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First of all I would like to thank the organizers of this wonderful
meeting

and

I also would like to give special congratulations to Prof. Yuli
Rudyak on his 65th birthday.



Def: Lusternik–Schnirelmann category

Definition
The Lusternik–Schnirelmann category of a space X , cat(X ), is
defined to be minimal number n such that there exists an open
covering {U1, . . . ,Un+1} of X with each Ui contractible in X .

This homotopy invariant is not yet determined even for all
compact simple Lie groups. Among them, only SU(n) is known
for the general case n.
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Projective spaces

Every space X has a filtration given by the X-projective k -space
Pk (ΩX ) of its loop space ΩX . Then there is a sequence of
quasi-fibration

{pk : Ek (ΩX )→ Pk−1(ΩX ); k ≥ 1}

with the fibre ΩX such that Ek has the homotopy type of the
k -fold join of ΩX and Pk has the homotopy type of the mapping
cone of pk .

Remark: The space Pk (ΩX ) is homotopy equivalent to the k -th
Ganea space Gk (X ).
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Ganea fibration

The Rothenberg–Steenrod spectral sequence associated with
the filtration of P∞(ΩX ) ' X given by {Pm(ΩX )| m ≥ 0}
coincides with the Rothenberg–Steenrod spectral sequence
associated with that of G∞(X ) ' X given by {Gm(X )| m ≥ 0}.
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Projective spaces

Let em : Pm(ΩX )→ P∞(ΩX ) ' X be the inclusion map,then
we can pose the following problems:

1 Find the minimal number m such that
(em)∗ : H∗(X ; F p)→ H∗(Pm(ΩX ); F p) is a monomorphism.

2 Find the minimal number m such that
(em)∗ : H∗(X ; F p)→ H∗(Pm(ΩX ); F p) is a split
monomorphism of modules over the Steenrod algebra, that
is, there is a epimorphism
φm : H∗(Pm(ΩX ); F p)→ H∗(X ; F p) which preserves all
Steenrod actions and φm ◦ (em)∗ ∼= 1H∗(X ;F p).

3 Find the minimal number m such that there is a map
σ : X → Pm(ΩX ) such that em ◦ σ ' 1X .
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Another homotopy invariants and their relation

We can define another homotopy invariants such as

category weight wgt(X ; F p),

module category weight Mwgt(X ; F p) :

wgt(X ; F p) = min{m| (em)∗ is a monomorphism},
Mwgt(X ; F p) = min{m| there is such a epimorphism φm}.

[Ganea]
Let X be a connected space. Then cat(X ) ≤ m if and only if
there is a map σ : X → Pm(ΩX ) such that em ◦ σ ' 1X .

Then, we have the following relation:
cup(X ; F p) ≤ wgt(X ; F p) ≤ Mwgt(X ; F p) ≤ cat(X ).
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Main object

Main object
The aim of this talk is to compute the module category weight
of simply connected compact simple Lie groups to give a lower
bound for the Lusternik–Schnirelmann category of them.

However, the classical types are not so interesting except the
case of Spin(n) with F 2 coefficients. Here we will explain
exceptional Lie groups cases, G2,F4,E6,E7,E8 and mention
the result of Spin(n) with F 2 coefficients without explanation.
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Remark 1: Toomer calculated the difference
cup(X ; F p)− wgt(X ; F p) of any simply connected compact
simple Lie group. In fact, it is precisely F4,E6,E7,E8 which yield
a positive difference.

Remark 2: On the other hands, Iwase and Kono determined
cat(Spin(9)) = 8 by computing the lower bound of the
difference between the category weight and the module
category weight of Spin(9), which is
Mwgt(Spin(9); F 2)− wgt(Spin(9); F 2) ≥ 2.
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Rothenberg–Steenrod spectral sequence

For a simply connected space X and given a path–loop
fibration, ΩX → PX → X ,
we consider the Rothenberg–Steenrod spectral sequence
{E∗,∗r ,dr} converging to H∗(X ; F p) with

E2 ∼= CotorH∗(ΩX ;F p)(F p,F p)

Es,t
∞
∼= F sHs+t (X ; F p)/F s+1Hs+t (X ; F p)

where
F q+1Hn(X ; F p) ∼= ker{(eq)∗ : Hn(X ; F p)→ Hn(Pq(ΩX ); F p)}



Hence for all s ≥ m + 1,

Es,∗
∞ = 0 ⇔ F sH∗(X ; F p) = F s+1H∗(X ; F p)

⇔ ker (es−1)∗ = ker (es)∗.

Since wgt(X ; F p) is the minimum number m such that
ker (em)∗ = 0, wgt(X ; F p) can be defined as the minimal
number m such that Es,∗

∞ = 0 for all s ≥ m + 1.
Hence wgt(X ; F p) is fp(X ), which is called the F p-filtration
length of X .
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The coalgebra structure of H∗(ΩG)

We analyze the Rothenberg–Steenrod spectral sequence
converging to H∗(G) with E∗,∗2

∼= CotorH∗(ΩG)(F 2,F 2) in order to
get module category weight of exceptional Lie groups G. This
requires understanding of the coalgebra structure of H∗(ΩG).

Theorem
The coalgebra structure of the mod 2 cohomology of the loop
spaces of exceptional Lie groups are as follows.

H∗(ΩG2;F2) ∼= E(a2)⊗ Γ(a4, b10)

H∗(ΩF4;F2) ∼= E(a2)⊗ Γ(a4, b10, a14, a16, a22)

H∗(ΩE6;F2) ∼= E(a2)⊗ Γ(a4, a8, b10, a14, a16, a22)

H∗(ΩE7;F2) ∼= E(a2, a4, a8)⊗ Γ(b10, a14, a16, b18, a22, a26, b34)

H∗(ΩE8;F2) ∼= E(a2, a4, a8, a14)⊗ Γ(a16, a22, a26, a28, b34, b38, b46, b58)

especially we have Sq4b10 = a14 and Sq8b18 = a26.
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E2 = CotorH∗(ΩG;F 2)(F 2,F 2)

Theorem
CotorH∗(ΩG;F 2)(F 2,F 2) of the exceptional Lie groups G are as follows.

CotorH∗(ΩG2;F 2)(F 2,F 2) ∼= F2[x3]⊗ E(x5, z11)

CotorH∗(ΩF4;F 2)(F 2,F 2) ∼= F2[x3]⊗ E(x5, z11, x15, x23)

CotorH∗(ΩE6;F 2)(F 2,F 2) ∼= F2[x3]⊗ E(x5, x9, z11, x15, x17, x23)

CotorH∗(ΩE7;F 2)(F 2,F 2) ∼= F2[x3, x5, x9]⊗ E(z11, x15, x17, z19, x23, x27, z35)

CotorH∗(ΩE8;F 2)(F 2,F 2) ∼= F2[x3, x5, x9, x15]⊗ E(x17, x23, x27, x29, z35, z39, z47, z59)

especially we have Sq4z11 = x15 and Sq8z19 = x27.



Differentials

Then from information of H∗(G; F 2), we can analyze non trivial
differentials of the Rothenberg–Steenrod spectral sequence
converging to H∗(G; F 2) as follows:

d3(z11) = x4
3 for G = G2,F4,E6,E7

d3(z19) = x4
5 for G = E7

d3(z35) = x4
9 for G = E7,E8

d7(z39) = x8
5 for G = E8

d15(z47) = x16
3 for G = E8

d3(z59) = x4
15 for G = E8.
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H∗(Pm(ΩG); F 2)

Consider the spectral sequence of Stasheff’s type converging
to H∗(Pm(ΩG); F 2). Let A = H∗(G; F 2). Then for low m such as
1 ≤ m ≤ 3, we have the following:

H∗(Pm(ΩG); F 2) = A[m] ⊕
∑

i

z4i+3 · A[m−1] ⊕ Sm,


i = 3, for G = G2,F4,E6

i = 3, 4, 8, for G = E7

i = 8, 9, 11, 14, for G = E8

as modules where A[m], (m ≥ 0) denotes the quotient module
A/Dm+1(A) of A by the submodule Dm+1(A) ⊆ A generated by
all the products of m + 1 elements in positive dimensions in A,
z4i+3 · A[m−1] denotes a submodule corresponding to a
submodule in A⊗ E(z4i+3) and Sm satisfies
Sm · H̃∗(Pm(ΩG); F 2) = 0 and Sm|Pm−1(ΩG) = 0.



Module Category Weight for F 2 coefficients

Theorem
The module category weights with respect to F 2 coefficients
are as follows:

Mwgt(G2; F 2) ≥ 4,
Mwgt(F4; F 2) ≥ 8,
Mwgt(E6; F 2) ≥ 10,
Mwgt(E7; F 2) ≥ 15,
Mwgt(E8; F 2) ≥ 32.
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Summarizing above results for F 2 coefficients

X wgt(X ; F 2) Mwgt(X ; F 2) cat(X )

G2 4 ≥ 4 4
F4 6 ≥ 8 ?
E6 8 ≥ 10 ?
E7 13 ≥ 15 ?
E8 32 ≥ 32 ?
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The coalgebra structure of H∗(ΩG;F3)

Theorem
The coalgebra structure of the mod 3 cohomology of the loop
spaces of exceptional Lie groups are as follows.

H∗(ΩG2;F3) ∼= Γ(a2, a10)

H∗(ΩF4;F3) ∼= F3[a2]/(a3
2)⊗ Γ(a6, a10, a14, b22)

H∗(ΩE6;F3) ∼= F3[a2]/(a3
2)⊗ Γ(a6, a8, a10, a14, a16, b22)

H∗(ΩE7;F3) ∼= F3[a2]/(a3
2)⊗ Γ(a6, a10, a14, a18, b22, a26, a34)

H∗(ΩE8;F3) ∼= F3[a2]/(a3
2)⊗ F3[a6]/(a3

6)⊗ Γ(a14, a18, b22, a26, a34, a38, a46, b58)

especially we have P1b22 = a26.



E2 = CotorH∗(ΩG;F 3)(F 3,F 3)

Theorem
CotorH∗(ΩG;F 3)(F 3,F 3) of the exceptional Lie groups G are as follows.

CotorH∗(ΩG2;F 3)(F 3,F 3) ∼= E(x3, x11)

CotorH∗(ΩF4;F 3)(F 3,F 3) ∼= E(x3)⊗ F3[βP1x3]⊗ E(P1x3, x11,P1x11, z23)

CotorH∗(ΩE6;F 3)(F 3,F 3) ∼= E(x3)⊗ F3[βP1x3]⊗ E(P1x3, x9, x11,P1x11, x17, z23)

CotorH∗(ΩE7;F 3)(F 3,F 3) ∼= E(x3)⊗ F3[βP1x3]⊗ E(P1x3, x11,P1x11, x19, z23, x27, x35)

CotorH∗(ΩE8;F 3)(F 3,F 3) ∼= E(x3)⊗ F3[βP1x3]⊗ E(P1x3)⊗ F3[βP3P1x3]

⊗E(x15, x19, z23, x27, x35, x39, x47, z59)

especially we have P1z23 = x27.



Differentials and H∗(Pm(ΩG); F 3)

Then from information of H∗(G; F 3), we can analyze non trivial
differentials of the Rothenberg–Steenrod spectral sequence
converging to H∗(G; F 3) as follows:

d3(z23) = (βP1x3)3, for G = F4,E6,E7

d3(z59) = (βP3P1x3)3, for G = E8

Let A = H∗(G; F 3). Then for low m such as 1 ≤ m ≤ 3, we
have the following:

H∗(Pm(ΩG); F 3) = A[m] ⊕
∑

i

z4i+3 · A[m−1] ⊕ Sm

{
i = 5, for G = F4,E6,E7

i = 5, 14, for G = E8
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Module Category Weight for F 3 coefficients

Theorem
The module category weights with respect to F 3 coefficients
are as follows:

Mwgt(G2; F 3) ≥ 2,
Mwgt(F4; F 3) ≥ 8,
Mwgt(E6; F 3) ≥ 10.
Mwgt(E7; F 3) ≥ 13,
Mwgt(E8; F 3) ≥ 18.
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Sketch of a proof for the E7 case

From above Theorem, P1z23 = x27 in H∗(P1(ΩE7); F 3).
Then P1z23 = x27 modulo S2 in H∗(P2(ΩE7); F 3).
Since S2 is even-dimensional, the modulo S2 is trivial and

P1z23 = x27 in H∗(P2(ΩE7); F 3) .

So in H∗(P12(ΩE7); F 3), we have

P1((βP1x3)2x3x7x11x15x19z23x35) = (βP1x3)2x3x7x11x15x19x27x35

Note that the filtration lengths of βP1x3 are 2.

Let φm : H∗(Pm(ΩE7); F p)→ H∗(E7; F p) be a epimorphism
which preserves all Steenrod actions and
φm ◦ (em)∗ ∼= 1H∗(E7;F p). Suppose that there are epimorphisms

φ12 : H∗(P12(ΩE7); F 3) → H∗(E7; F 3).
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Then P1z23 = x27 modulo S2 in H∗(P2(ΩE7); F 3).
Since S2 is even-dimensional, the modulo S2 is trivial and

P1z23 = x27 in H∗(P2(ΩE7); F 3) .

So in H∗(P12(ΩE7); F 3), we have

P1((βP1x3)2x3x7x11x15x19z23x35) = (βP1x3)2x3x7x11x15x19x27x35

Note that the filtration lengths of βP1x3 are 2.
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Sketch of a proof for the E7 case

Then we have the following diagrams:

H∗(P12(ΩE7); F 3)
φ12−→ H∗(E7; F 3)

(βP1x3)2x3x7x11x15x19x27x35 7−→ (βP1x3)2x3x7x11x15x19x27x35

P1 ↑ P1↑
(βP1x3)2x3x7x11x15x19z23x35 7−→ 0

Obviously this is a contradiction. So φ12is not epimorphisms.
This means that (e12)∗, can not be split monomorphisms of all
Steenrod algebra module.
Hence we obtain that

Mwgt(E7; F 3) ≥ 13.
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Combined with Toomer’s result, we have the following
conclusion:

G wgt(G; F 3)− cup(G; F 3) Mwgt(G; F 2)− wgt(G; F 2) Mwgt(G; F 3)− wgt(G; F 3)

G2 0 ≥ 0 ≥ 0
F4 2 ≥ 2 ≥ 0
E6 2 ≥ 2 ≥ 0
E7 2 ≥ 2 ≥ 2
E8 4 ≥ 0 ≥ 2
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Module Category Weight for Spin(n)

Theorem
The category weight of Spin(n) with F 2 coefficients is as follows:

(a) wgt(Spin(2n); F 2) = wgt(Spin(2n + 1); F 2) = 2n−1 × n − 2n + 2 ,

(b) wgt(Spin(2n + 2k + 2); F 2) = wgt(Spin(2n + 2k + 1); F 2) + 1 for all
integer k ≥ 0,

(c) wgt(Spin(2n + 2k + 1); F 2) = 2n−1 × n − 2n + 2 +
∑k

i=1 2νi − k for
1 ≤ k ≤ 2n−1 − 1 where νi , i = 1, · · · , k, is the positive integer such that
2k + 2 ≤ 2νi (2i − 1) ≤ 4k.

Theorem
For n ≥ 3, the module category weight is as follows:
(a) Mwgt(Spin(2n + k); F 2) ≥ wgt(Spin(2n + k); F 2) + 2 for 1 ≤ k ≤ 2n−1,
(b) Mwgt(Spin(2n + k); F 2) = wgt(Spin(2n + k); F 2) for 2n−1 + 1 ≤ k ≤ 2n.
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Module Category Weight for Spin(n)

G wgt(G; F 2) Mwgt(G; F 2) cat(G)

Spin(3) 1 1 1
Spin(4) 2 2 2
Spin(5) 2 2 3
Spin(6) 3 3 3
Spin(7) 5 5 5
Spin(8) 6 6 6
Spin(9) 6 8 8
Spin(10) 7 ≥ 9 ?
Spin(11) 9 ≥ 11 ?

...
...

... ?
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