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Example. In a neighborhood of the origin z = 0,
1 /du?2
=) =/

We may assume u(0) =0 by u+— u— u(0).
C :=4'(0). By u — u — Cz, we may assume u(0) = u/(0) =

2
ue G (Y = ha) (= fl) - Cot )
0 C # 0 = non-characteristic (Cauchy-Kowalevsky)
O C=0 = f(0)=f'(0)=0,
f(x) = for* + faz3 + -+, w(w) = usx® + uga® + - -
Us —us = fo = up=3(1£/1—4f) (32 uy's)
fo #0 oruy #0 = Regular singularity (formal sol. converges).
Generic uy (char. exp. : -~ ¢ Z-1) = 3, sol,
Generic f5 = two (formal and covergent) solutions

Uy = 0 = lrregular singularity



First order partial differential equations with one unknown function
Hamilton-Jacobi, Cauchy-Kowalevsky
Singular (characteristic) cases:

[0, 1973] : linear differential equations (Cauchy-Kowalevsky)
Miyake, Shiraiwa, Ouchi, ...
. nonlinear differential equations --+ (multi-)summability
Perturbations of linear differential equations

[O, 1974] : nonlinear differential equation (Hamilton-Jacobi)
--» (multi-)summability ?
--» real category (ex, C*°) 7
--+ Boundary value porblems with regular singularities
[Kashiwara-O, 1977]



fk(g—;’l,...,aﬁxu,xl,...,xn,u):O (k’:l,,N)

Put z := u, p; := =

890]
M:fk(pvxaz):() (kzlavN)

{3 : analytic at the origin of C?"*!.

Problem : Study solutions of M through the origin of C*"*!
0€Vy :={(p,z,2) | fu(p,x,2)=0 (k=1,...,N)} CCn"
0€ S ={(pz,2) | pi(x) = 8;;?7 2 =2z(z), z€C"} C V;
(p, x, z)-space : a contact manifold with the 1-form

w:=dz — prdxy — padxy — - - - — ppdx,

wls, ., (= d(z(x)) = pi(x)dry — - ) =0 and dim S,(y) =
= S.(z) Is an Lagrangean submanifold



m:C" 5 (p,x,2) —xeC”

Sol :={L C V; |0 € L : Lagrangean and 7, are submersions}
= {S.(2) | 2(z) are solutions of M with z(0) = %’;(O) =0}

Compativility condititions are given by Lagrange bracket

mm:fkg+%gﬁi XK%+J&KZ

Jj=1 Jj=1

z(x) is a solution = |[fx, fel(p,z,2) =0

V' . the maximal subset of V; such that
gilv, = gelv, = 0= [, gally, =0

={(fiy CLCLC- I =191 (01,99 | g € L)
V Z0= Sol=10 (incompatible).



Suppose V' is non-singular.
D(V) :={(p,x,2); w|y(p,x,2z) =0} : degenerate points
D(V') = () = By a suitable contact transformation 7 (classical theory)

T:Vis{pp=--=p;s=0} (T'w=0¢(z,p,2)w, ¢0)#0)
Theorem [O '74]. Assume D(V) # 0 =

EIT: VH{pl — " = Pd-1 :Z_I_h(pda"wpnaxda"'axn) 20}7
V ~ V’ <~ w,v ~ w|V/
contact coord.

Then we may assume d = 1 (a single equation).

h(p,z) = hi(p,x) + ha(p,x) +--- (hj(p,z) : homog. of degree j)

grad, h1 # 0 = non-charactersitic
We assume grad, hy = 0. Then if grad, hy # 0, Sol = 0.
Hence we assume h; = 0.



Theorem [O '74]. Assume h; = 0. When hy(x,p) is generic, then
there are just 2" (formal and convergent) solutions.

generic: Siegel condition or Poincaré condition for linearlizability of
a degenerate vector field at 0

— 7 Oh Oh 0
Hethve) = Z (8% i p]) op; Z (9p;7 0x;

J=1

Proof. Conditions so that H, ) is linearlizable
= dT : 2+ h+— 2+ hy (= easy to analyze).

X =Y a0 (a0)=0), A= (2(0) € M(N,C)
A, ..., Ay : eigenvalues of A.
Poincaré : 360 such that § < arg\; < 8 + 7 and (C)
(€) 2 Ay F A (o € Z2,, |a] > 2, Vj)
Siegel : 9K > 0 such that A is diagonizable and (C) and
122, ad = N = al™F (€ Z2, |af = 2, Vj)



= Is proved by the facts

A

1. d formal contact transf. 7 : 2+ h — 2z + ho
2. Any formal coordinate transf. (with some initial cond.) keeping
H, ., invariant is analytic. Apply this to ToT 1t

Remark. Generic (degenerate) case = D(V') = {0}.
2V + 1, 2W >

ha(p,x) = (p, Up)+2(p, Va)+(z, Wz) = A = ( U —9V

A is non-singular = D(V') = {0}.
1. is proved by using a generating function €2 of a symplectic transf.

9(q,y) == (¢, Wq) + 2(q, "V + L,)y) + (y, Uy),

)
_ o9 o9
) = h(—%,f) o g(y7 a_y)a
() = (x,y) + higher order terms.

/"

\

Pi= e GG =35, = (0,2) = (¢.y), h g (= h)



Under the condition (Poincaré) or (Siegel),

{u(x) | u+ h(%,x) =0} = {v(@)|v+ hg(%,w) =0}

contact

Here u(z) and v(x) vanish at 0 with their first derivatives.
The solution v(x) is a homogeneous polynomial of degree 2.
Any formal solution v(z) or u(x) converges.

The number of the solutions may be 0 or infinite.
When the eigenvalues of A are mutually different, then

#{0 ¢ Lagrangean C V} = 2"

and the number of solutions is at most 2" and at least one.
(« The solution of u =} " C; :z:m“ is trivial if C; are generic).
The number of solutions is easily determined by A or hy by the

condition of the submersion.



The problem (for hy(p, ) mod contact transformations)
Is related to characterize

{Ae M(n,C)}/ ~
Here
A~A" € 3G € GL(n,C) such that 'GAG = A’

In our case, YA — A is non-singular. (<= Some elementary devisors)

Books by Gantmacher, Mal'cev
[Yaglom 1950] (R case)



Most degenerate case:
Theorem [O '74]. If dim D(V') > n, then D(V') is nonsingular and

A7 Vi {p=---=p,=2=0}
In this case we call V' i1s maximally degenerate.

Some interesting cases:

U—Zﬂfjax]

with the solution u(x) = Z§:1 ©i(Tos1y -y Tn)T5.
Legendre transf: z — 2_25:1 Tipi, Pi — —T, Ti—=pi (1 <5 <0)

Future Problems.
Other cases
(Multi-)summability
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