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Def: Lusternik—Schnirelmann category

Definition

The Lusternik—Schnirelmann category of a space X, cat(X), is
defined to be minimal number n such that there exists an open
covering {Us, ..., U1} of X with each U; contractible in X.




Def: Lusternik—Schnirelmann category

Definition

The Lusternik—Schnirelmann category of a space X, cat(X), is
defined to be minimal number n such that there exists an open
covering {Us, ..., U1} of X with each U; contractible in X.

This homotopy invariant is not yet determined even for all
compact simple Lie groups. Among them, only SU(n) is known
for the general case n.



Projective spaces

Every space X has a filtration given by the X-projective k-space
Pk(QX) of its loop space QX. Then there is a sequence of
quasi-fibration

{px : EK(QX) = PF1(QX); k > 1}

with the fibre QX such that EX has the homotopy type of the
k-fold join of QX and PX has the homotopy type of the mapping
cone of py.
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Every space X has a filtration given by the X-projective k-space
Pk(QX) of its loop space QX. Then there is a sequence of
quasi-fibration

{px : EK(QX) = PF1(QX); k > 1}

with the fibre QX such that EX has the homotopy type of the
k-fold join of QX and PX has the homotopy type of the mapping
cone of py.

Remark: The space PX(QX) is homotopy equivalent to the k-th
Ganea space Gi(X).
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Ganea fibration

The Rothenberg—Steenrod spectral sequence associated with
the filtration of P>°(QX) ~ X given by {P"(QX)| m > 0}
coincides with the Rothenberg—Steenrod spectral sequence
associated with that of G.(X) ~ X given by {Gn(X)| m > 0}.
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Let em : PM(Q2X) — P>(22X) ~ X be the inclusion map,then
we can pose the following problems:

© Find the minimal number m such that
(em)* : H*(X; Fp) — H*(P™(Q2X); Fp) is @ monomorphism.

© Find the minimal number m such that
(em)* : H(X; Fp) = H*(P™(QX); Fp) is a spilit
monomorphism of modules over the Steenrod algebra, that
is, there is a epimorphism
ém : H*(P™(QX); Fp) — H*(X; Fp) which preserves all
Steenrod actions and ¢m o (ém)* = 14+ (x:F,)-

© Find the minimal number m such that there is a map
o: X — P"(QX)suchthatenoo ~1y.



Another homotopy invariants and their relation

We can define another homotopy invariants such as



Another homotopy invariants and their relation

We can define another homotopy invariants such as
category weight wgt(X; Fp),
module category weight Mwgt(X; Fp) :



Another homotopy invariants and their relation

We can define another homotopy invariants such as
category weight wgt(X; Fp),
module category weight Mwgt(X; Fp) :

wgt(X; Fp) = min{m|(em)* is @a monomorphism},
Mwgt(X; Fp) = min{m| there is such a epimorphism ¢p}.



Another homotopy invariants and their relation

We can define another homotopy invariants such as
category weight wgt(X; Fp),
module category weight Mwgt(X; Fp) :

wgt(X; Fp) = min{m|(em)* is @a monomorphism},
Mwgt(X; Fp) = min{m| there is such a epimorphism ¢p}.

Let X be a connected space. Then cat(X) < m if and only if
thereisamap o : X — P"(QX) such that ej00 ~ 1.




Another homotopy invariants and their relation

We can define another homotopy invariants such as
category weight wgt(X; Fp),
module category weight Mwgt(X; Fp) :

wgt(X; Fp) = min{m|(em)* is @a monomorphism},
Mwgt(X; Fp) = min{m| there is such a epimorphism ¢p}.

Let X be a connected space. Then cat(X) < m if and only if
thereisamap o : X — P"(QX) such that ej00 ~ 1.

Then, we have the following relation:
cup(X; Fp) < wgt(X; Fp) < Mwgt(X; Fp) < cat(X).
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Main object

The aim of this talk is to compute the module category weight
of simply connected compact simple Lie groups to give a lower
bound for the Lusternik—Schnirelmann category of them.

However, the classical types are not so interesting except the
case of Spin(n) with F» coefficients. Here we will explain

exceptional Lie groups cases, Go, F4, Es, E7, Eg and mention
the result of Spin(n) with F» coefficients without explanation.



Remark 1: Toomer calculated the difference

cup(X; Fp) — wgt(X; Fp) of any simply connected compact
simple Lie group. In fact, it is precisely Fy4, Eg, E7, Eg which yield
a positive difference.



Remark 1: Toomer calculated the difference

cup(X; Fp) — wgt(X; Fp) of any simply connected compact
simple Lie group. In fact, it is precisely Fy4, Eg, E7, Eg which yield
a positive difference.

Remark 2: On the other hands, lwase and Kono determined
cat(Spin(9)) = 8 by computing the lower bound of the
difference between the category weight and the module
category weight of Spin(9), which is

Mwagt(Spin(9); F2) — wgt(Spin(9); F2) > 2.



Rothenberg—Steenrod spectral sequence

For a simply connected space X and given a path—loop
fibration, QX — PX — X,

we consider the Rothenberg—Steenrod spectral sequence
{E;", d,} converging to H*(X; Fp) with

Eg = CotorH*(QX;,.-p)(Fp, Fp)
ESt = FSHT!(X; Fp)/FSTTHST(X; Fp)

where
Fa+TH(X; Fp) = ker{(eq)* : H"(X; Fp) — H"(PI(QX); Fp)}



Henceforalls > m+1,

ES* =0 & FSH(X;Fp)=F""H*(X; Fp)
& ker (es_1)" = ker (&s)".



Henceforalls > m+1,

ES*=0 <« FSH*(X;Fp) = F*T H*(X; Fp)
& ker (es_1)" = ker (&s)".

Since wgt(X; Fp) is the minimum number m such that

ker (em)* = 0, wgt(X; Fp) can be defined as the minimal
number m such that ES;" = 0 forall s > m+ 1.

Hence wgt(X; Fp) is f5(X), which is called the F-filtration
length of X.



The coalgebra structure of H*(QG)

We analyze the Rothenberg—Steenrod spectral sequence
converging to H*(G) with E;”" = Cotory-(qg)(F2, F2) in order to
get module category weight of exceptional Lie groups G. This
requires understanding of the coalgebra structure of H*(QG).
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We analyze the Rothenberg—Steenrod spectral sequence
converging to H*(G) with E;”" = Cotory-(qg)(F2, F2) in order to
get module category weight of exceptional Lie groups G. This
requires understanding of the coalgebra structure of H*(QG).

Theorem

The coalgebra structure of the mod 2 cohomology of the loop
spaces of exceptional Lie groups are as follows.

H*(QG>
H* (QF:
H* (QEs
H* (QE;
H* (QEs

;o)
o)
o)
o)
i F2)

R1R 1R 1R 1R

E(az) ® I'(as, b1o)

E(a2) ® (a4, b1o, @14, @16, az2)

E(az) ® T'(as, as, bio, a4, ate, a2)

E(az, a, 38) & r(bm, ai4, @16, big, @22, ace, b34)

E(az, a4, a@s, a4) ® I'(ais, 822, ae, aps, baa, bag, bas, bss)

especially we have Sq*bio = a4 and Sq®bis = as.




E> = COtOI’H*(QG;FZ)(F27 F2)

Theorem
Cotory=(aa:F,)(F2, F2) of the exceptional Lie groups G are as follows.

14

Cotory« (ag,:F,)(F2, F2) Fo[xs] ® E(Xs, Z11)
Cotory=(ar,:F,)(F2, F2) = Ta[xs] ® E(Xs, Z11, X15, X23)

(

(
Cotory=(qEy:F,) (F2, F2)

(

(

R

1%

Fa[X3] ® E(Xs, X9, Z11, X15, X17, Xe3)
Fa[X3, X5, Xo] @ E(211, X15, X17, Z19, X23, X27, Z35)
Fa[X3, X5, Xg, X15] @ E(X17, Xo3, Xo7, X29, Z35, Z39, Z47,/Z59)

IR

CotOrH*(QE7 iF2) F F2)

IR

COtOI'H*(QE8 iF>) F2, Fz)

especially we have Sg*zi1 = xi5 and Sq®z9 = Xo7.
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Differentials

Then from information of H*(G; F2), we can analyze non frivial
differentials of the Rothenberg—Steenrod spectral sequence
converging to H*(G; F») as follows:

d3(Z11) = Xg for G = Gg, /:47 Ee, E;
d3(Z1g) = X54 for G = E7

Os(zs5) = xg forG=E; Eg
dh(z9) = x8 forG=Eg

d15(Z47) = X316 for G = Eg

0s(zs9) = x{s for G=Eg.



H*(P™(QG); F»)

Consider the spectral sequence of Stasheff’s type converging
to H*(P™(QG); F2). Let A= H*(G; F2). Then for low m such as
1 < m < 3, we have the following:

i=3, for G= Go, Fs, Es
H*(P™(QG) F2) = A" @z - A" 1@ S, { 1=3,4,8, for G=E
; i=8,9,11,14, for G= B

as modules where Al (m > 0) denotes the quotient module
A/D™+1(A) of A by the submodule D™'(A) C A generated by
all the products of m+ 1 elements in positive dimensions in A,
Z4i43 - A"~ 1l denotes a submodule corresponding to a
submodule in A® E(z4;43) and Sp, satisfies

Sm - H*(P"(QG); F2) = 0 and Sp|pn-1(qg) = 0.
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are as follows:

MWQT ( Go;
Mwagt(Fa;
Mwgt(Es;
Mwgt(E7;
Mwgt(Es;

IV IV IV IV IV
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X wgt(X; F») Mwgt(X; F») cat(X)
Go 4 > 4 4
Fy 6 > 8 ?
Es 8 > 10 ?
E; 13 > 15 ?
Eg 32 > 32 ?




The coalgebra structure of H*(QG; F3)

Theorem

The coalgebra structure of the mod 3 cohomology of the loop
spaces of exceptional Lie groups are as follows.

H*(QG:;F3) = T[(ae,ai)

H*(QF4;F3) = TFslaz]/(a3) ® I(as, ato, a4, bzz)

H*(QEs;F3) = Falaz]/(83) ® [(as, as, ato, a1, a1, bez)

H*(QE7;Fs) = TFala]/(83) ® [(&s, aio, @14, @rs, bez, 826, as4)

H*(QEs;Fs) = TFsla]/(a3) ® Falae]/(a8) @ I(aua, ats, bez, ee, @sa, Ass, dss, bss)

especially we have P by = aps.




E> = COtOI’H*(QG;Fs)(F37 F3)

Theorem
Cotory«(a:Fy)(F3, F3) of the exceptional Lie groups G are as follows.

Cotory«(aa,:Fs)(Fa, F3) = E(Xs, X11)

Cotory-(af, Fy) (Fa, F3) = E(xs) ® F3[8P"xs] ® E(P' X3, X11, P X1, Z23)
F3) =~ E(x3) @Fs[BP'xs] ® E(P'x3, X0, X11, P' X411, X17, 2
Cotory-(ag, £y (Fa, F3) = E(xs) @ F3[8P'x3] @ E(P'x3, X11, P x11, X19, Z23,

(

(
Cotory (aEy:F,) (Fs,

(

(

E(xs) ® F3[BP" xs] ® E(P'Xs) @ F3[3P*P " xa]
®E(X15, X19, Z23, X27, X35, X39, X47, Z59)

1%

COtOI'H*(QE8 ;F3) "-37 F3)

especially we have P o3 = xo7.

23)

27, X3¢
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Differentials and H*(P"(QG); F3)

Then from information of H*(G; F3), we can analyze non trivial
differentials of the Rothenberg—Steenrod spectral sequence
converging to H*(G; F3) as follows:

d3(223) (BP'x3)3, for G = Fu, Es, E7
d3(Z59) = (5P3P1X3)3, for G = Eg

Let A= H*(G; F3). Then for low msuchas 1 < m < 3, we
have the following:

i:5, fOfG:F4,E6,E7

* m . _ alm] ., . [m—1]
H*(P™(QG); F3) = A @szs A @sm{ =514, for G= Eq
!



Module Category Weight for F5 coefficients

The module category weights with respect to F3 coefficients
are as follows:




Module Category Weight for F5 coefficients

are as follows:

Mwgt(Gp;
Mwagt(F4;
Mwgt(Es;
Mwgt(E7;
Mwgt(Es;

VvV IV IV IV IV

The module category weights with respect to F3 coefficients

2,
8,
10.
13,
18.
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Sketch of a proof for the E; case

From above Theorem, P! zp3 = xo7 in H*(P'(QE7); F3).
Then 731223 = Xo7 modulo 82 in H*(P2(QE7), F3)
Since S is even-dimensional, the modulo S; is trivial and

Plzo3 = Xp7 in H(P?(QE7); F3).
So in H*(P'?(QE7); F3), we have

PU(BP x3)2xax7X11X15X19203X35) = (BP'X3)%Xa3X7X11X15X19X27 X35

Note that the filtration lengths of 3P x3 are 2.

Let om : H*(P™(QE7); Fp) — H*(E7; Fp) be a epimorphism
which preserves all Steenrod actions and
¢mo (em)" = 1y-(£5;F,)- Suppose that there are epimorphisms

P12 1 H*(P'?(QE;); F3) — H*(E7; Fa).
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Pt Pt

(BP'X3)?X3X7X11X15X19Z23 X35 +— 0

Obviously this is a contradiction. So ¢1»is not epimorphisms.
This means that (e12)*, can not be split monomorphisms of all
Steenrod algebra module.

Hence we obtain that



Sketch of a proof for the E; case

Then we have the following diagrams:

H*(P'2(QE); F3) Rt H*(E7; F3)
(BP'X3)%X3X7X11 X15X19X27 X35 —  (BP'X3)?X3X7X11X15X19X27 X35
Pt Pt

(BP'X3)?X3X7X11X15X19Z23 X35 +— 0

Obviously this is a contradiction. So ¢1»is not epimorphisms.
This means that (e12)*, can not be split monomorphisms of all
Steenrod algebra module.

Hence we obtain that

Mwgt(Ey; F3) > 13.



Combined with Toomer’s result, we have the following
conclusion:



Combined with Toomer’s result, we have the following

conclusion:
G | wgt(G; F3) — cup(G; F3) | Mwgt(G; F2) — wgt(G; F2) | Mwgt(G; F3) — wgt(G; F3)
G| O > 0 > 0
Fy4 2 > 2 > 0
Es | 2 > 2 > 0
E; 2 > 2 > 2
Es | 4 > 0 > 2




Module Category Weight for Spin(n)

Theorem

The category weight of Spin(n) with F coefficients is as follows:

(a) wgt(Spin(2"); F2) = wgt(Spin(2" +1); F2) =2"' x n— 2"+ 2,
(b) wgt(Spin(2" + 2k + 2); F2) = wgt(Spin(2" + 2k + 1); F2) + 1 for all

integer k > 0,
(c) wgt(Spin(2" + 2k +1); Fo) = 2" " x n—2" 42+ S°K . 2% — K for
1<k<2"'—1wherev;, i=1,---,k, is the positive integer such that

2k +2 < 2¥i(2i — 1) < 4k.




Module Category Weight for Spin(n)

Theorem

The category weight of Spin(n) with F coefficients is as follows:

(a) wgt(Spin(2"); F2) = wgt(Spin(2" +1); F2) =2"' x n— 2"+ 2,
(b) wgt(Spin(2" + 2k + 2); F2) = wgt(Spin(2" + 2k + 1); F2) + 1 for all

integer k > 0,
(c) wgt(Spin(2" + 2k +1); Fo) = 2" " x n—2" 42+ S°K . 2% — K for
1<k<2"'—1wherev;, i=1,---,k, is the positive integer such that

2k +2 < 2¥i(2i — 1) < 4k.

Theorem

For n > 3, the module category weight is as follows:
(a) Mwgt(Spin(2" + k); F2) > wgt(Spin(2" + k); Fa) +2 for1 < k < 2",
(b) Mwgt(Spin(2" + k); F2) = wgt(Spin(2" + k); F2) for2"~' +1 < k < 2",




Module Category Weight for Spin(n)

G wgt(G; F2) | Mwgt(G; F2) | cat(G)
Spin(3) 1 1 1
Spin(4) 2 2 2
Spin(5) 2 2 3
Spin(6) 3 3 3
Spin(7) 5 5 5
Spin(8) 6 6 6
Spin(9) 6 8 8
Spin(10) | 7 > 9 ?
Spin(11) | 9 > 11 ?

?




The End



The End

Thank you!



