Module category weight of compact Lie groups

Younggi Choi

Seoul National University, Seoul, KOREA
Applied Topology 2013
July 26, 2013

First of all I would like to thank the organizers of this wonderful meeting
and
I also would like to give special congratulations to Prof. Yuli Rudyak on his 65th birthday.

Def: Lusternik-Schnirelmann category

Definition

The Lusternik-Schnirelmann category of a space X, $\operatorname{cat}(X)$, is defined to be minimal number n such that there exists an open covering $\left\{U_{1}, \ldots, U_{n+1}\right\}$ of X with each U_{i} contractible in X.

This homotopy invariant is not yet determined even for all
compact simple Lie groups. Among them, only $S U(n)$ is known for the general case n.

Def: Lusternik-Schnirelmann category

Definition

The Lusternik-Schnirelmann category of a space X, $\operatorname{cat}(X)$, is defined to be minimal number n such that there exists an open covering $\left\{U_{1}, \ldots, U_{n+1}\right\}$ of X with each U_{i} contractible in X.

This homotopy invariant is not yet determined even for all compact simple Lie groups. Among them, only $S U(n)$ is known for the general case n.

Projective spaces

Every space X has a filtration given by the X-projective k-space $P^{k}(\Omega X)$ of its loop space ΩX. Then there is a sequence of quasi-fibration

$$
\left\{p_{k}: E^{k}(\Omega X) \rightarrow P^{k-1}(\Omega X) ; k \geq 1\right\}
$$

with the fibre ΩX such that E^{k} has the homotopy type of the k-fold join of ΩX and P^{k} has the homotopy type of the mapping cone of p_{k}.

Projective spaces

Every space X has a filtration given by the X-projective k-space $P^{k}(\Omega X)$ of its loop space ΩX. Then there is a sequence of quasi-fibration

$$
\left\{p_{k}: E^{k}(\Omega X) \rightarrow P^{k-1}(\Omega X) ; k \geq 1\right\}
$$

with the fibre ΩX such that E^{k} has the homotopy type of the k-fold join of ΩX and P^{k} has the homotopy type of the mapping cone of p_{k}.

Remark: The space $P^{k}(\Omega X)$ is homotopy equivalent to the k-th Ganea space $G_{k}(X)$.

Ganea fibration

The Rothenberg-Steenrod spectral sequence associated with the filtration of $P^{\infty}(\Omega X) \simeq X$ given by $\left\{P^{m}(\Omega X) \mid m \geq 0\right\}$ coincides with the Rothenberg-Steenrod spectral sequence

Ganea fibration

The Rothenberg-Steenrod spectral sequence associated with the filtration of $P^{\infty}(\Omega X) \simeq X$ given by $\left\{P^{m}(\Omega X) \mid m \geq 0\right\}$ coincides with the Rothenberg-Steenrod spectral sequence associated with that of $G_{\infty}(X) \simeq X$ given by $\left\{G_{m}(X) \mid m \geq 0\right\}$.

Projective spaces

Let $e_{m}: P^{m}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the inclusion map,then we can pose the following problems:

Projective spaces

Let $e_{m}: P^{m}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the inclusion map,then we can pose the following problems:
(1) Find the minimal number m such that $\left(e_{m}\right)^{*}: H^{*}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right)$ is a monomorphism.
monomorphism of modules over the Steenrod algebra, that is there is a enimornhicm

Projective spaces

Let $e_{m}: P^{m}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the inclusion map,then we can pose the following problems:
(1) Find the minimal number m such that $\left(e_{m}\right)^{*}: H^{*}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right)$ is a monomorphism.
(2) Find the minimal number m such that
$\left(e_{m}\right)^{*}: \boldsymbol{H}^{*}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right)$ is a split monomorphism of modules over the Steenrod algebra, that is, there is a epimorphism
$\phi_{m}: \boldsymbol{H}^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right) \rightarrow \boldsymbol{H}^{*}\left(X ; \boldsymbol{F}_{p}\right)$ which preserves all
Steenrod actions and $\phi_{m} \circ\left(e_{m}\right)^{*} \cong 1_{H^{*}\left(X ; F_{p}\right)}$.

Projective spaces

Let $e_{m}: P^{m}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the inclusion map,then we can pose the following problems:
(1) Find the minimal number m such that $\left(e_{m}\right)^{*}: H^{*}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right)$ is a monomorphism.
(2) Find the minimal number m such that
$\left(e_{m}\right)^{*}: H^{*}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right)$ is a split monomorphism of modules over the Steenrod algebra, that is, there is a epimorphism
$\phi_{m}: H^{*}\left(P^{m}(\Omega X) ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(X ; \boldsymbol{F}_{p}\right)$ which preserves all Steenrod actions and $\phi_{m} \circ\left(e_{m}\right)^{*} \cong 1_{H^{*}\left(X ; F_{p}\right)}$.
(3) Find the minimal number m such that there is a map $\sigma: X \rightarrow P^{m}(\Omega X)$ such that $e_{m} \circ \sigma \simeq 1_{X}$.

Another homotopy invariants and their relation

We can define another homotopy invariants such as

Another homotopy invariants and their relation

We can define another homotopy invariants such as category weight $\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$, module category weight $\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)$:

Another homotopy invariants and their relation

We can define another homotopy invariants such as category weight $\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$, module category weight $\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)$:

$\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)=\min \left\{m \mid\left(e_{m}\right)^{*}\right.$ is a monomorphism $\}$, $\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)=\min \left\{m \mid\right.$ there is such a epimorphism $\left.\phi_{m}\right\}$.

Another homotopy invariants and their relation

We can define another homotopy invariants such as category weight $\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$, module category weight $\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)$:

$\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)=\min \left\{m \mid\left(e_{m}\right)^{*}\right.$ is a monomorphism $\}$,
$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)=\min \left\{m \mid\right.$ there is such a epimorphism $\left.\phi_{m}\right\}$.

[Ganea]

Let X be a connected space. Then $\operatorname{cat}(X) \leq m$ if and only if there is a map $\sigma: X \rightarrow P^{m}(\Omega X)$ such that $e_{m} \circ \sigma \simeq 1_{X}$.

Another homotopy invariants and their relation

We can define another homotopy invariants such as category weight $\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$, module category weight $\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right)$:

$$
\begin{aligned}
\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right) & =\min \left\{m \mid\left(e_{m}\right)^{*} \text { is a monomorphism }\right\}, \\
\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right) & =\min \left\{m \mid \text { there is such a epimorphism } \phi_{m}\right\} .
\end{aligned}
$$

[Ganea]

Let X be a connected space. Then $\operatorname{cat}(X) \leq m$ if and only if there is a map $\sigma: X \rightarrow P^{m}(\Omega X)$ such that $e_{m} \circ \sigma \simeq 1_{X}$.

Then, we have the following relation: $\operatorname{cup}\left(X ; \boldsymbol{F}_{p}\right) \leq \operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right) \leq \operatorname{Mwgt}\left(X ; \boldsymbol{F}_{p}\right) \leq \operatorname{cat}(X)$.

Main object

Main object

The aim of this talk is to compute the module category weight of simply connected compact simple Lie groups to give a lower bound for the Lusternik-Schnirelmann category of them.

However, the classical types are not so interesting except the case of $\operatorname{Spin}(n)$ with \boldsymbol{F}_{2} coefficients. Here we will explain exceptional Lie groups cases, $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ and mention the result of $\operatorname{Spin}(n)$ with \boldsymbol{F}_{2} coefficients without explanation.

Main object

Main object

The aim of this talk is to compute the module category weight of simply connected compact simple Lie groups to give a lower bound for the Lusternik-Schnirelmann category of them.

However, the classical types are not so interesting except the case of $\operatorname{Spin}(n)$ with F_{2} coefficients. Here we will explain exceptional Lie groups cases, $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ and mention the result of $\operatorname{Spin}(n)$ with \boldsymbol{F}_{2} coefficients without explanation.

Remark 1: Toomer calculated the difference $\operatorname{cup}\left(X ; \boldsymbol{F}_{p}\right)-\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$ of any simply connected compact simple Lie group. In fact, it is precisely $F_{4}, E_{6}, E_{7}, E_{8}$ which yield a positive difference.

Remark 2: On the other hands, Iwase and Kono determined $\operatorname{sat}(\operatorname{Snin}(9))=8$ hy comniting the lnwer hound of the difference between the category weight and the module category weight of Spin(9), which is $\operatorname{Mmat}\left(\operatorname{Snin}(9) \cdot \boldsymbol{F}_{2}\right)-\operatorname{Mat}\left(\operatorname{Snin}(9) \cdot \boldsymbol{F}_{2}\right) \geq 2$

Remark 1: Toomer calculated the difference $\operatorname{cup}\left(X ; \boldsymbol{F}_{p}\right)-\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$ of any simply connected compact simple Lie group. In fact, it is precisely $F_{4}, E_{6}, E_{7}, E_{8}$ which yield a positive difference.

Remark 2: On the other hands, Iwase and Kono determined $\operatorname{cat}(\operatorname{Spin}(9))=8$ by computing the lower bound of the difference between the category weight and the module category weight of $\operatorname{Spin}(9)$, which is
$\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \boldsymbol{F}_{2}\right)-\operatorname{wgt}\left(\operatorname{Spin}(9) ; \boldsymbol{F}_{2}\right) \geq 2$.

Rothenberg-Steenrod spectral sequence

For a simply connected space X and given a path-loop fibration, $\Omega X \rightarrow P X \rightarrow X$, we consider the Rothenberg-Steenrod spectral sequence $\left\{E_{r}^{*, *}, d_{r}\right\}$ converging to $H^{*}\left(X ; \boldsymbol{F}_{p}\right)$ with

$$
\begin{aligned}
E_{2} & \cong \operatorname{cotor}_{H^{*}\left(\Omega X ; \boldsymbol{F}_{p}\right)}\left(\boldsymbol{F}_{p}, \boldsymbol{F}_{p}\right) \\
E_{\infty}^{s, t} & \cong F^{s} H^{s+t}\left(X ; \boldsymbol{F}_{p}\right) / F^{s+1} H^{s+t}\left(X ; \boldsymbol{F}_{p}\right)
\end{aligned}
$$

where

$$
F^{q+1} H^{n}\left(X ; \boldsymbol{F}_{p}\right) \cong \operatorname{ker}\left\{\left(e_{q}\right)^{*}: H^{n}\left(X ; \boldsymbol{F}_{p}\right) \rightarrow H^{n}\left(P^{q}(\Omega X) ; \boldsymbol{F}_{p}\right)\right\}
$$

Hence for all $s \geq m+1$,

$$
\begin{aligned}
E_{\infty}^{s, *}=0 & \Leftrightarrow F^{s} H^{*}\left(X ; \boldsymbol{F}_{p}\right)=F^{s+1} H^{*}\left(X ; \boldsymbol{F}_{p}\right) \\
& \Leftrightarrow \operatorname{ker}\left(e_{s-1}\right)^{*}=\operatorname{ker}\left(e_{s}\right)^{*}
\end{aligned}
$$

Hence for all $s \geq m+1$,

$$
\begin{aligned}
E_{\infty}^{s, *}=0 & \Leftrightarrow F^{s} H^{*}\left(X ; \boldsymbol{F}_{p}\right)=F^{s+1} H^{*}\left(X ; \boldsymbol{F}_{p}\right) \\
& \Leftrightarrow \operatorname{ker}\left(e_{s-1}\right)^{*}=\operatorname{ker}\left(e_{s}\right)^{*} .
\end{aligned}
$$

Since $\operatorname{wgt}\left(X ; \boldsymbol{F}_{p}\right)$ is the minimum number m such that $\operatorname{ker}\left(e_{m}\right)^{*}=0, \operatorname{wgt}\left(X ; F_{p}\right)$ can be defined as the minimal number m such that $E_{\infty}^{s, *}=0$ for all $s \geq m+1$.
Hence wgt $\left(X ; \boldsymbol{F}_{p}\right)$ is $\mathrm{f}_{p}(X)$, which is called the \boldsymbol{F}_{p}-filtration length of X.

The coalgebra structure of $H^{*}(\Omega G)$

We analyze the Rothenberg-Steenrod spectral sequence converging to $H^{*}(G)$ with $E_{2}^{*, *} \cong \operatorname{Cotor}_{H^{*}(\Omega G)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right)$ in order to get module category weight of exceptional Lie groups G. This requires understanding of the coalgebra structure of $H^{*}(\Omega G)$.

The coalgebra structure of $H^{*}(\Omega G)$

We analyze the Rothenberg-Steenrod spectral sequence converging to $H^{*}(G)$ with $E_{2}^{*, *} \cong \operatorname{Cotor}_{H^{*}(\Omega G)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right)$ in order to get module category weight of exceptional Lie groups G. This requires understanding of the coalgebra structure of $H^{*}(\Omega G)$.

Theorem

The coalgebra structure of the mod 2 cohomology of the loop spaces of exceptional Lie groups are as follows.

$$
\begin{aligned}
H^{*}\left(\Omega G_{2} ; \mathbb{F}_{2}\right) & \cong E\left(a_{2}\right) \otimes \Gamma\left(a_{4}, b_{10}\right) \\
H^{*}\left(\Omega F_{4} ; \mathbb{F}_{2}\right) & \cong E\left(a_{2}\right) \otimes \Gamma\left(a_{4}, b_{10}, a_{14}, a_{16}, a_{22}\right) \\
H^{*}\left(\Omega E_{6} ; \mathbb{F}_{2}\right) & \cong E\left(a_{2}\right) \otimes \Gamma\left(a_{4}, a_{8}, b_{10}, a_{14}, a_{16}, a_{22}\right) \\
H^{*}\left(\Omega E_{7} ; \mathbb{F}_{2}\right) & \cong E\left(a_{2}, a_{4}, a_{8}\right) \otimes \Gamma\left(b_{10}, a_{14}, a_{16}, b_{18}, a_{22}, a_{26}, b_{34}\right) \\
H^{*}\left(\Omega E_{8} ; \mathbb{F}_{2}\right) & \cong E\left(a_{2}, a_{4}, a_{8}, a_{14}\right) \otimes \Gamma\left(a_{16}, a_{22}, a_{26}, a_{28}, b_{34}, b_{38}, b_{46}, b_{58}\right)
\end{aligned}
$$

especially we have $S q^{4} b_{10}=a_{14}$ and $S q^{8} b_{18}=a_{26}$.

$E_{2}=\operatorname{Cotor}_{H^{*}\left(\Omega G_{:} F_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right)$

Theorem

Cotor $_{H^{*}\left(\Omega G ; F_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right)$ of the exceptional Lie groups G are as follows.
$\operatorname{Cotor}_{H^{*}\left(\Omega G_{2} ; F_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{3}\right] \otimes E\left(x_{5}, z_{11}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega F_{4} ; \boldsymbol{F}_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{3}\right] \otimes E\left(x_{5}, z_{11}, x_{15}, x_{23}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega E_{6} ; F_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{3}\right] \otimes E\left(x_{5}, x_{9}, z_{11}, x_{15}, x_{17}, x_{23}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega E_{7} ; F_{2}\right)}\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{3}, x_{5}, x_{9}\right] \otimes E\left(z_{11}, x_{15}, x_{17}, z_{19}, x_{23}, x_{27}, z_{35}\right)$
$\left.\operatorname{Cotor}_{H^{*}\left(\Omega E_{8}\right.} F_{2}\right)\left(F_{2}, \boldsymbol{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{3}, x_{5}, x_{9}, x_{15}\right] \otimes E\left(x_{17}, x_{23}, x_{27}, x_{29}, z_{35}, z_{39}, z_{47}, z_{59}\right)$
especially we have $S q^{4} z_{11}=x_{15}$ and $S q^{8} z_{19}=x_{27}$.

Differentials

Then from information of $H^{*}\left(G ; F_{2}\right)$, we can analyze non trivial differentials of the Rothenberg-Steenrod spectral sequence converging to $H^{*}\left(G ; F_{2}\right)$ as follows:

Differentials

Then from information of $H^{*}\left(G ; F_{2}\right)$, we can analyze non trivial differentials of the Rothenberg-Steenrod spectral sequence converging to $H^{*}\left(G ; F_{2}\right)$ as follows:

$$
\begin{aligned}
d_{3}\left(z_{11}\right) & =x_{3}^{4} \quad \text { for } G=G_{2}, F_{4}, E_{6}, E_{7} \\
d_{3}\left(z_{19}\right) & =x_{5}^{4} \quad \text { for } G=E_{7} \\
d_{3}\left(z_{35}\right) & =x_{9}^{4} \quad \text { for } G=E_{7}, E_{8} \\
d_{7}\left(z_{39}\right) & =x_{5}^{8} \quad \text { for } G=E_{8} \\
d_{15}\left(z_{47}\right) & =x_{3}^{16} \quad \text { for } G=E_{8} \\
d_{3}\left(z_{59}\right) & =x_{15}^{4} \quad \text { for } G=E_{8} .
\end{aligned}
$$

$H^{*}\left(P^{m}(\Omega G) ; F_{2}\right)$

Consider the spectral sequence of Stasheff's type converging to $H^{*}\left(P^{m}(\Omega G) ; F_{2}\right)$. Let $A=H^{*}\left(G ; F_{2}\right)$. Then for low m such as $1 \leq m \leq 3$, we have the following:
$H^{*}\left(P^{m}(\Omega G) ; F_{2}\right)=A^{[m]} \oplus \sum_{i} z_{4 i+3} \cdot A^{[m-1]} \oplus S_{m},\left\{\begin{array}{l}i=3, \text { for } G=G_{2}, F_{4}, E_{6} \\ i=3,4,8, \text { for } G=E_{7} \\ i=8,9,11,14, \text { for } G=E_{8}\end{array}\right.$
as modules where $A^{[m]},(m \geq 0)$ denotes the quotient module $A / D^{m+1}(A)$ of A by the submodule $D^{m+1}(A) \subseteq A$ generated by all the products of $m+1$ elements in positive dimensions in A, $z_{4 i+3} \cdot A^{[m-1]}$ denotes a submodule corresponding to a submodule in $A \otimes E\left(z_{4 i+3}\right)$ and S_{m} satisfies

$$
S_{m} \cdot \tilde{H}^{*}\left(P^{m}(\Omega G) ; F_{2}\right)=0 \text { and }\left.S_{m}\right|_{P^{m-1}(\Omega G)}=0
$$

Module Category Weight for F_{2} coefficients

Theorem

The module category weights with respect to F_{2} coefficients are as follows:

Module Category Weight for F_{2} coefficients

Theorem

The module category weights with respect to F_{2} coefficients are as follows:

$$
\begin{aligned}
\operatorname{Mwgt}\left(G_{2} ; \boldsymbol{F}_{2}\right) & \geq 4 \\
\operatorname{Mwgt}\left(F_{4} ; \boldsymbol{F}_{2}\right) & \geq 8 \\
\operatorname{Mwgt}\left(E_{6} ; \boldsymbol{F}_{2}\right) & \geq 10 \\
\operatorname{Mwgt}\left(E_{7} ; \boldsymbol{F}_{2}\right) & \geq 15 \\
\operatorname{Mwgt}\left(E_{8} ; \boldsymbol{F}_{2}\right) & \geq 32 .
\end{aligned}
$$

Sketch of a proof for the F_{4} case

$$
\begin{aligned}
& \text { - The case of } \pi_{4} \\
& H^{*}\left(H_{4}: \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes E\left(5_{6}^{2} x_{3}, x_{15}, \frac{5}{6}_{8}^{8} x_{15}\right) \\
& E_{2}-\downarrow \operatorname{Tor}_{H^{*}\left(F_{4}: \mathbb{F}_{2}\right)}^{*}\left(E_{2}, F_{2}\right)=E_{\infty} \\
& H^{*}\left(\Omega F_{4}: \mathbb{F}_{2}\right)=E\left(a_{2}\right) \otimes \Gamma\left(a_{4}, b_{10}, a_{14}, a_{16}, a_{22}\right) \\
& 5_{q}^{4} b_{10}=a_{14} \\
& E_{2} \|^{-\operatorname{cotor}_{H^{*}}^{*}\left(\Omega H_{4}: \mathbb{F}_{2}\right)} \begin{array}{l}
\left(\mathbb{H}_{2} \mathbb{F}_{2}\right)
\end{array} \\
& E_{2}=\mathbb{F}_{2}\left[x_{3}\right] \otimes E\left(x_{5}, z_{11}, x_{15}, x_{23}\right) \Longrightarrow H^{*}\left(\mathbb{H}_{4}: \mathbb{F}_{2}\right) \\
& { }_{5}^{5}{ }_{0}^{4} z_{11}=x_{15} \text {. }
\end{aligned}
$$

Sketch of a proof for the F_{4} case

Sketch of a proof for the F_{4} case

$$
\begin{aligned}
& H^{*}\left(P^{3}\left(Q \mathbb{F}_{4}\right)=\mathbb{F}_{2}\right): \text { Spectral sequence of stasheff's type } \\
& \xi_{1}^{4} z_{10}=x_{15} \quad \text { in } H^{*}\left(P^{\prime}\left(O F_{4}\right): \mathbb{F}_{2}\right) \\
& i^{4} z_{11}=x_{15} \quad \text { in } H^{*}\left(P^{2}\left(\Omega F_{4}\right): F_{2}\right) \\
& s_{q}^{4} z_{11}=x_{15}+w \text { in } H^{*}\left(p^{3}\left(Q F_{4}\right): H_{2}\right) \\
& \text { Suppose that } \exists \text { epimorphism } \\
& \phi_{7}: H^{*}\left(P^{7}\left(\Omega F_{4}\right): F_{2}\right) \longrightarrow H^{*}\left(F_{4}: \mathbb{F}_{2}\right) .
\end{aligned}
$$

Sketch of a proof for the F_{4} case

Then consider

$$
\begin{aligned}
H^{*}\left(P^{7}\left(\Omega F_{4}\right): \mathbb{F}_{2}\right) & \longrightarrow H^{*}\left(\mathbb{F}_{4}: \mathbb{F}_{2}\right) \\
x_{3}^{3} x_{5} x_{15} x_{23} & \longrightarrow x_{3}^{3} x_{5} x_{15} x_{23} \\
\xi_{8}^{4} \mid & \int_{8}^{4} \\
x_{3}^{3} x_{5} z_{15} x_{23} & \longrightarrow 0
\end{aligned}
$$

Summarizing above results for F_{2} coefficients

Summarizing above results for F_{2} coefficients

X	$\operatorname{wgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{cat}(X)$
G_{2}	4	≥ 4	4
F_{4}	6	\geq	$?$
E_{6}	8	\geq	$?$
E_{7}	13	\geq	$?$
E_{8}	32	\geq	$?$

Summarizing above results for F_{2} coefficients

X	$\operatorname{wgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{cat}(X)$
G_{2}	4	≥ 4	4
F_{4}	6	≥ 8	$?$
E_{6}	8	\geq	$?$
E_{7}	13	\geq	$?$
E_{8}	32	\geq	$?$

Summarizing above results for F_{2} coefficients

X	$\operatorname{wgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{2}\right)$	
$\operatorname{cat}(X)$			
G_{2}	4	≥ 4	4
F_{4}	6	≥ 8	$?$
E_{6}	8	≥ 10	$?$
E_{7}	13	\geq	$?$
E_{8}	32	≥ 32	$?$

Summarizing above results for F_{2} coefficients

X	$\operatorname{wgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{2}\right)$	
$\operatorname{cat}(X)$			
G_{2}	4	≥ 4	4
F_{4}	6	≥ 8	$?$
E_{6}	8	≥ 10	$?$
E_{7}	13	≥ 15	$?$
E_{8}	32	≥ 32	$?$

Summarizing above results for F_{2} coefficients

X	$\operatorname{wgt}\left(X ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(X ; \boldsymbol{F}_{2}\right)$	
$\operatorname{cat}(X)$			
G_{2}	4	≥ 4	4
F_{4}	6	≥ 8	$?$
E_{6}	8	≥ 10	$?$
E_{7}	13	≥ 15	$?$
E_{8}	32	≥ 32	$?$

The coalgebra structure of $H^{*}\left(\Omega G ; \mathbb{F}_{3}\right)$

Theorem

The coalgebra structure of the mod 3 cohomology of the loop spaces of exceptional Lie groups are as follows.

```
H
H
H
H
H
```

especially we have $\mathcal{P}^{1} b_{22}=a_{26}$.

$E_{2}=\operatorname{Cotor}_{H^{*}\left(\Omega G_{;} F_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right)$

Theorem

Cotor $_{H^{*}\left(\Omega G ; F_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right)$ of the exceptional Lie groups G are as follows.
$\operatorname{Cotor}_{H^{*}\left(\Omega G_{2} ; F_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right) \cong E\left(x_{3}, x_{11}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega F_{4} ; F_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right) \cong E\left(x_{3}\right) \otimes \mathbb{F}_{3}\left[\beta \mathcal{P}^{1} x_{3}\right] \otimes E\left(\mathcal{P}^{1} x_{3}, x_{11}, \mathcal{P}^{1} x_{11}, z_{23}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega E_{6} ; F_{3}\right)}\left(F_{3}, F_{3}\right) \cong E\left(x_{3}\right) \otimes \mathbb{F}_{3}\left[\beta \mathcal{P}^{1} x_{3}\right] \otimes E\left(\mathcal{P}^{1} x_{3}, x_{9}, x_{11}, \mathcal{P}^{1} x_{11}, x_{17}, z_{23}\right)$
$\operatorname{Cotor}_{H^{*}\left(\Omega E_{7} ; F_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right) \cong E\left(x_{3}\right) \otimes \mathbb{F}_{3}\left[\beta \mathcal{P}^{1} x_{3}\right] \otimes E\left(\mathcal{P}^{1} x_{3}, x_{11}, \mathcal{P}^{1} x_{11}, x_{19}, z_{23}, x_{27}, x_{35}\right.$
$\operatorname{Cotor}_{H^{*}\left(\Omega E_{8} ; \boldsymbol{F}_{3}\right)}\left(\boldsymbol{F}_{3}, \boldsymbol{F}_{3}\right) \cong E\left(x_{3}\right) \otimes \mathbb{F}_{3}\left[\beta \mathcal{P}^{1} x_{3}\right] \otimes E\left(\mathcal{P}^{1} x_{3}\right) \otimes \mathbb{F}_{3}\left[\beta \mathcal{P}^{3} \mathcal{P}^{1} x_{3}\right]$ $\otimes E\left(x_{15}, x_{19}, z_{23}, x_{27}, x_{35}, x_{39}, x_{47}, z_{59}\right)$
especially we have $\mathcal{P}^{1} z_{23}=x_{27}$.

Differentials and $H^{*}\left(P^{m}(\Omega G) ; F_{3}\right)$

Then from information of $H^{*}\left(G ; F_{3}\right)$, we can analyze non trivial differentials of the Rothenberg-Steenrod spectral sequence converging to $H^{*}\left(G ; F_{3}\right)$ as follows:

Differentials and $H^{*}\left(P^{m}(\Omega G) ; F_{3}\right)$

Then from information of $H^{*}\left(G ; F_{3}\right)$, we can analyze non trivial differentials of the Rothenberg-Steenrod spectral sequence converging to $H^{*}\left(G ; F_{3}\right)$ as follows:

$$
\begin{aligned}
& d_{3}\left(z_{23}\right)=\left(\beta \mathcal{P}^{1} x_{3}\right)^{3}, \text { for } G=F_{4}, E_{6}, E_{7} \\
& d_{3}\left(z_{59}\right)=\left(\beta \mathcal{P}^{3} \mathcal{P}^{1} x_{3}\right)^{3}, \text { for } G=E_{8}
\end{aligned}
$$

Differentials and $H^{*}\left(P^{m}(\Omega G) ; F_{3}\right)$

Then from information of $H^{*}\left(G ; F_{3}\right)$, we can analyze non trivial differentials of the Rothenberg-Steenrod spectral sequence converging to $H^{*}\left(G ; F_{3}\right)$ as follows:

$$
\begin{aligned}
& d_{3}\left(z_{23}\right)=\left(\beta \mathcal{P}^{1} x_{3}\right)^{3}, \text { for } G=F_{4}, E_{6}, E_{7} \\
& d_{3}\left(z_{59}\right)=\left(\beta \mathcal{P}^{3} \mathcal{P}^{1} x_{3}\right)^{3}, \text { for } G=E_{8}
\end{aligned}
$$

Let $A=H^{*}\left(G ; F_{3}\right)$. Then for low m such as $1 \leq m \leq 3$, we have the following:
$H^{*}\left(P^{m}(\Omega G) ; F_{3}\right)=A^{[m]} \oplus \sum_{i} z_{4 i+3} \cdot A^{[m-1]} \oplus S_{m}\left\{\begin{array}{l}i=5, \text { for } G=F_{4}, E_{6}, E_{7} \\ i=5,14, \text { for } G=E_{8}\end{array}\right.$

Module Category Weight for F_{3} coefficients

Theorem

The module category weights with respect to F_{3} coefficients are as follows:

Module Category Weight for F_{3} coefficients

Theorem

The module category weights with respect to F_{3} coefficients are as follows:

$$
\begin{aligned}
\operatorname{Mwgt}\left(G_{2} ; \boldsymbol{F}_{3}\right) & \geq 2 \\
\operatorname{Mwgt}\left(F_{4} ; \boldsymbol{F}_{3}\right) & \geq 8 \\
\operatorname{Mwgt}\left(E_{6} ; \boldsymbol{F}_{3}\right) & \geq 10 \\
\operatorname{Mwgt}\left(E_{7} ; \boldsymbol{F}_{3}\right) & \geq 13 \\
\operatorname{Mwgt}\left(E_{8} ; \boldsymbol{F}_{3}\right) & \geq 18
\end{aligned}
$$

Sketch of a proof for the E_{7} case

From above Theorem, $\mathcal{P}^{1} z_{23}=x_{27}$ in $H^{*}\left(P^{1}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Then $\mathcal{P}^{1} z_{23}=x_{27}$ modulo S_{2} in $H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Since S_{2} is even-dimensional, the modulo S_{2} is trivial and

Sketch of a proof for the E_{7} case

From above Theorem, $\mathcal{P}^{1} z_{23}=x_{27}$ in $H^{*}\left(P^{1}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Then $\mathcal{P}^{1} z_{23}=x_{27}$ modulo S_{2} in $H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Since S_{2} is even-dimensional, the modulo S_{2} is trivial and

$$
\mathcal{P}^{1} z_{23}=x_{27} \text { in } H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right) .
$$

which preserves all Steenrod actions and

Sketch of a proof for the E_{7} case

From above Theorem, $\mathcal{P}^{1} z_{23}=x_{27}$ in $H^{*}\left(P^{1}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Then $\mathcal{P}^{1} z_{23}=x_{27}$ modulo S_{2} in $H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Since S_{2} is even-dimensional, the modulo S_{2} is trivial and

$$
\mathcal{P}^{1} z_{23}=x_{27} \text { in } H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right) .
$$

So in $H^{*}\left(P^{12}\left(\Omega E_{7}\right) ; F_{3}\right)$, we have

$$
\mathcal{P}^{1}\left(\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}\right)=\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}
$$

Note that the filtration lengths of $\beta \mathcal{P}^{1} x_{3}$ are 2 .

Sketch of a proof for the E_{7} case

From above Theorem, $\mathcal{P}^{1} z_{23}=x_{27}$ in $H^{*}\left(P^{1}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Then $\mathcal{P}^{1} z_{23}=x_{27}$ modulo S_{2} in $H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)$.
Since S_{2} is even-dimensional, the modulo S_{2} is trivial and

$$
\mathcal{P}^{1} z_{23}=x_{27} \text { in } H^{*}\left(P^{2}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right)
$$

So in $H^{*}\left(P^{12}\left(\Omega E_{7}\right) ; F_{3}\right)$, we have

$$
\mathcal{P}^{1}\left(\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35}\right)=\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}
$$

Note that the filtration lengths of $\beta \mathcal{P}^{1} x_{3}$ are 2.
Let $\phi_{m}: H^{*}\left(P^{m}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{p}\right) \rightarrow H^{*}\left(E_{7} ; \boldsymbol{F}_{p}\right)$ be a epimorphism which preserves all Steenrod actions and
$\phi_{m} \circ\left(e_{m}\right)^{*} \cong 1_{H^{*}\left(E_{7} ; F_{p}\right)}$. Suppose that there are epimorphisms

$$
\phi_{12}: H^{*}\left(P^{12}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right) \quad \rightarrow \quad H^{*}\left(E_{7} ; \boldsymbol{F}_{3}\right) .
$$

Sketch of a proof for the E_{7} case

Then we have the following diagrams:

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms This means that $\left(\rho_{\text {tn }}\right)^{*}$ can not he snlit monomornhisms of all Steenrod algebra module Hence we obtain that

Sketch of a proof for the E_{7} case

Then we have the following diagrams:

$$
\begin{array}{ccc}
H^{*}\left(P^{12}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right) & \stackrel{\phi_{12}}{\longrightarrow} & H^{*}\left(E_{7} ; \boldsymbol{F}_{3}\right) \\
\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} & \longmapsto & \left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} \\
\mathcal{P}^{1} \uparrow & & \mathcal{P}^{1} \uparrow \\
\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35} & \longmapsto & 0
\end{array}
$$

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms. This means that $\left(e_{12}\right)^{*}$, can not be split monomorphisms of all Steenrod algebra module. Hence we obtain that

Sketch of a proof for the E_{7} case

Then we have the following diagrams:

$$
\begin{array}{ccc}
H^{*}\left(P^{12}\left(\Omega E_{7}\right) ; \boldsymbol{F}_{3}\right) & \stackrel{\phi_{12}}{\longrightarrow} & \left.\begin{array}{c}
H^{*}\left(E_{7} ; \boldsymbol{F}_{3}\right) \\
\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35}
\end{array}\right) \\
\mathcal{P}^{1} \uparrow & & \left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} x_{27} x_{35} \\
\left(\beta \mathcal{P}^{1} x_{3}\right)^{2} x_{3} x_{7} x_{11} x_{15} x_{19} z_{23} x_{35} & \longmapsto & \mathcal{P}^{1} \uparrow \\
& & 0
\end{array}
$$

Obviously this is a contradiction. So ϕ_{12} is not epimorphisms. This means that $\left(e_{12}\right)^{*}$, can not be split monomorphisms of all Steenrod algebra module. Hence we obtain that

$$
\operatorname{Mwgt}\left(E_{7} ; \boldsymbol{F}_{3}\right) \geq 13
$$

Combined with Toomer's result, we have the following conclusion:

Combined with Toomer's result, we have the following conclusion:

G	$\operatorname{wgt}\left(G ; \boldsymbol{F}_{3}\right)-\operatorname{cup}\left(G ; \boldsymbol{F}_{3}\right)$	$\operatorname{Mwgt}\left(G ; \boldsymbol{F}_{2}\right)-\operatorname{wgt}\left(\mathbf{G} ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(G ; \boldsymbol{F}_{3}\right)-\operatorname{wgt}\left(\mathbf{G} ; \boldsymbol{F}_{3}\right)$		
G_{2}	0	\geq	0	\geq	0
F_{4}	2	\geq	2	\geq	0
E_{6}	2	\geq	2	\geq	0
E_{7}	2	\geq	2	\geq	2
E_{8}	4	\geq	0	\geq	2

Module Category Weight for Spin(n)

Theorem

The category weight of $\operatorname{Spin}(n)$ with \boldsymbol{F}_{2} coefficients is as follows:
(a) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}\right) ; \boldsymbol{F}_{2}\right)=\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+1\right) ; \boldsymbol{F}_{2}\right)=2^{n-1} \times n-2^{n}+2$,
(b) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+2\right) ; \boldsymbol{F}_{2}\right)=\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+1\right) ; \boldsymbol{F}_{2}\right)+1$ for all integer $k \geq 0$,
(c) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+1\right) ; \boldsymbol{F}_{2}\right)=2^{n-1} \times n-2^{n}+2+\sum_{i=1}^{k} 2^{\nu_{i}}-k$ for
$1 \leq k \leq 2^{n-1}-1$ where $\nu_{i}, i=1, \cdots, k$, is the positive integer such that $2 k+2 \leq 2^{\nu_{i}}(2 i-1) \leq 4 k$.

Module Category Weight for Spin(n)

Theorem

The category weight of $\operatorname{Spin}(n)$ with \boldsymbol{F}_{2} coefficients is as follows:
(a) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}\right) ; \boldsymbol{F}_{2}\right)=\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+1\right) ; \boldsymbol{F}_{2}\right)=2^{n-1} \times n-2^{n}+2$,
(b) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+2\right) ; \boldsymbol{F}_{2}\right)=\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+1\right) ; \boldsymbol{F}_{2}\right)+1$ for all integer $k \geq 0$,
(c) $\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+2 k+1\right) ; \boldsymbol{F}_{2}\right)=2^{n-1} \times n-2^{n}+2+\sum_{i=1}^{k} 2^{\nu_{i}}-k$ for
$1 \leq k \leq 2^{n-1}-1$ where $\nu_{i}, i=1, \cdots, k$, is the positive integer such that $2 k+2 \leq 2^{\nu_{i}}(2 i-1) \leq 4 k$.

Theorem

For $n \geq 3$, the module category weight is as follows:
(a) $\operatorname{Mwgt}\left(\operatorname{Spin}\left(2^{n}+k\right) ; \boldsymbol{F}_{2}\right) \geq \operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+k\right) ; \boldsymbol{F}_{2}\right)+2$ for $1 \leq k \leq 2^{n-1}$,
(b) $\operatorname{Mwgt}\left(\operatorname{Spin}\left(2^{n}+k\right) ; \boldsymbol{F}_{2}\right)=\operatorname{wgt}\left(\operatorname{Spin}\left(2^{n}+k\right) ; \boldsymbol{F}_{2}\right)$ for $2^{n-1}+1 \leq k \leq 2^{n}$.

Module Category Weight for Spin(n)

\mathbf{G}	$\operatorname{wgt}\left(G ; \boldsymbol{F}_{2}\right)$	$\operatorname{Mwgt}\left(G ; \boldsymbol{F}_{2}\right)$	$\operatorname{cat}(\mathbf{G})$
$\operatorname{Spin}(3)$	1	1	1
$\operatorname{Spin}(4)$	2	2	2
$\operatorname{Spin}(5)$	2	2	3
$\operatorname{Spin}(6)$	3	3	3
$\operatorname{Spin}(7)$	5	5	5
$\operatorname{Spin}(8)$	6	6	6
$\operatorname{Spin}(9)$	6	8	8
$\operatorname{SPin}(10)$	7	≥ 9	$?$
$\operatorname{Spin}(11)$	9	≥ 11	$?$
\vdots	\vdots	\vdots	$?$

The End

Thank you!

The End

Thank you!

