*}(E_{7}; \mathbf{F}_{3}) \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} & \longmapsto & (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} \\ & \mathcal{P}^{1} \uparrow & & \mathcal{P}^{1} \uparrow \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35} & \longmapsto & 0 \end{array}$$

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms. This means that $(e_{12})^*$, can not be split monomorphisms of all Steenrod algebra module. Hence we obtain that

$$Mwgt(E_7; F_3) \ge 13.$$

Then we have the following diagrams:

$$\begin{array}{cccc} H^{*}(\mathcal{P}^{12}(\Omega E_{7}); \mathbf{F}_{3}) & \stackrel{\phi_{12}}{\longrightarrow} & H^{*}(E_{7}; \mathbf{F}_{3}) \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} & \longmapsto & (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} \\ & \mathcal{P}^{1} \uparrow & & \mathcal{P}^{1} \uparrow \\ (\beta \mathcal{P}^{1} x_{3})^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35} & \longmapsto & 0 \end{array}$$

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms. This means that $(e_{12})^*$, can not be split monomorphisms of all Steenrod algebra module. Hence we obtain that

$$Mwgt(E_7; F_3) \ge 13.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Combined with Toomer's result, we have the following conclusion:

Combined with Toomer's result, we have the following conclusion:

G	$wgt(G; \mathbf{F}_3) - cup(G; \mathbf{F}_3)$	Mwgt((G; F ₂) –	wgt(G; F ₂)	Mwgt((G; F ₃) –	- wgt(G; F ₃)
G ₂	0	\geq	0		\geq	0	
F_4	2	\geq	2		\geq	0	
E_6	2	\geq	2		\geq	0	
E ₇	2	\geq	2		\geq	2	
E_8	4	\geq	0		\geq	2	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Module Category Weight for Spin(n)

Theorem

The category weight of Spin(n) with \mathbf{F}_2 coefficients is as follows: (a) $wgt(Spin(2^n); \mathbf{F}_2) = wgt(Spin(2^n + 1); \mathbf{F}_2) = 2^{n-1} \times n - 2^n + 2$, (b) $wgt(Spin(2^n + 2k + 2); \mathbf{F}_2) = wgt(Spin(2^n + 2k + 1); \mathbf{F}_2) + 1$ for all integer $k \ge 0$, (c) $wgt(Spin(2^n + 2k + 1); \mathbf{F}_2) = 2^{n-1} \times n - 2^n + 2 + \sum_{i=1}^{k} 2^{\nu_i} - k$ for $1 \le k \le 2^{n-1} - 1$ where ν_i , $i = 1, \dots, k$, is the positive integer such that $2k + 2 < 2^{\nu_i}(2i - 1) < 4k$.

Theorem

For $n \ge 3$, the module category weight is as follows: **(a)** $Mwgt(Spin(2^{n} + k); \mathbf{F}_{2}) \ge wgt(Spin(2^{n} + k); \mathbf{F}_{2}) + 2 \text{ for } 1 \le k \le 2^{n-1},$ **(b)** $Mwgt(Spin(2^{n} + k); \mathbf{F}_{2}) = wgt(Spin(2^{n} + k); \mathbf{F}_{2}) \text{ for } 2^{n-1} + 1 \le k \le 2^{n}.$

Module Category Weight for Spin(n)

Theorem

The category weight of Spin(n) with \mathbf{F}_2 coefficients is as follows: (a) $wgt(Spin(2^n); \mathbf{F}_2) = wgt(Spin(2^n + 1); \mathbf{F}_2) = 2^{n-1} \times n - 2^n + 2$, (b) $wgt(Spin(2^n + 2k + 2); \mathbf{F}_2) = wgt(Spin(2^n + 2k + 1); \mathbf{F}_2) + 1$ for all integer $k \ge 0$, (c) $wgt(Spin(2^n + 2k + 1); \mathbf{F}_2) = 2^{n-1} \times n - 2^n + 2 + \sum_{i=1}^{k} 2^{\nu_i} - k$ for $1 \le k \le 2^{n-1} - 1$ where ν_i , $i = 1, \dots, k$, is the positive integer such that $2k + 2 < 2^{\nu_i}(2i - 1) < 4k$.

Theorem

For $n \ge 3$, the module category weight is as follows: (a) $Mwgt(Spin(2^n + k); \mathbf{F}_2) \ge wgt(Spin(2^n + k); \mathbf{F}_2) + 2$ for $1 \le k \le 2^{n-1}$, (b) $Mwgt(Spin(2^n + k); \mathbf{F}_2) = wgt(Spin(2^n + k); \mathbf{F}_2)$ for $2^{n-1} + 1 \le k \le 2^n$.

Module Category Weight for *Spin*(*n*)

G	$wgt(G; \mathbf{F}_2)$	$Mwgt(G; \mathbf{F}_2)$	cat(G)
Spin(3)	1	1	1
Spin(4)	2	2	2
Spin(5)	2	2	3
Spin(6)	3	3	3
Spin(7)	5	5	5
Spin(8)	6	6	6
Spin(9)	6	8	8
<i>Spin</i> (10)	7	≥ 9	?
<i>Spin</i> (11)	9	≥ 11	?
:	•	•	?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

The End

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The End

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ