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1. Introduction

In the lecture we first derive differential relations between
Dunkl spherical and solid means of functions. Next we use the
relations to give short proof of an analogue of the Beckenbach-
Reade theorem stating that equality of spherical and solid
means of a continuous function implies its harmonicity. Tak-
ing a full advantage of the relations we also give inductive
proofs of the Dunkl solid and spherical mean-value properties
for the Dunkl polyharmonic functions and their converses in
arbitrary dimension.
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2. Preliminaries

Recall that for a nonzero vector α ∈ Rn \ {0} the reflection
with respect to the orthogonal to α hyperplane Hα is given
by

σα(x) = x− 2〈α, x〉
‖α‖2

α, x ∈ Rn,

where 〈 , 〉 is the euclidian scalar product on Rn and ‖ · ‖ the
associated norm. A finite set R of nonzero vectors is called a
root system if R ∩ Rα = {±α} and σαR = R for all α ∈ R.
The reflections σα with α in a given root system R generate a
finite group W ⊂ O(n), called the reflection group associated
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with R. For a fixed β ∈ Rn \ ⋃
α∈R Hα one can decompose

R = R+ ∪ R− where R± = {α ∈ R : ±〈α, β〉 > 0}; vectors
in R+ are called positive roots.
A function κ : R → R is called a multiplicity function if it is
invariant under the action of the associated reflection group
W . Its index γ is defined by

γ =
∑

α∈R+

κ(α).

Throughout the paper we shall assume that κ ≥ 0 and γ > 0.
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The Dunkl operators Tj, j = 1, . . . , n, associated with a
root system R and a multiplicity function κ were introduced
by C. Dunkl [6] as

Tjf (x) =
∂

∂xj
f (x) +

∑

α∈R+

κ(α )
f (x)− f (σα(x))

〈α, x〉 αj

for f ∈ C1(Rn).

Clearly, Tj is well defined for f ∈ C1(Ω) where Ω is a W -
invariant open subset of Rn and it reduces to ∂

∂xj
f if f is

W -invariant.
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The Dunkl Laplacian ∆κ is defined as a sum of squares of
the operators Tj, j = 1, . . . , n, i.e.,

∆κf =

2∑
j=1

T 2
j f for f ∈ C2(Ω).

A simple computation leads to

∆κf (x) = ∆f (x)

+
∑

α∈R+

κ(α)

(
2〈∇f (x), α〉
〈α, x〉 − ‖α‖ f (x)− f (σα(x))

〈α, x〉2
)

.

Here ∆ and ∇ denote the usual Laplacian and gradient, resp.
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The Dunkl intertwining operator Vκ acting on polynomials
was defined in [7] by

TjVκf = Vκ
∂

∂xj
f for j = 1, . . . , n and Vκ1 = 1.

The operator Vκ extends to a topological isomorphism of C∞(Rn)
onto itself [19]. In general there is no explicite description of
Vκ, but M. Rösler has shown [15, Th. 1.2, Cor. 5.3] that for
any x ∈ Rn there exists a unique probability measure µx such
that

Vκf (x) =

∫

Rn
f (y)dµx(y). (1)
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Moreover, the support of µx is contained in ch(Wx) – the
convex hull of the set {gx : g ∈ W}, µrx(U) = µx(r

−1U)
and µgx(U) = µx(g

−1U) for r > 0, g ∈ W and a Borel set
U ⊂ Rn. Note that by (1), Vκ can be extended to continuous
functions and |Vκ(f )(x)| ≤ supy∈ch(Wx) |f (y)|; the extension
is a topological isomorphism of C(Rn).

The Dunkl translation operators τx, x ∈ Rn, are defined on
C(Rn) by

τxf (y) = (Vκ)x(Vκ)y
[
V −1

κ f (x + y)
]

for y ∈ Rn. (2)

A more suggestive notation f (x ∗κ y) := τxf (y) will be also
used. Note that τ0f = f and τyf (x) = τxf (y) for x, y ∈ Rn.
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3. Mean value property

The Poisson kernel for the Dunkl Laplacian ∆κ is defined in
[8] for ‖x‖ < 1 and ‖y‖ ≤ 1 by1

Pκ(x, y) = Vκ

[
1− ‖x‖2

(1− 2〈x, ·〉 + ‖x‖)γ+n/2

]
(y), (3)

The kernel Pκ(x, y) is non-negative, bounded by 1 and it has
the reproducing property for Dunkl harmonic functions on the
unit ball. Furthermore it is used as a tool to solve the Dirich-
let problem for the Dunkl Laplacian. Namely it holds

1Pκ(x, y) = P (h2
κ; y, x) where P (h2

κ; ·, ·) is defined in [8, page 190].
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Theorem A [12, Theorem A, Prop. 2.1]. Let u be a con-
tinuous function on the unit sphere S(0, 1). For ‖x‖ < 1
set

Pκ[u](x) =
1

dκ

∫

S(0,1)

Pκ(x, y)u(y) ωκ(y)dS(y). (4)

Then Pκ[u] is ∆κ-harmonic on B(0, 1), extends continu-
ously to B(0, 1) and Pκ[u] = u on S(0, 1). Furthermore,
Pκ[u] is the unique ∆κ-harmonic function on B(0, 1) which
extends continuously to u on S(0, 1).

Here and in the sequel ωκ(y) =
∏

α∈R+
|〈α, y〉|2κα.
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Since Pκ(0, y) = 1 for ‖y‖ ≤ 1 for a function u continuous
on B(0, 1) and Dunkl harmonic in B(0, 1) we get

u(0) =
1

dκ

∫

S(0,1)

u(y) ωκ(y)dS(y). (5)

More generally, if a function u is continuous on B(0, 1) and
∆κ-harmonic in B(0, 1), then for any x ∈ B(0, 1) and 0 <
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R < 1− ‖x‖ the mean value formula holds [12, Theorem C]

u(x) =
1

dκ

∫

S(0,1)

τxu(Ry) ωκ(y)dS(y) (6)

=
1

dκR2γ+n−1

∫

S(0,R)

τxu(z) ωκ(z)dS(z). (7)

The converse statement was also stated [12, Theorem C] under
the assumption that u is a C2 function. However its proof uses
a formula from [14, Corollary 4.18] valid only for C4 functions.
We conjecture that it holds under the assumption of continuity
of u.
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Conjecture 1 Let u be a function continuous in the ball
B(0, 1). If for any x ∈ B(0, 1) there is a sequence rj > 0,
j ∈ N, converging to zero such that

u(x) =
1

dκ

∫

S(0,1)

τxu(rjy) ωκ(y)dS(y) (8)

=
1

dκr
2γ+n−1
j

∫

S(0,rj)

τxu(z) ωκ(z)dS(z) (9)

for every j ∈ N, then u is ∆κ-harmonic in B(0, 1).
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However it holds
Weil’s Lemma for Dunkl laplacian. [13, Theorem

2.1] If u ∈ L∞loc(Rn) and ∆κ(ωκu) = 0 in D′(Rn), then there
exists a Dunkl harmonic function v such that u = v a.e.
in Rn.
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3. Relations between spherical and solid means

Let u be a smooth function on Ω ⊂ Rn. For any x ∈ Ω
and 0 < R < Dist(x̊, ∂Ω) we denote by ND(u; x,R) the
Dunkl integral mean of u over the Dunkl sphere SD(x,R) =
τx̊S(0, R),

ND(u; x,R) =
1

dκ

∫

S(0,1)

τx̊u(Ry) ωκ(y)dS(y) (10)

=
1

dκ

∫

S(0,1)

u(x ∗κ Ry) ωκ(y)dS(y) (11)
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where

dκ =

∫

S(0,1)

ωκ(y) dS(y).

It was proved in [16, Theorem 4.1] that the spherical mean
operator u 7→ ND(u; x,R) can be represented in the form

ND(u; x,R) =

∫

Rn
u(y)dµκ

x,R(y)

where µκ
x,R is a probability measure with support in

⋃
g∈W{y ∈

Rn : |y − gx| ≤ R}. Hence ND(u; x,R) is well defined for a
continuous function u.
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Since ωκ is homogenous of degree 2γ we also have

ND(u, x̊; R) =
1

dκR2γ+n−1

∫

S(0,R)

τx̊u(z) ωκ(z)dS(z). (12)

Note that using the spherical coordinates we get
∫

B(0,1)

ωκ(x) dx =

∫ 1

0

( ∫

S(0,t)

ωκ(x)dS(x)

)
dt

=

∫ 1

0

( ∫

S(0,1)

ωκ(y)dS(y)

)
t2γ+n−1dt

=
dκ

2γ + n
.
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So we can define the Dunkl integral mean of u over the closed
Dunkl ball BD(x̊, R) = τx̊B(0, R) by

MD(u, x̊; R) =
2γ + n

dκ

∫

B(0,1)

τx̊u(Ry) ωκ(y)dy (13)

=
2γ + n

dκR2γ+n

∫

B(0,R)

τx̊u(z) ωκ(z)dz. (14)

If there is no risk of misunderstanding the notation is shorten
to MD(u; R) and ND(u; R).
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Recall the Green formula for the Dunkl laplacian.

Green formula for ∆κ. ([14, Theorem 4.11]). Let Ω
be a bounded W -invariant regular open set in Rn contain-
ing the origin and u ∈ C2(Ω). Then for any closed ball
B(0, R) ⊂ Ω it holds

∫

B(0,R)

∆κu(x) ωκ(x)dx =

∫

S(0,R)

∂u(x)

∂η
ωκ(x)dS(x) (15)

where ∂u
∂η denotes the external normal derivative of u.

The relations between MD(u; R) and ND(u; R) are given
in the following result:
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Lemma 1. Let u be a continuous function on a domain
Ω ⊂ Rn. Then for any x̊ ∈ Ω and 0 < R < Dist(x̊, ∂Ω) it
holds

( R

2γ + n

∂

∂R
+ 1

)
MD(u, x̊; R) = ND(u, x̊; R). (16)

If we further assume that u has continuous derivatives up
to second order, then

2γ + n

R

∂

∂R
ND(u, x̊; R) = MD(∆κu, x̊; R). (17)
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Proof. Assume x̊ = 0. Using (14), the fact that τ0u = u,
the spherical coordinates and (11) we compute

MD(u, 0; R) =
2γ + n

dκR2γ+n

∫

B(0,R)

u(x) ωκ(x)dx

=
2γ + n

dκR2γ+n

∫ R

0

( ∫

S(0,s)

u(x) ωκ(x)dS(x)

)
ds

=
2γ + n

R2γ+n

∫ R

0

ND(u, 0; s) s2γ+n−1ds.
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Hence by the Leibniz rule

∂

∂R
MD(u, 0; R)

= −(2γ + n)2

R2γ+n+1

∫ R

0

ND(u, 0; s) s2γ+n−1ds

+
2γ + n

R2γ+n
ND(u, 0; R) R2γ+n−1

=
2γ + n

R

(
ND(u, 0; R)−MD(u, 0; R)

)
,

which proves (16).
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To show (17) we differentiate under the integral sign to get

∂

∂R
ND(u, 0; R) =

∂

∂R

(
1

dκ

∫

S(0,1)

u(Ry) ωκ(y)dS(y)

)

=
1

dκ

∫

S(0,1)

〈∇u(Ry), y〉ωκ(y)dS(y)

=
1

dκR2γ+n−1

∫

S(0,R)

〈∇u(z), z
R〉ωκ(z)dS(z)

Note that the external normal vector to S(0, R) at a point
z ∈ S(0, R) is η = z

R and 〈∇u, η〉 = ∂u
∂η .
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So applying the Green formula (15) we get

∂

∂R
ND(u, 0; R) =

1

dκR2γ+n−1

∫

S(0,R)

∂u(z)

∂η
ωκ(z)dS(z)

=
1

dκR2γ+n−1

∫

B(0,R)

∆κu(z) ωκ(z)dz

=
R

2γ + n
MD(∆u, 0; R)

which implies (17). ¤
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By (16) and (17) it follows

Corollary 1. Let u ∈ C2(Ω). Then for any x̊ ∈ Ω
and 0 < R < Dist(x̊, ∂Ω) it hold

MD(∆κu, x̊; R) =
( ∂2

∂R2 +
2γ + n + 1

R

∂

∂R

)
MD(u, x̊; R)

(18)
and

ND(∆κu, x̊; R) =
( ∂2

∂R2 +
2γ + n− 1

R

∂

∂R

)
ND(u, x̊; R).

(19)

25



By the first part of Lemma 1 we get an analogue of the
Beckenbach-Reade theorem for the Dunkl harmonic functions.

Corollary 2 Let u be smooth on a domain Ω ⊂ Rd.
If for any x̊ ∈ Ω and 0 < R < Dist(x̊, ∂Ω) it holds

MD(u, x̊; R) = ND(u, x̊; R), (20)

then u is Dunkl harmonic on Ω.

Proof. The assumption (20) and (18) imply that
∂

∂RMD(u, x̊; R) = 0. So for any x̊ ∈ Ω, MD(u, x̊; R) is a con-
stant equal to u(x̊). The converse to the mean-value property
for Dunkl harmonic functions implies that u is Dunkl har-
monic. ¤
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3. Mean-value properties for Dunkl

polyharmonic functions

Let m ∈ N. A function u ∈ C2m(Ω) defined on a W -invariant
open set Ω ⊂ Rn is called m-Dunkl harmonic if it is a solution
of the m-times iteration of the Dunkl operator, i.e., ∆m

κ u = 0.
One of the most trivial examples is given by an even power of
the Euclidean distance from the origin

Example. Let u(x) = r2m(x) with m ∈ N0, where r(x) =( ∑n
i=1 x2

i

)1/2
is the radius function. Since u is W -invariant
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∆κu reduces to

∆κu(x) = ∆u(x) + 2
∑

α∈R+

κ(α)
〈∇u(x), α〉
〈α, x〉 .

Since ∆u = 2m(n+2m−2) r2m−2 and∇u = 2mx ·r2m−2 we
get ∆κu = 2m(n+2m+2γ−2) r2m−2. So u is (m+1)-Dunkl
harmonic, ∆iu(0) = 0 for i = 0, 1, ..., m− 1 and

∆m
κ u(0) = 2m(2m− 2) · · · 2× (n + 2m + 2γ − 2) · · · (n + 2γ) r0(0)

= 4m
(
γ +

n

2

)
m
m!,

where for a ∈ R, (a)0 = 1 and (a)i = a(a + 1) · · · (a + i− 1)
for i ∈ N. On the hand using the spherical coordinates and
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the fact that ω is homogeneous of degree 2γ we get

MD(u, 0; R) =
2γ + n

dκR2γ+n

∫

B(0,R)

u(y)ωκ(y)dy

=
2γ + n

dκR2γ+n

∫ R

0

∫

S(0,s)

‖y‖2mωκ(y)dS(y)ds

=
2γ + n

dκR2γ+n

∫ R

0

dκs
2m+2γ+n−1ds

=
2γ + n

2m + 2γ + n
R2m.

(21)
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Hence

MD(u, 0; R) =
∆m

κ u(0)

4m
(
γ + n

2 + 1
)
m
m!
·R2m.

The above example suggests a form of an expansion of
M(u, x; R) for a polyharmonic function u into powers of the
radius R of the ball B(x,R).
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Theorem 1 (Mean-value property for solid means). Let
m ∈ N0 and let Ω be a W -invariant domain in Rn. If
u ∈ C2m+2(Ω) and ∆m+1

κ u = 0 in Ω, then for any x̊ ∈ Ω
and 0 < R < Dist(x̊, ∂Ω) it holds

MD(u, x̊; R) =

m∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2 + 1
)
k
k!
·R2k. (22)

Proof. Clearly, by the mean-value property for Dunkl
harmonic functions (22) holds for m = 0. Inductively as-
sume that the theorem holds for a fixed m ∈ N0. Let v ∈
C2m+4(Ω) and ∆m+2v = 0. Then u = ∆v ∈ C2m+2(Ω) satis-
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fies ∆m+1u = 0 and so (22) holds. But by (18)

2γ + n

R

∂

∂R

( R

2γ + n

∂

∂R
+ 1

)
MD(v; R) = MD(∆κv; R)

= MD(u; R) =

m∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2 + 1
)
k
k!
·R2k.

So after one integration
( R

2γ + n

∂

∂R
+ 1

)
MD(v; R)

=

m∑

k=0

∆k
κu(x̊)

4k(2γ + n)
(
γ + n

2 + 1
)
k
k!
· R2k+2

2k + 2
+ c. (23)
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Note that the general solution of
(

R
2γ + n

∂
∂R

+1
)
MD(v; R) =

0 is CR−2γ−d and a particular solution of
( R

2γ + n

∂

∂R
+1

)
MD(v; R) =

∆k
κu(x̊)

4k(2γ + n)
(
γ + n

2 + 1
)
k
k!
·R

2k+2

2k + 2
.

is AkR
2k+2, where

Ak

(
2k+2
2γ+n +1

)
= ∆k

κu(x̊)·[4k(2γ+n)(2k+2)
(
γ+ n

2 +1
)
k
k!

]−1
.

So

Ak =
∆k

κu(x̊)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
.
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Hence the general solution of (23) is

MD(v; R) = CR−2γ−n+

m∑

k=0

∆k
κu(x̊)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
·R2k+2+c.

Finally note that limR→0 MD(v, R) = v(x̊) and
limR→0 R2γ+nMD(v, R) = 0. So c = v(x̊), C = 0 and

MD(v; R) = v(x̊) +

m∑

k=0

∆k+1v(x̊)

4k+1
(
γ + n

2 + 1
)
k+1

(k + 1)!
·R2k+2

which proves Theorem 1. ¤
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By Theorem 1 and relation (16) we get

Corollary 3 (Mean-value property for spherical means).
Under the assumptions of Theorem 1 for any x̊ ∈ Ω and
0 < R < dist(x̊, ∂Ω) it holds

ND(u, x̊; R) =

m∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2

)
k
k!
·R2k. (24)
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Theorem 2 (Converse to the mean value property for
spherical means). Let m ∈ N0 and Ω be a domain in Rd. If
u ∈ C2m+2(Ω) and for all x̊ ∈ Ω and R small enough (24)
holds, then ∆m+1u = 0 in Ω.

Proof. Clearly the theorem holds for m = 0 (see [2,
Theorem 1.20]). Fix n ∈ N and assume that the theorem
holds for m < n. We shall prove that it holds for m = n. To
this end take v ∈ C2n+2(Ω) and assume that for any x̊ ∈ Ω
and R small enough (24) holds with m = n and u = v. Set
u = ∆v. Then u ∈ C2n(Ω). By (17) and (24) with m = n
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and u = v we get

MD(u, x̊; R) =
2γ + n

R

∂

∂R
ND(v, x̊; R)

=

n∑

k=1

(2γ + n)2k∆k
κv(x̊)

4k
(
γ + n

2

)
k
k!

·R2k−2

=

n−1∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2 + 1
)
k
k!
·R2k.
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So for any x̊ ∈ Ω and R small enough

ND(u, x̊; R) =
( R

2γ + n

∂

∂R
+ 1

)
MD(u, x̊; R)

=

n−1∑

k=0

( 2k

2γ + n
+ 1

) ∆k
κu(x̊)

4k
(
γ + n

2 + 1
)
k
k!
·R2k

=

n−1∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2

)
k
k!
·R2k.

Hence by the inductive assumption ∆n
κu = ∆n+1

κ v = 0. ¤
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By Theorem 2 and relation (17) we get

Corollary 4 (Converse to the mean value property for
solid means). Under the assumptions of Theorem 2 if u ∈
C2m+2(Ω) and for all x̊ ∈ Ω and R small enough it holds

MD(u, x̊; R) =

m∑

k=0

∆k
κu(x̊)

4k
(
γ + n

2 + 1
)
k
k!
·R2k,

then ∆m+1u = 0 in Ω.
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