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Hypergeometric differential equations

We consider the following differential equation with a large
parameter x: d?
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1 1
a=§+r]a,b=§+qﬂ,c=1+m/



Hypergeometric differential equations

We consider the following differential equation with a large
parameter x: d?
(_ ~ +7]2Q)¢= 0 .- (*)

dx?
with Q = Qo+ 77°Qu,
Q0 = (@ = B)°X* + 2(2ap — ay = By)X +¥° O = X -x+1
0~ 4x2(x — 1)? P T ax2(x — 12

The equation ( %) comes from the Classical HGDE (Gauss’s
hypergeometric differential equation):
d’w dw
X(1-X)— +(c—(a+b+ 1)x)— —abw=0.
dx? dx

Introduce a large parameter 5 by setting
1 1
a= §+r]a,b= §+I]ﬂ,C= 1+gy
and eliminate the first-order term by

g = xF @ - B,



Hypergeometric differential equations

Our equation ( *) has the following formal solutions
(WKB solutions ) :

Y exp(if Sodd dX)

VSodd

@ ais a zero of \/Qodx. (ais aturning point.)

@ aformal solution S = Sygq + Seven = 2]__117 S
to Riccati equation

o Su= Qo 254+ &2 =0,



Stokes graphs

@ A Stokes curve is an integral curve of Im \/Qo dx = 0 emanating
from a turning point.

o A Stokes graph of our equation is a collection of all Stokes
curves, turning points  ax(k = 0, 1) and singular points
bo = O,b]_ = 1,b2 = ©00.
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= There are two distinct turning points ap, a3 and ag, a1 # 0, 1, co.



Stokes graphs

@ A Stokes curve is an integral curve of Im \/Qo dx = 0 emanating
from a turning point.

o A Stokes graph of our equation is a collection of all Stokes
curves, turning points  ax(k = 0, 1) and singular points
bo = O,b]_ = 1,b2 = ©00.

We assume
() apy(@a-pB)a-y)ae+B-y) %0

(i) ReaReBRe(y—a)Rely—-B) #0
(i) Re(@-B)Re@+B—-y)Rey £0

Assumption (i)

= There are two distinct turning points ap, a; and ag, a3 # 0, 1, co.
Assumptions (ii) and (iii)

= There is no Stokes curves which connect turning point(s).



Stokes graphs

We assume that (a,,7%) are contained in (i). Let ng, n; and n, be
numbers of Stokes curves that flow into 0, 1 and oo, respectively.
A will denote (Nng, N1, Ny).



Stokes graphs

We assume that (a,,7%) are contained in (i). Let ng, n; and n, be
numbers of Stokes curves that flow into 0, 1 and oo, respectively.
A will denote (Nng, N1, Ny).

o A characterizes topological configration of Stokes graphs.

o fiis constant on a connected component of the set of all
(a, B,7y) satisfying (ii) and (iii).
We defined

w1 = {(aB,7) € C*|0< Rex < Rey < Reg},

w2, = {(a,B,7) € C|0< Rex < ReB < Rey < Rex + Ref},
w3 = {(a,pB,7) € C*|0< Rey < Rex < Reg},

ws = {(a,B,7) € C3|0< Rey < Rex + ReB < ReB).

If (@, B,7) are contained in wy, (h = 1,2, 3,4) respectively, we give a
characterization of the Stokes geometry of our equation.



Stokes graphs

Rey > Ofixed
Rea-Reg plane Rep

Wy w1 w3

w2

Rea




Stokes graphs

Examples of Stokes graphs for (e, B, y) of values
(0.14,2,1) € w1, (2,39,4) € wz, (1.1,2,1) € w3, (-0.1,2,1) € wy.

+ O~

n= (2’ 2, 2)’ n= (4a 1, 1)9 n= (1, 4, 1), n= (17 1, 4)°



Stokes graphs

Examples of Stokes graphs for (e, B, y) of values
(0.14,2,1) € w1, (2,39,4) € wz, (1.1,2,1) € w3, (-0.1,2,1) € wy.

+ O~

h= (2’ 2, 2)’ n= (4a 1, 1)’ n= (1, 4, 1), n= (19 1, 4)°
We denote by ¢ (j = 0, 1, 2) the following mappings.

We have to keep in mind that  Q is invariant under these involutions.

o . (@,B,7) + (—a,—B,—y)
e P (y-ay-B7)
(73 L (ﬁ9 a, 7)

Each domain is covered by one of wp (h = 1,2, 3,4) via involutions in
the configuration.



Stokes graphs

G = the group generated by « (k=0,1,2)

I = U r(w;).

reG

and set



Stokes graphs

G = the group generated by « (k=0,1,2)

I = U r(wj).

reG

and set

Theorem 1 (Aoki T. and Tanda M. [2] 2013)

1) If (@, B,7) € Iy, then A = (2,2,2). (2) If (@, B,7) € My, then A = (4,1,1).
@) If (@,B,7) € I3, then A = (1,4,1). (4) If (a,B,7) € Ly, then A = (1,1, 4).
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Stokes graphs

G = the group generated by « (k=0,1,2)

I = U r(w;).

reG

and set

|
1) If (a,B,y) € Iy, then A = (2,2,2). (2) If (@,B,y) € I, then A = (4,1,1).
(3) If (a,B,7y) € I3, then A = (1,4,1). (4) If (@,B,y) € Iy, then A = (1,1,4).

Rep Rea-Reg planes Rep

1,49)| 2,2,2) | @,44)
m | /1

II

Rea

117
0 Rea

Rey >0 Rey <0



Voros coefficients

7 —
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V;j for (b, a) (bp = 0,b1 = 1, b, = o) has following form: the Voros
coefficient

Vi = Vi@ fuyin) = | (S-S0

Since residues of Sygq and nS_; as the singular points coincide, V;
are well defined and we have a formal power series  V;j in p7L.

The Voros coefficient  Vj(e, B, y) describes the discrepancy between
WKB solutions normalized at  a and those normalized at b;.



Voros coefficients

7 —
\/a’v—z atx =0,

a+B-vy _
‘/@"m atx =1,

\/a.wlﬂ atx:oo,
2x

V;j for (b, a) (bp = 0,b; = 1, by = o) has following form:  the Voros
coefficient

Vi = Vi@ fuyin) = | (S-S0

Since residues of Sygq and nS_; as the singular points coincide, V;
are well defined and we have a formal power series  V;j in p7L.

The Voros coefficient  Vj(e, B, y) describes the discrepancy between
WKB solutions normalized at  a and those normalized at b;.



Voros coefficients

7 —
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a+B-vy _
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\/a.wlﬂ atx:oo,
2x

V;j for (b, a) (bp = 0,b; = 1, by = o) has following form:  the Voros
coefficient

Vi = Vi@ foyin) = [ (S-S0

Since residues of Syqq and nS_; as the singular points coincide, V;
are well defined and we have a formal power series  V;j in p7L.

The Voros coefficient  Vj(e, B, y) describes the discrepancy between
WKB solutions normalized at  a and those normalized at  b;.



Voros coefficients

Vj(a, ,B,y; n) for (j,a) (j = 0, 1, 2) has following forms:

- Bnn o 1 1 1 1 2
n(n a1 ﬂn—l (}’ - a,)n—l (‘}’ ﬂ)” -1 n-1
1

"y
_1 & Bt _ i-n 1 1 )
"2 nZ; n(n -1) {(1 ° )(a”‘l T To—ar (7 ﬂ)” -

(a +/3 (@+B -yt

o

_ 13 B N S S | 1
VZ'ZnZ:;n(n—D{(l'Z )(an-l Bt ot +(7—ﬁ)”‘1)

_;}
B-aytf

Here, B, are Bernoulli numbers defined by

—tet = 3 Etn.
e-1 e Il




Borel sums of Voros coefficients

Rey > Ofixed Rea-ReB plane

Rep
w4 w1 w3
wn(h=1,23,4):
Stokes regions o
of Voros coefficients 2
0 Rea

V;j are Borel summable in each wnh(h = 1,2,3,4).
th : The Borel sums of Vjin wh(h = 1,2,3,4).
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Borel sums of Voros coefficients

(i) The Borel sums le of Vj in w1 have following forms:

vt = Liog L(3 +aml(3 + AL G + (v — a)n)(B - y)F71y??

"2 TG + (8 - V)T ph(y - a)or-on

1, TG + (v = (@ + B = Y)mea1(8 = )y
172913+ aml G+ BT + (B - )y — )0 N(a + f -yt

1, TG+ BTG + & = LG + (8 = Yi)a™(p - -0
272 T TG e (B - By - B )y




Borel sums of Voros coefficients

(ii) The Borel sums Vj2 of Vj in w, have following forms:

veolp L3 +an)l(5 + (5 + (r = (G + (v = Bm)y*7
0~ 2 9 T2(yn)a®1pbi(y — a)r=au(y — B)r-Pn2xy

1, I3 + (y — )I(3 + (v - BMT%(( + B - 7)) By
172 T + omI(§ + )y — )0=2n(y — B)r-Pn(a + f - y)2erb-n-12n’

1 TG +B00G + (r - apai(y - B)0P1(B — a)2b-21127
O o
22 L(} + el (3 + (v = BB - e)n)BP1(y — @)=y




Borel sums of Voros coefficients

(i) The Borel sums Vj3 of Vj in w3 have following forms:

o o Lo TG+ @mG + Ble = 7)o = 7)oy i2n

g
0 2 I(3 + (@ — y))IE + (B - y)mT2(yn)anpin

log 2nT2((a + B = y)m)a™ P (a — y) @B — y) -1y
1277 rG + e + BTG + (@ = VTG + B - y)n)(@ + B — y)2esrn-1

1, 2T +BIIG + (B = y)me(a — 7)o (B - a)ereint
— Ly
P27 TG+ el + (@ = )nL(B - a)n)Bh(B — y)b-rm




Borel sums of Voros coefficients

(iv) The Borel sums VJ_4 of Vj in w4 have following forms:

vielp L(5 +BmEG + (v — &)n)(=a) (B — )71y 2n

° 27 TG -anl(G + B - NIy - a)r-m

L TGl + 0 - ol + 8= 7B @ =9
P72 TG 4 G+ (8- Pm-a)"1ly - )0 + = s

1 TG = anlG +AIG + (r = T + (6= 7)n)(B - @)oo
72T G- By - B - e




Borel sums of Voros coefficients

We consider the poof of the Borel sum Vé and Vg of Voros
coefficient Vp in w; and wy, respectively.

The Borel sums Vé and Vé of Vo in w; and w, have following forms:

vt = L1og L3 +anl(3 +BIG + (v = @)n)(B = 7))y

° 2 (5 + (B = y)mT2(yma1pbi(y — a)r-any

Vel L(5 + e(5 + B)L(5 + (v — )L (G + (y = By
0= 39 T2(yn)a™ff1(y — a)r-an(y — B)r-An2my )

The idea of proof of the Theorem 3 is to use the method developed
by Takei [10] (2008). To find the Borel sums Vé and V(z), we first take
the Borel transform  Vgg(a, B, 7;Y) of Vo.



Borel sums of Voros coefficients

By the definition, we have the Borel transform Vog(a,B,7:Y) as

follows.
) Bn -2

VO,B=1 y {(1_21_,,)(_i_ 1 1 _ 1 )_ 2 }
2z n el gt (-t (y-pnt) oyt

Bernoulli number

|

N Bn te' t
g(t)=zéﬁtn_ n—l—z.
n=

11 1 1

e2x_1'§(eX-1_eX+1)
ot 1t
t) = t—:— +=—--),
Jo(t) 9()y2 ( SR y)
1 1 2t
() = + ==

expy -1 expy+1 Y
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Borel sums of Voros coefficients

Hence the Borel transform  Vog(a, B, y; Y) is written in the form
1
Vog(@,B,7:Y) = 2 {(y — @) + %y — B) + (@) + %1(B)} = Go(¥)

We introduce the following auxiliary infinite series:

Vo = Vo + u(y — @) + u(y — B) + (@) + p(B),

where 1t 1 e 1
)== - —log(l+ —) = == Y ———(=2ty)~ "D,
uo) = 7 = 7 logll+ =) 4;“2( n)

The Borel transform  ug(t; y) of u(t) is
1% 1 yy\© oot y y
us(ty) = — Z —_— (——) = — {(—— - 2) exp(——) + 2} .
8t (n+2)nt \ 2t 4y2 t 2t
The Borel transform  Vqg of Vy is related to Vg by

1 2 1 1 t
gt) = —e72¥ | — +=--).
Then we have 2y ety—-1 2 Y

Vog = 0y — @) + 9(y — B) + (@) + 9(B) — do(»)-
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Borel sums of Voros coefficients

Next we consider the Borel sums V! and V? of V.
We use the following integral formula representation of the
logarithm of the TI'-function ([5] BMP, 1997).

o1 1 1) e® r(o)
L(0)_j; (m+§—§)?d s=lo QE—(O——)|090+0

where Re# is positive.
We can compute the inverse Laplace transform

f o)™ dy
0

of g(a) by using \70,5 if Re « is positive. If Re « is negative, we make
use of the relation
g(t) = —g(-1).
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Borel sums of Voros coefficients

If (a, B,y) are contained in w3, Re @, Re B, Re y — a and Re y are
positive and Re y — B is negative.

If (a, B,y) are contained in wy, Re @, Re B, Re y — @, Re y — Band Re
y are positive.

We use the Borel transforms and V2 of Voros coefficients Vjp :

5 =0(@) +9(B) + qu @) 298 - 7) - 9o2)s
V g =9(@) +9(8) + 9y — @) + 9(¥ = B) — %(»)-

Similarly we can compute the inverse Laplace transforms and we
have:

Uiz LG+ (=) = LG + (B =) + LG +am) + LS + 1) = Liva),

V2= LG+ (=) + LG + O = B + LG + o) + LS + ) = Livn)
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Borel sums of Voros coefficients

Since u is a convergent power series of 571, we have

Vo =Ve 4+ puly — @) = u(B - 7) + u(@) + u(B),
VZ=V2 4 p(y - @) + p(y - B) + u(@) + p(B).

Then we obtain

The Borel sums Vé and Vé of Vo in w; and w, have following forms:

vt = Liog L3 +anl(3 + LG + (v = @)n)(B — )01y

° 2 L(3 + (B = y)mT2(ymanpi(y — a)r-omy

1, I(3 + an'(3 + BTG + (y — )L (3 + (v = Bp)y*
0" 2 9 2(ynp)aBbi(y — a)r-a1(y — B)v=Bn2xn

9
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Parametric Stokes phenomena

Rey > Ofixed
Rea-Reg plane Rep

Wy w1 w3

¥ Re (8 -7)

Rea

We compare VJ,2 (i = 0,1,2) with the analytic continuation le 0 w>.
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Parametric Stokes phenomena

Theorem 4

The Borel sums V1 of Voros coefficients Vj can be analytically

j
continued over w> (j = 0,1, 2). The analytic continuations of the
Borel sums le to w, are related to ij as follows:

Vi=Vi- % log(exp 2¢ — B)yxi + 1),

vj1 =vj2 + % log(exp 2¢ — B)yri + 1) (j = 0, 1).

Here B —y = (y — Ble™™.
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Parametric Stokes phenomena

We compare VZ with the analytic continuation  V_ to w,.
Let us recall the Borel sums V; and Vé of Vg in w1 and w-, have the

following forms, respectively:

oL 1 T+ amIG + NG + b = T + & -y
0T 2T Rgmapty - aonGy — poPrzan

1, L(3 + an)I'(5 + BN + (v — a)p)(B — 7)1yt

g
°2 I3 + (8 = 7)mIZm)a1phi(y - a)r-am
1 TG +anlG+ LG + (v - @y = BP 7y (B — y)yai

= = log ,
2 L(3 + (B = V)M (yn)anpfi(y — a)r-om 2
Subtracting V(z) from the analytic continuation Vé to w», we have
1 2n — B)nri
Vé - VS ==lo - Dl .

g
2 TIG+ =BG + (B~ 2



Parametric Stokes phenomena

We compare VZ with the analytic continuation  V_ to w,.
Let us recall the Borel sums Vé and Vé of Vg in w1 and w-, have the

following forms, respectively:

veo L L5 +enI(3 + I + (y — LG + (v = Pm)y™ !
0" 2 9 rz(yn)aanﬂﬁn(y - a)(y—rt)n(y - ﬁ)(y—ﬁ)nzmi )

1, I3 +anl(3 + BTG + (¥ — a))(B — y)P=7ny?n-1

9
°2 I(3 + (B = y)Tmaipbi(y - a)r-om
1 TG +anlG+ LG + (v - nly = BP 7y (B — y)yai

= = log ,
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We compare VZ with the analytic continuation  V_ to w,.
Let us recall the Borel sums Vé and Vg of Vg in w1 and w-, have the
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Parametric Stokes phenomena

T
cosnt’

r(% + t)I‘(% -1 =

gt + gt
cost = .

Hence we obtain

vi-v2 =% log(exp 2¢ — B)yxi + 1).

In the same way, we can compute the relations between Vi and Vf
and V; and Vs. Hence we have

Vi-V2 =% log(exp 2¢ — B)yxi + 1),

Vi-VZi=- % log(exp 2¢ — B)pxi + 1).
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Parametric Stokes phenomena

Rey > 0Ofixed Rep
Rea-R |
eB plane w4 o1 ws
610.'»2 Re (B -7)
0 Rea
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Parametric Stokes phenomena

Rey > 0Ofixed Rep

Rea-R I
ex-Reg plane w4 o1 ws
Riand Ry : al).l" Re (8 -7)
The Stokes regions. :
N\
0 Rea
/ -
o /T a 0
Q O 0 O Q O
a1 £
(a,8,7) = (0.5,1.05,1) in w; (0.5,1+ 0.01i,1) (0.5,0.95,1) in w2

The WKB solutions are Borel summable in R; and Rx(Koike and R.
Schafke, [7] to appear.)

27136



Parametric Stokes phenomena

Let ¥* and y? denote the Borel sum of the WKB solution:
1
VSodd

in the Stokes region R! and R?, respectively.

Y = exp( f Sodadx)
a

Theorem 4

We obtain the following relation between ¢! and 2.

Yl = (1 + exp(2ri(y — B)m) "2y
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Parametric Stokes phenomena

Let ¥* and y? denote the Borel sum of the WKB solution:
1
VSodd

in the Stokes region R! and R?, respectively.

Y = exp( f Sodadx)
a

Theorem 4

We obtain the following relation between ¢! and 2.

Yl = (1 + exp(2ri(y — B)m) "2y

Out of Proof
We use the following relation:

¥ = exp-Vo)y'?,

where

1 X X
1//(0) = — exp(f (Sodd — 7S-1)dx + l]f S_ldX) .

28/36



Parametric Stokes phenomena

Moreover we use the following result by Koike and Sch afke ([7] to
appear):
POt = 402

and the following relation by Theorem 4:
1 .
Ve =V2+ > log(exp 2¢ — B)pxi + 1).

Here 8 —y = (y — B)e™. Hence we have
Yt = (expVy)yOt
= (1 + exp(2ri(y — B)m))"% (exp(=V2))y©?
= (1 + exp(2ri(y - B)m))~ 2y

In the similar manner, we can compute other relations.
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Parametric Stokes phenomena

Q : :invariant under involutions ¢ty (M=0,1,:--,6)
Lo e Byy) b (—a,-B,-7)
u : B =87 -a7)
(7 3 B (B,a,7)
L3=u . Py -ay-B7)
=1l B (=B, —a,—y)
5 =toly - B B-y,e-7,-7)
s = Lol1lo - B (@—-v,B-7,—7)

Whm = tm(wp) : IMmages in wp, by ¢m.
Here, h=1,2,3,4, m=0,1,---,6.
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Parametric Stokes phenor

Rea-Reg planes
Rep Rep
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w23 w20
Rex
w31 w42 w34 W45
w33 w13 W43 w30 w10 W40

Rey >0 Rey <0
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Rea-Reg planes
Rep Rep
Wy w1 w3 W46 w16 w36
(07} w32 W44 w35
Rex
w2 w26
w11 _;021 W22 w12 w14 W24 X W25 w15
w23 w20
Rex
w31 W42 W34 w45
w33 w13 W43 w30 w10 w40

Rey >0 Rey <0
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a1

(@, B,7) = (0.5,1.051)in w1 (0.5,1+ 0.01i,1) (0.5,0.95,1) in w;

A (aaﬂay) L (’)/—ﬂ,’}’—a,’)/)
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0 Q O 0
a1

(@, B,7) = (0.5,1.051)in w1 (0.5,1+ 0.01i,1) (0.5,0.95,1) in w;

A (aaﬂay) L (7 _ﬂ,'}’_a”')/)

0
0 O
‘T

(O’,ﬁ, 7) = (_0'059 0.5, 1) in w11 (_0'01i9 0'5’ 1) (0-05, 0.5, 1) in w1

The WKB solutions are Borel summable in R;1 and Ry;. The top and
bottom Stokes graphs are same graphs, respectively.

32/36



Parametric Stokes phenomena

Let ¢! and y?! denote the Borel sum of the WKB solution:
1
VSodd

in the Stokes region R and R?%, respectively.

¥ = exp( f SodddX)
a

Theorem 4

We obtain the following relation between ¢! and 2.

Yl = (L + exp(2ri(y — B)m)"2y2

u: (B,y)» (y=-B7-a7)

lpll and '/’21_

We obtain the following relation between

Y = (1 + exp(2rian)) 2y
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Thank you for your attention.



	Hypergeometric differential equations
	Stokes graphs
	Voros coefficients
	Borel sums of Voros coefficients
	Parametric Stokes phenomena

