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Plan of the talk:

• Orthogonal polynomials: a quick introduction (classical and

semi-classical polynomials, ladder operators, examples)

• q-Laguerre orthogonal polynomials and generalizations

We consider a semi-classical variation of the weight related to the q-

Laguerre polynomials and study their recurrence coefficients. In partic-

ular, we obtain a second degree second order discrete equation which in

particular cases can be reduced to either the qPV or the qPIII equation.



• Little q-Laguerre orthogonal polynomials and generalizations

We consider a semi-classical variation of the weight related to the little

q-Laguerre polynomials and obtain a second order second degree discrete

equation for the recurrence coefficients in the three-term recurrence re-

lation.

• Perspectives and open problems



Orthogonal polynomials

For a sequence (Pn)n≥0 of monic polynomials (of degree n in x)

Pn(x) = xn + γnx
n−1 + . . . . (1)

orthogonal with respect to a positive measure µ with support on the real line∫
Pn(x)Pm(x)dµ(x) = ζnδn,m, ζn > 0, n,m = 0,1,2, . . . , (2)

where δn,m is the Kronecker delta, the three-term recurrence relation takes
the following form:

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x) (3)

with the recurrence coefficients given by the following integrals

αn =
1

ζn

∫
xP 2

n (x) dµ(x), βn =
1

ζn−1

∫
xPn(x)Pn−1(x) dµ(x) (4)

with β0P−1 = 0 and P0 = 1.



For classical orthogonal polynomials (Hermite, Laguerre, Jacobi) one knows
these recurrence coefficients explicitly in contrast to non-classical weights.
The recurrence coefficients of semi-classical weights obey nonlinear recur-
rence relations, which, in many cases, can be identified as discrete Painlevé
equations.

One of the useful characterizations of classical polynomials is a Pearson equa-
tion

[σ(x)w(x)]′ = τ(x)w(x),

where σ and τ are polynomials satisfying degσ ≤ 2 and deg τ = 1 and w(x) is
the weight (

∫
pn(x)pm(x)w(x)dx = δm,n).

In case of discrete polynomials or q-polynomials, the derivative in the Pearson
equation is replaced by difference or q-difference operator.

Semi-classical orthogonal polynomials are defined as orthogonal polynomials
for which the weight function w(x) satisfies a Pearson equation with degσ > 2
or deg τ 6= 1.



Examples of discrete Painlevé equations

dPI:

yn+1 + yn + yn−1 =
an+ b

yn
+ c;

dPII:

yn+1 + yn−1 =
(an+ b)yn + c

1− y2
n

;

qPIII

yn+1yn−1 =
cd(yn − aqn)(yn − bqn)

(yn − c)(yn − d)
;

dPIV :

(yn+1 + yn)(yn + yn−1) =
(y2

n − κ2)(y2
n − µ2)

(xn + zn)2 − γ2
, zn = αn+ β.



Examples of semi-classical weights for orthogonal polynomials giving rise to
discrete or q-discrete Painlevé equations

• w(x) = |x|ρe−x4

on R is related to dPI;

• w(k) = ak

(k!)2 on N is related to dPII;

• w(x) = xαe−x
2

on R+ is related to dPIV ;

• w(x) = (q4x4; q4)∞ on {±qk|k ∈ N} is related to qPI;

• w(x) = |x|α(q2x2; q2)∞(cq2x2; q2)∞ on {±qk|k ∈ N} is related to αqPV .



Ladder operators

[M.E.H. Ismail et al].

Let the weight function w be on the positive half line, so that the orthogonality
condition is ∫ ∞

0
Pn(x)Pm(x)w(x)dx = ζnδn,m. (5)

Let us define the function u, called the potential, by the following formula:

u(x) = −
Dq−1w(x)

w(x)
. (6)

The q-difference operator is given by

(Dqf)(x) =

{
f(x)−f(qx)
x(1−q) , x 6= 0,

f ′(0), x = 0.



Then the polynomials satisfy the following lowering equation:

DqPn(x) = An(x)Pn−1(x)−Bn(x)Pn(x),

where the functions An(x) and Bn(x) are given by

An(x) =
1

ζn

∫ ∞
0

u(qx)− u(y)

qx− y
Pn(y)Pn(y/q)w(y)dy, (7)

Bn(x) =
1

ζn−1

∫ ∞
0

u(qx)− u(y)

qx− y
Pn(y)Pn−1(y/q)w(y)dy. (8)

Furthermore, the following relations (compatibility conditions) hold:

Bn+1(x) +Bn(x) = (x− αn)An(x) + x(q − 1)
n∑

j=0

Aj(x)− u(qx), (9)

1 + (x− αn)Bn+1(x)− (qx− αn)Bn(x) = βn+1An+1(x)− βnAn−1(x). (10)



q-Laguerre orthogonal polynomials and generalizations

Let

(a; q)∞ =
∞∏
k=0

(1− aqk).

The classical q-Laguerre weight is given by

w(x) =
xα

(−x; q)∞
.

We consider the recurrence coefficients of the generalized q-Laguerre poly-
nomials for the weight function

w(x) =
xα(−p1/x; q)∞(−p2/x; q)∞
(−x2; q2)∞(−q2/x2; q2)∞

, (11)

where x ∈ (0,+∞), |q| < 1, p1 > 0, p2 > 0, p1p2 < q2−α, α ≥ 0. The case
p1 + p2 = 0, p1p2 = −p was considered by L. Boelen. It was shown that the
recurrence coefficients are related to the q-discrete Painlevé equation qPV .
The proof was based on the compatibility relations for the ladder operators
for orthogonal polynomials [Ismail et al].



Theorem∗

The recurrence coefficients αn and βn in the three-term recurrence relation
for monic polynomials

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x)

for the weight

w(x) =
xα(−p1/x; q)∞(−p2/x; q)∞
(−x2; q2)∞(−q2/x2; q2)∞

with x ∈ (0,+∞), |q| < 1, p1 > 0, p2 > 0, p1p2 < q2−α, α ≥ 0, can be expressed
in terms of the function yn, which satisfies the second order second degree
discrete equation

(c2
n − bnbn−1)2 − anan−1cn(c2

n + bnbn−1)− c2
n(a2

nbn−1 + a2
n−1bn) = 0,

with

an = qn−1(p1 + p2),
bn = q2n+α(yn+1yn − p1p2q

−α−2),

cn = qn−1(yn + q−α)(yn + p1p2q−2)

yn + q−n−α
,

∗[GF, C. Smet, On the recurrence coefficients for generalized q-Laguerre
polynomials, accepted in JNMP].



where

βn = q1−n(yn + q−n−α)

and

q2α+2n+2(qα+2ynyn+1 − p1p2)α2
n + (p1 + p2)qα+n+1(q2 + qα(p1p2 + q2(yn + yn+1)))αn

+(q2 + qα(p1p2 + q2(yn + yn+1)))2 = 0.

Remark. In particular, if p1 + p2 = 0 and p = −p2
1, all ai are zero and we

obtain c2
n = bnbn−1, or in terms of yn:

(ynyn−1 − pq−α−2)(ynyn+1 − pq−α−2) =
(yn + q−α)2(yn + pq−2)2

(qα+nyn + 1)2
.

This case was considered by L. Boelen and it was shown to be a particular
case of qPV after some change of variables.

If we take p1 = p2 = 0, i.e. a special case of the previous one, we get the
equation

yn−1yn+1 =
(yn + q−α)2

(qn+αyn + 1)2
.

This is the q-discrete Painlevé equation qPIII.



Remarks on the proof

We use the technique of ladder operators. In this case

w(x/q) =
q2−α

(x+ p1)(x+ p2)
w(x),

The potential (17) is given by

u(x) =
q

1− q
1

x
−
q3−α

1− q
1

x(x+ p1)(x+ p2)
.

The functions An(x) and Bn(x) in, respectively, (15) and (16) are given by

An(x) =
q2

1− q
Tn

x(qx+ p1)(qx+ p2)
+

qn+2

1− q
1

(qx+ p1)(qx+ p2)
,

where

Tn = qn−1(p1 + p2 + γn − qγn+1) (12)

n∑
j=0

Tj =
(p1 + p2)

q

1− qn+1

1− q
− qnγn+1. (13)



Similarly,

Bn(x) = −
1

x

1− qn

1− q
+

q2

1− q
rn

(qx+ p1)(qx+ p2)
+

q2

1− q
tn

x(qx+ p1)(qx+ p2)

with

rn =
1

ζn−1

∫ ∞
0

Pn(qu)Pn−1(u)w(u)du,

tn =
p1 + p2

qζn−1

∫ ∞
0

Pn(qu)Pn−1(u)w(u)du+
1

ζn−1

∫ ∞
0

uPn(qu)Pn−1(u)w(u)du.

Clearly, r0 = t0 = 0 and

rn = (1− q)γnqn−1. (14)

Next one uses compatibility conditions and some tricks to reduce the number
of unknowns.



Discrete q-orthogonal polynomials on an exponential lattice

The orthogonality relation is given by∫ b

a

pk(x)pn(x)w(x)dqx = δk,n,

where δk,n is the Kronecker delta and the q-integral is defined by∫ b

a

f(x)dqx = b(1− q)
∞∑
n=0

qnf(bqn)− a(1− q)
∞∑
n=0

qnf(aqn).

Here the weight function w is supported on the exponential lattice

{aqn, bqn |n ∈ N0}.

The classical examples include little q-Laguerre polynomials, which are or-
thogonal on the exponential lattice {qk | k ∈ N0} with respect to the weight
function

w(x) = xα(qx; q)∞, α > −1, q ∈ (0,1).



They can be written in terms of the basic hypergeometric function 2φ1 given
by

2φ1(a1, a2; b1; q; z) =
∞∑
`=0

(a1; q)`(a2; q)`
(b1; q)`

z`

(q; q)`
.

Ladder operators

[Ismail et al].

Consider a weight function w on the exponential lattice {aqn, bqn |n ∈ N0},
such that w(a/q) = w(b/q) = 0 and the sequence of orthonormal polynomials
{pn} of degree n with respect to this weight. Then the polynomials satisfy
the following relation:

Dqpn(x) = An(x)pn−1(x)−Bn(x)pn(x)

with

An(x) = an

∫ b

a

u(qx)− u(y)

qx− y
pn(y)pn(y/q)w(y)dqy, (15)

Bn(x) = an

∫ b

a

u(qx)− u(y)

qx− y
pn(y)pn−1(y/q)w(y)dqy. (16)



Here the function u, called the potential, is defined by the following formula:

−u(qx)w(qx) = Dqw(x). (17)

Furthermore, the following relations (compatibility conditions) hold:

Bn +Bn+1 = (x− bn)
An

an
+ (q − 1)x

n∑
j=0

Aj

aj
− u(qx), (18)

an+1An+1 − a2
n

An−1

an−1
= (x− bn)Bn+1 − (qx− bn)Bn + 1. (19)

Relations (18), (19) are important in deriving nonlinear discrete equations for
the recurrence coefficients, which in some cases can be further reduced to
(q-)discrete Painlevé equations.



Main results †

• We study the recurrence coefficients for the weight functions supported
on the exponential lattice {qk | k ∈ N0} and satisfying the q-difference
equation (17) with

u(x) =
k1q

1− q
1

x
+
k2x+ k3

1− q
, k1 6= 0, k2 6= 0, (20)

and conditions w(0) = w(1/q) = 0.

• To find out which weights can give rise to a potential of the form (20),
we notice that it is sufficient if

w(x/q)

w(x)
= Ax2 +Bx+ C

for certain constants A, B, C, since an easy calculation shows that in
that case the potential is given by (20) with k1 = 1 − C, k2 = −Aq and
k3 = −Bq.

†GF, C. Smet, On the recurrence coefficients of the generalized little q-
Laguerre polynomials, submitted.



If we define

vα1(x) = xα, vc2(x) = (cx; q)∞, vc3(x) = (cx2; q2)∞,
vc4(x) = (c/x; q)∞, vc5(x) = (c/x2; q2)∞,

then

vα1(x/q)

vα1(x)
= q−α,

vc2(x/q)

vc2(x)
=

q − cx
q

,
vc3(x/q)

vc3(x)
=
q2 − cx2

q2
,

vc4(x/q)

vc4(x)
=

x

x− c
,

vc5(x/q)

vc5(x)
=

x2

x2 − c
.

Hence it is clear which products of vi lead to a weight for which the po-
tential satisfies (20). These include, among others, the little q-Laguerre
weight, products of rational functions and the weights above, the weights
in the following examples and others.



• In the following we assume that the sequence of polynomials {pn} is
orthonormal with respect to the weight function with potential (20) and
hence the orthogonality relation takes the form∫ 1

0
pm(x)pn(x)w(x)dqx = δm,n.

Hence, the expressions (15) and (16) can be computed as follows:

An(x) =
anRn

x(1− q)
+
ank2q−n

1− q
,

Bn(x) =
rn

(1− q)x
,

where

Rn = −k1

∫ 1

0
pn(y)pn(y/q)

w(y)

y
dqy, rn = −ank1

∫ 1

0
pn(y)pn−1(y/q)

w(y)

y
dqy.

The compatibility conditions give that the recurrence coefficients an, bn
appearing in the three-term recurrence relation for the weight supported
on the exponential lattice {qk | k ∈ N0} with the potential satisfying (20)



and conditions w(0) = w(1/q) = 0 can be expressed in terms of rn,
which is a solution of a complicated second order second degree discrete
equation (with respect to n).

• If k3 = 0 in (20) then the variable xn = (1 + rn)(1− k1)−1/2 satisfies qPV
given by

(xnxn−1 − 1)(xnxn+1 − 1) =
γδq2n(xn − α)(xn − 1/α)(xn − β)(xn − 1/β)

(xn − γqn)(xn − δqn)
,

(21)
with

α = β = γ = δ =
1

p
, p =

√
1− k1.

The initial conditions are given by

x0 =
1

p
and x1 = p−

k2

qp

(
µ1

µ0

)2

.

The function xn is related to the recurrence coefficients an and bn of the
orthogonal polynomials by

a2
n =

qn

k2
(pxn − qn) (22)



and

b2
n = −

q2n+1(pxn + pxn+1 − 1− p2)2

k2p2(xnxn+1 − 1)
. (23)

Example 1. In this example we consider the semi-classical little q-Laguerre
weight

w(x) = xα(qx; q)∞(cqx; q)∞, α > 0, (24)

on the positive exponential lattice {qn |n ∈ N0}. The case c = −1 was consid-
ered by L. Boelen. The case c = 0 gives the little q-Laguerre weight (and,
hence, the recurrence coefficients are known explicitly). We observe that
w(0) = w(1/q) = 0.

The potential (17) is given by

u(x) =
1

1− q

(
q

x
−
q1−α

x
+ q1−α(1 + c)− cq1−αx

)
and, hence, k1 = 1− q−α, k2 = −cq1−α, k3 = (1 + c)q1−α in (20). We assume
that c 6= 0.



Since k3 = 0 if and only if c = −1, we get that in this case the variable
xn = qα/2(rn + 1) satisfies

(xnxn−1 − 1)(xnxn+1 − 1) =
q2n+α(xn − qα/2)2(xn − q−α/2)2

(xn − qn+α/2)2
, (25)

which is a particular case of qPV (21) (with α = β = γ = δ = qα/2).

Next we study initial conditions for the recurrence coefficients of the weight
(24) for general c. We have

a2
n =

1

c
qn−1+α/2

(
qn+α/2 − xn

)
and for n ≥ 1

cb2
n(xnxn+1 − 1) = q2n

(
1 + qα − qα/2(xn + xn+1)

)2
.

We also get that

b2
0 =

1

c

(
qα/2x1 − 1

)
.



Recalling that b0 = µ1/µ0, we immediately get that the initial values are given
by x0 = qα/2 (since r0 = 0) and

x1 = q−α/2

(
1 + c

µ2
1

µ2
0

)
, (26)

where µk is the k-th moment of the weight (24). In fact, we can also calculate
µk by definition and get

µk = (1− q)(q; q)∞(cq; q)∞ 2φ1(0,0; cq; q; qα+k+1),

where 2φ1 is the basic hypergeometric function. Note that for c = qν the last
expression (up to a factor) can be written in terms of the modified q-Bessel
function

I(1)
ν (z, q) =

(qν+1; q)∞
(q; q)∞

(z/2)ν2φ1(0,0; qν+1; q; z2/4)

with z = 2q(α+k+1)/2.

Example 2. In this example we consider another semi-classical generaliza-
tion of the little q-Laguerre weight:

w(x) = xα
(qx; q)∞

(
c1

x
; q
)
∞

(
qx
c1

; q
)
∞(

c2

x
; q
)
∞

, α > 0, c1 < 0, c2 < 0 (27)



on the positive exponential lattice {qn |n ∈ N0}. The case where c1 = c2 = 1/c
gives the weight from the previous example. Again, it is clear that w(0) =
w(1/q) = 0. It is easy to calculate that for this weight we get

k1 = 1−
c2

c1
q−α, k2 = −

q1−α

c1
and k3 =

c2 + 1

c1
q1−α.

As mentioned earlier, to obtain a discrete Painlevé equation, we need that
k3 = 0, hence c2 = −1. We have

xn =
√
−c1q

α/2(rn + 1) and a2
n = −c1q

n+α−1(1− qn + rn)

where xn satisfies (21) with

α = β = γ = δ =
√
−c1q

α

2 .

As for the initial conditions, we find that

x0 =
√
−c1q

α

2

and

x1 =
√
−c1q

α

2

(
−1 +

c2

c1
q−α +

b2
0

c1qα

)
+ 1.



Moreover, b0 = µ1/µ0, and it is easily seen that the k’th moment of this
weight is given by

µk = (1− q)(q; q)∞

(
q

c1
; q

)
∞

(c1; q)∞
(c2; q)∞

2φ1

(
0,0;

q

c2
; q;

c1

c2
qα+1+k

)
.



Conclusions and open problems

We have shown that it is possible to study recurrence coefficients in the
three-term recurrence relation for simultaneously a large class of weights
by using the technique of ladder operators. The crucial point is to consider
the potential (20) with parameters. This allows us to obtain a second degree
second order discrete equation, which in some particular cases, can be further
reduced to the discrete Painlevé equation.

It is an interesting open problem to try to classify the weights which lead to the
appearance of the discrete Painlevé equations for the recurrence coefficients.



Thank you very much for your attention!


