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1. Introduction

Let y = (y1, . . . , yn) ∈ Cn, n ≥ 2 be the variable in Cn, and consider a
holomorphic vector field in some domain of Cn containing the origin

X =
n∑

j=1

aj(y)
∂

∂yj
. (1)

We assume that the number of singular points of X is finite, hence
the singular points are isolated. Moreover we suppose aj(0) = 0 for
j = 1, . . . , n.



Assume that the change of coordinates preserving the origin

y = u(x), u = (u1, . . . , un), x = (x1, . . . , xn), n ≥ 1

transforms X to its linear part. This is equivalent to

A(u(x))

(
∂u

∂x

)−1

= xΛ, (2)

where A(y) = (a1(t), . . . , an(y)) and ∂u
∂x

is the Jacobian matrix, and Λ =
DA(0) is the linear part of X at the origin.

We define v(x) by u(x) = x + v(x), v(x) = O(|x|2) and we set

A(y) = yΛ + R(y), R(y) = (R1(y), . . . , Rn(y)) = O(|y|2).
Then we have A(u) = (x + v)Λ + R(x + v) and ∂u

∂x
= I + ∂v

∂x
. Hence by (2)

we have

A(u(x)) = (x + v)Λ + R(x + v) = xΛ

(
I +

∂v

∂x

)
.

It follows that our linearization condition can be written in

vΛ + R(x + v) = xΛ
∂v

∂x
. (3)

This is a system of semilinear first order partial differential equations
for v. Let λj, j = 1, . . . , n be the eigenvalues of Λ. Poincaré’s theorem
asserts the existence of a local holomorphic solution provided the non



resonance condition and the Poincaré condition, Reλj > 0 are verified.
We note that the solution is not defined globally in general because
the nonlinear term R(x + v) may cause the singularity.

We note that similar relation like (3) holds at every isolated singular
point of X .

Instead of solving (3) globally we introduce a parameter η in the equa-
tion and we want to construct an approximate global transformation.
Namely, we approximate our equation with the following

vΛ + R(x + v) = η−1xΛ
∂v

∂x
. (4)

Clearly if η = 1, then we have the linearization equation (3).

Motivations

O. Costin and R. Costin study the simultaneous normalization of vector
field in the domain containing two isolated points by using transseries
(= exponential log series expansion). They showed that the theorem
like simultaneous Poincaré’s theorem at two equilibrium points does
not hold in general.

In this talk I will show the global solvability of (4) by virtue of the
Borel sum with respect to η of some formal series solution. Then we



show that the solution of (4) is naturally related to the solution of the
original equation (3).

2. Formal solution

Assume that Λ is a diagonal matrix, Λ = diag (λ1, . . . , λn). Define

L =
n∑

j=1

λjxj
∂

∂xj
. (5)

Then (4) is written in

η−1Lvj = λjvj + Rj(x + v(x)), j = 1, . . . , n. (6)

Definition 1 A singular perturbative solution ( SP-solution in short)
v(x, η) of (6) is the formal power series in η−1 of the form

v(x, η) =
∞∑

ν=0

η−νvν(x) = v0(x) + η−1v1(x) + · · · , (7)

where the coefficients vν(x) are holomorphic vector functions of x in
some open set independent of ν.

We want to construct the SP-solution of (6) in the following form

vj ≡ vj(x, η) =
∞∑

ν=0

vj
ν(x)η

−ν, vj
ν(x) = O(|x|2), j = 1, . . . , n. (8)



By substituting the expansion (8) into (6), we obtain

Lvj =
∞∑

ν=0

Lvj
ν(x)η

−ν, (9)

Rj(x + v) = Rj(x + v0 + v1η
−1 + v2η

−2 + · · · ) (10)

= Rj(x + v0) + η−1
n∑

k=1

(
∂Rj

∂zk

)
(x + v0)v

k
1 + O(η−2).

By comparing the coefficients of η, η0 = 1 we obtain

λjv
j
0(x) + Rj(x1 + v1

0, . . . , xn + vn
0) = 0. (11)

Lvj
0 = λjv

j
1 +

n∑
k=1

(
∂Rj

∂zk

)
(x + v0)v

k
1. (12)

In the following we assume that v0 is determined as a holomorphic
function in Ω(v0) which contains the origin. In order to determine vν(x)
(ν ≥ 2) we compare the coefficients of η−ν of (6). We differentiate (10)
with respect to ε = η−1, ν − 1 times and we put ε = 0. We obtain

Lvj
ν−1 = λjv

j
ν +

n∑
k=1

(
∂Rj

∂zk

)
(x + v0)v

k
ν (13)

+ (terms consisting of vj
k, k ≤ ν − 1 and j = 1, . . . , n).



Define

Σ0 := {x ∈ Cn; det (Λ + ∇R(x + v0(x))) = 0} . (14)

In the rest of talk we assume

0 �∈ Σ0. (15)

Note that (15) implies λk �= 0 for every k. The next theorem gives the
existence of the SP-solution.

Proposition 1 Assume (15). Then every coefficient of the SP-solution
(8) is uniquely determined as a holomorphic function in a neighborhood
of the origin x = 0 independent of ν.

Remark. Let C̃n \ Σ0 be the universal covering space of Cn \Σ0. We can
make analytic continuation of the formal SP-solution in Proposition 1

from the origin to C̃n \ Σ0∩Ω(v0), provided that R(x) is an entire function
on x ∈ Cn.

3. Definition of Borel sum

The formal Borel transform of v(x, η) is defined by

B(v)(x, ζ) :=
∞∑

ν=0

vν(x)
ζν

Γ(ν + 1)
, (16)



where Γ(z) is the Gamma function.

For an opening θ > 0 and the direction ξ we define the sector Sθ,ξ with
the bisecting direction ξ and opening θ by

Sθ,ξ =

{
z ∈ C; |arg z − ξ| <

θ

2

}
. (17)

We say that v(x, η) is Borel summable in the direction ξ with respect to
η if B(v)(x, ζ) converges in some neighborhood of the origin of (x, ζ), and
there exist a neighborhood U of the origin x = 0 and a θ > 0 such that
B(v)(x, ζ) can be analytically continued to U × Sθ,ξ having exponential
growth of order 1 with respect to ζ in Sθ,ξ. The Borel sum V (x, η) of
v(x, η) is, then, given by the Laplace transform

V (x, η) :=

∫
Lξ

ζ−1e−ζηB(v)(x, ζ)dζ (18)

where the integral is taken on the ray Lξ starting from the origin to the
infinity in the direction ξ.

4. Convergence of the formal Borel transform

Theorem 2 Assume that R(x) is an entire function on x ∈ Cn. Let v be

the SP-solution given by (8). Let K be the compact set in C̃n \ Σ0 ∩
Ω(v0). Suppose that every vν(x) in v is analytic in some neighborhood



of K independent of ν. Then there exist a neighborhood U of K and
a neighborhood W of the origin ζ = 0 in C such that the formal Borel
transform B(v)(x, ζ) converges in U × W .

Remark. If K is a neighborhood of the origin x = 0, then we only need
to assume that R(x) is analytic in some neighborhood of the origin
x ∈ Cn.

Proof. The compact set K can be covered by a finite number of open
balls. Hence it is sufficient to show our theorem when K is a subset of
an open small ball. One may also assume that the center of the ball is
the origin. We use the notation u 
 v when v is the majorant function
of u. Let ρ > 0 and define

φρ(x) :=

(
1 − x1 + · · · + xn

ρ

)−1

. (19)

The set of holomorphic functions at the origin such that u 
 φρC for
some C ≥ 0 forms a Banach space with the norm ‖u‖ given by the
infimum of C satisfying u 
 φρC.

First we will estimate the differentiation. For any integers 1 ≤ j ≤ n
and k ≥ 1 we have

∂

∂xj
φρ(x)

k =
k

ρ
φρ(x)

k+1. (20)



On the other hand, because (Λ + ∇R)−1xj is analytic at the origin for
1 ≤ j ≤ n we have

(Λ + ∇R)−1xj 
 Kφρ (21)

for some K > 0. We now estimate v1. By virtue of (12) we have
v1 = (Λ + ∇R)−1Lv0. We have v0 
 ‖v0‖φρ. Hence, by (20) and (21) we
have v1 
 ‖v0‖C1φ3

ρ for some C1 > 0. We will show that there exist C ≥ 1
independent of ν ≥ 1 such that

vm 
 C2m−1m!φ4m−1
ρ , m = 1,2, . . . (22)

The rest proof is done by induction.

5. Summability at the origin

Define C0 as the smallest convex closed cone with vertex at the origin
containing λj (j = 1,2, . . . , n). Then we have

Theorem 3 Suppose (15). Assume that ∇R(x+v0) is a diagonal matrix.
Assume that there exist a real ξ such that

|arg λj − ξ| < π/4 for j = 1,2, . . . , n. (23)

Then there exists a neighborhood U of the origin of x such that v(x, η)
is Borel-summable in the direction η such that η−1 ∈ (C0)c and x ∈ U,
where (C0)c is the complement of C0 in the complex plane.

6. Convolution



We estimate the convolution. Let Ω be an open set containing the
sector Sπ,θ in (17) and the disk {|z| < r0} for small r0 > 0 such that z ∈ Ω
implies z + t ∈ Ω for every real number t ≤ 0. Let c > 0 and let H(Ω) be
defined by

H(Ω) :=
{

f ∈ H(Ω) | ∃K such that |f(z)| ≤ Ke−cRe z(1 + |z|)−2,∀z ∈ Ω
}

,

(24)

where H(Ω) is the set of holomorphic functions in Ω. Obviously, H(Ω)
is the Banach space with the norm

‖f‖Ω := sup
z∈Ω

|f(z)|(1 + |z|)2ecRe z. (25)

Let f, g ∈ H(Ω) be given. The convolution f ∗ g of f and g is defined by

(f ∗ g)(z) :=
d

dz

∫ z

0
f(z − t)g(t)dt =

d

dz

∫ z

0
f(t)g(z − t)dt. (26)

Let f ′(z) = (df/dz)(z). We will show the following

Proposition 4 For every f, g ∈ H(Ω) such that f(0) = g(0) = 0 and f ′, g′ ∈
H(Ω) we have f ∗ g ∈ H(Ω) with the estimate

‖f ∗ g‖Ω ≤ 8‖f ′‖Ω‖g‖Ω, ‖f ∗ g‖Ω ≤ 8‖f‖Ω‖g′‖Ω. (27)



Proof. Because f ∗ g = g ∗ f we will prove the first inequality of (27).
We have

(f ∗ g)(z) =
d

dz

∫ z

0
f(z − t)g(t)dt = f(0)g(z) +

∫ z

0
f ′(z − t)g(t)dt =

∫ z

0
f ′(z − t)g(t)dt.

By (25) and by taking the path of integration from 0 to z we have∣∣∣∣
∫ z

0
f ′(z − t)g(t)dt

∣∣∣∣ ≤ ‖f ′‖Ω‖g‖Ωe−cRe z

∫ z

0
(1 + |z − t|)−2(1 + |t|)−2|dt|(28)

≤ ‖f ′‖Ω‖g‖Ωe−cRe z

∫ |z|

0
(1 + |z| − s)−2(1 + s)−2ds.

We divide the integral in the right-hand side into two parts, s ≤ |z|
2

and

s > |z|
2
. If s ≤ |z|

2
, then we have (1 + |z| − s)−2 ≤ 4(1 + |z|)−2, while in case

s > |z|
2

we have (1 + s)−2 ≤ 4(1 + |z|)−2. Hence we have

∫ |z|/2

0

1

(1 + |z| − s)2(1 + s)2
ds ≤ 4

(1 + |z|)2

∫ |z|/2

0
(1 + s)−2ds ≤ 4

(1 + |z|)2
. (29)

One can similarly estimate the other part like
∫ |z|
|z|/2(1+|z|−s)−2(1+s)−2ds ≤

4(1 + |z|)−2. Therefore we see that the left-hand side term of (28) can
be estimated by 8‖f ′‖Ω‖g‖Ωe−cRe z(1 + |z|)−2. This ends the proof.



7. Proof of Theorem 3

We will consider (6) or, equivalently,

Lv = ηΛv + ηR(x + v).

Set v = v0 + u, where Λv0 + R(x + v0) = 0. In terms of the definition of
L we obtain

Lu = −Lv0 + η(Λ + ∇R(x + v0))u + η
∑
|β|≥2

rβ(x + v0)u
β. (30)

Let û(y) := B(u) be the Borel transform of u with respect to η, where y
is the dual variable of η. By the Borel transform of (30) we obtain

Lû = −Lv0 + (Λ + ∇R(x + v0))
∂û

∂y
+

∂

∂y

∑
|β|≥2

rβ(x + v0)(û)β
∗ , (31)

where (û)β
∗ = (û1)

β1∗ · · · (ûn)
βn∗ , β = (β1, . . . , βn), and (ûj)

βj∗ is the βj-convolution

product, (ûj)
βj∗ = ûj ∗ · · · ∗ ûj.

Let (∇R)j be the j-th diagonal component of the matrix ∇R. Consider
the linear part of (31)

Lwj − (λj + (∇R)j(x + v0))
∂wj

∂y
= f, j = 1,2, . . . , n, (32)



where f ≡ f(x, y) is a holomorphic function of x ∈ Cn and y ∈ C. Consider
the characteristic equation corresponding to (32)

dζ

ζ
=

dxk

λk

= − dy

λj + (∇R)j(x + v0)
, k = 1,2, . . . , n − 1. (33)

By integration we have

xk = ckζ
λk (k = 1,2, . . . , n − 1), y = y0 − Φ(ζ, b), (34)

where ck’s and y0 are some constants. Fix a branch of v0 and define

Φ(ζ, b) ≡ Φj(ζ, b) =

∫ ζ

b

λj + (∇R)j(x + v0(x))

s
ds, (35)

where x = (x1, . . . , xn), xk = cks
λk (k = 1,2, . . . , n − 1) and b ∈ C. Note that

the relations (34) give the (multi-valued) change of variable between
(xk, ζ, y) and (ck, ζ, y0).

We will prove the existence of the SP-solution when x is in some neigh-
borhood of the origin.

We will prove the solvability of (31) when x is in some open set and
y ∈ Ω.

(Proof. Let v be the formal SP-solution in Proposition 2 and define
û(x, y) := B(v) − v0, where B(v) is the formal Borel transform of v.
We know that û(x, y) is analytic when y is in some neighborhood of



the origin and x is in some open set in C̃n \ Σ0 ∩ Ω(v0). Moreover, by
definition û is the solution of (31) in some neighborhood of y = 0 such
that û(x,0) ≡ 0 in x. We will show that every solution of (31) which is
analytic at y = 0 and satisfies û(x,0) ≡ 0 is uniquely determined. Indeed,
by the definition of convolution product of yi/i! and yj/j! is yi+j/(i + j)!.
Hence, if we expand û in the power series of y and insert (31), then
every coefficient of the expansion can be uniquely determined from the
recurrence relation because Λ + ∇R(x + v0) is invertible. Therefore, if
we can show the existence of the solution of (31) which is analytic in
(x, y) with x in some open set and y ∈ Ω and of exponential growth with
respect to y in Ω, then we have the analytic continuation of the formal
Borel sum of v with exponential growth in y ∈ Ω. )

Solvability of linear equation

The linear part of (31) is given by (32). In the following we omit the
suffix j of wj and write it w instead of wj.

0

ζ

ζ0
γζ,ζ0



Let b be in some neighborhood of the origin of L. Then the solution
of (32) such that w(η) → 0 as ζ → 0 is given by

w ≡ P0f =

∫
γζ0,ζ

f(sλ1c1, · · · , sλn−1cn−1, s; y0 − Φ(s, b))ds, (36)

where the integral is taken along the path γζ,ζ0
which is the Stokes curve

of Φ(·, b) emanating from the origin and passes ζ and ζ0 in this order.
Here we change the variables in (36) after integration in terms of (34).

Well-definedness of the integrand in (36).

First we show that

Φ(s, b) = λj log
(s

b

)
+ o(s, b) when s, b → 0. (37)

Proof. We know that (∇R)j(x + v0(x)) = O(|x|) as x → 0. Because
Reλk > 0, the integral

∫ s

b
t−1(∇R)j(x + v0(x))dt with xk = ckt

λk has the
limit when s → 0 in some sector. Hence we have (37).

By (34) we have y0 − Φ(s, b) = y − Φ(s, b) + Φ(ζ, b) = y + Φ(ζ, s). By the
definition of the Stokes curve we have that ImΦ(ζ, s) = 0 if s ∈ γζ,ζ0

.
On the other hand one can easily show that ReΦ(ζ, s) is a monotone
function of ζ on the Stokes curve. In view of (37) ReΦ(ζ, s) tends to
−∞ as ζ → 0. Hence ReΦ(ζ, s) is a monotone increasing function on
the Stokes curve as |ζ| increases. We have ReΦ(ζ, s) ≤ 0 if s ∈ γζ,ζ0

. In



view of the assumption on Ω we have y0 −ReΦ(s, b) = y +ReΦ(ζ, s) ∈ Ω
for every y ∈ Ω and s ∈ γζ,ζ0

.

Next we take a neighborhood U0 of the origin such that the formal SP-
solution is holomorphic in U0. Let γζ,ζ0

be the Stokes curve as above.
We want to substitute xk = sλkck into the integrand of (36) for s ∈ γζ,ζ0

.
In order to show that this is possible uniformly when ζ tends to zero
along the Stokes curve emanating from the origin it is sufficient to
show that |xk| is sufficiently small. For this purpose we will consider

logxk = log ck + λk log s = log(ckb
λk) +

λk

λj
λj log

(s

b

)
. (38)

By virtue of (37), λj log(s/b) is close to Φ(s, b) and hence Im (λj log(s/b))
is close to ImΦ(s, b). Because ImΦ(s, b) is constant on every Stokes
curve, we may consider Im (λj log(ζ0/b)) instead of Im (λj log(s/b)). It
follows that there exists K0 > 0 depending only on ζ0/b such that

−K0 < Im(λj log(s/b)) < K0.

On the other hand, ReΦ(s, b) is monotone increasing along the Stokes
curve. It is bounded by ReΦ(ζ0, b). By taking the maximum on |ζ0| =
const there exists K1 independent of |ζ0| = const such that Re (λj log(s/b)) ≤
K1 for all s ∈ γζ,ζ0

. On the other hand, by the strong Poincaré condition
(23) we see that Re (λk/λj) > 0 for every j and k. Hence there exists ε0

such that (λk/λj)λj log (s/b) is contained in the set {z; |arg z −π| < π/2− ε}
for all s ∈ γζ,ζ0

except for a bounded set.



Because Re (log(ckb
λk)) tends to −∞ when b tends to zero, we choose b

sufficiently small, then choose ζ0 so that |ζ0|/|b| so small. We see that
the right-hand side of (38) stays in the left-half plane such that the real
part is arbitrarily small. Therefore we see that xk lies in a sufficiently
small neighborhood of the origin for s ∈ γζ,ζ0

uniformly when ζ moves to
0 along the Stokes curve. This proves that the substitution xk = sλkck

for s ∈ γζ,ζ0
into the integrand of (36) is well defined uniformly when

ζ → 0 and ζ0.

The integrability in (36) is clear for every given b because the integrand
is continuous and the integral is taken on a compact smooth curve.

Definition of the function space.

Let D be the open connected set in some neighborhood of the origin
of x ∈ Cn. Then we define

H(D,Ω) :=

{
f ∈ H(D,Ω) | ∃K, sup

x∈D
|f(x, y)| ≤ Ke−cRe y(1 + |y|)−2,∀y ∈ Ω

}
,

(39)

where H(D,Ω) is the holomorphic function in (x, y) ∈ D × Ω. The space
H(D,Ω) is a Banach space with the norm ‖f‖ = sup K where K is given
in (39).

Estimate of w and wy in (36) for f ∈ H(D,Ω)



In the following we assume that there exists an ε0 > 0 such that |ζ|/|ζ0| ≥
ε0. We now estimate w in (36). We recall that Φ(s, b) is asymptotically
equals to λj log(s/b) as s → 0. Therefore one may assume that the
integral is taken along the curve Imλj log(s/b) = c for some c. Set
λj = α + iβ (α > 0) and log(s/b) = x + iy. Then one can see that the
curve Imλj log(s/b) = c can be written in βx+αy = c, and the integration
is taken for some x1 ≥ x ≥ x0, where x0 corresponds to ζ. In view of
the relation s = bex+iy, we have ds = bex+iy(dx + idy) = bex+iy(1 − βi/α)dx.
Because there appears a positive power of s in the integrand of (36)
in view of the above argument, a positive power of ex appears from
the integrand. We next estimate the growth of y0 −Φ(s, b). In terms of
(34) we have

exp (−cRe (y0 − Φ(s, b))) = exp (−cRe (y + Φ(ζ, b) − Φ(s, b))) (40)
= exp (−cRe (y + Φ(ζ, s))) .

Because ReΦ(ζ, s) is decreasing in ζ as ζ tends to zero along the Stokes

curve, we have ReΦ(ζ, s) ≤ 0. Hence we need to estimate e−cReΦ(ζ,s).
We have that Φ(ζ, s) is asymptotically equal to λj log(ζ/s). Set log(ζ/s) =
x+ iy and λj = α+ iβ with α > 0. Then we have Re (λj log(ζ/s)) = αx−βy.
On the other hand the definition of the Stokes curves yields βx+αy = c
for some c. Hence αx − βy = (α + β2α−1)x − cβα−1. Noting that x =
log(|ζ|/|s|) > log(|ζ|/|ζ0|) > log ε0, we have

exp(−c(αx − βy)) = exp(−(α + β2α−1)cx − c2βα−1)
≤ exp

(
(α + β2α−1)c log ε−1

0 − c2βα−1
)
=: K0.



This proves that

exp (−cRe (y0 − Φ(s, b))) ≤ K0 exp (−cRe y) . (41)

Next we will estimate |y0−Φ(s, b)| = |y+Φ(ζ, s)| from the below. Because
ImΦ(ζ, s) = 0 on the Stokes curve and ReΦ(ζ, s) ≤ 0, there exists C1 > 0
independent of ζ and s such that

(1 + |y0 − Φ(s, b)|)−2 ≤ C1(1 + |y|)−2 for all y ∈ Ω. (42)

By (41) and (42) there exists C3 > 0 such that

‖w‖ ≤ C3‖f‖.
Proof.

‖w‖ ≤ sup
(|(1 + |y|)2 exp (cRe y) × (43)∫

‖f‖exp (−cRe (y0 − Φ(s, b)))

(1 + |y0 − Φ(s, b)|)2
|ds|

)
≤ C2‖f‖

∫
|ds| ≤ C3‖f‖,

for some C2 > 0 and C3 > 0.

We shall show

‖wy‖ ≤ C4‖f‖ (44)

for some C4 > 0 independent of f.



Proof. Noting that y0 − Φ(s, b) = y + Φ(ζ, s) we make the change of
variable σ = y + Φ(ζ, s) in (36) from s to σ. We have

dσ = −λj + ∇Rj

s
ds.

Note that the right-hand side is independent of y. We have σ = y for
s = ζ and σ = y + ζ̃0, where ζ̃0 = Φ(ζ, ζ0). Clearly, s ∈ γζ0,ζ is expressed as
σ ∈ y + ˜γζ0,ζ, where ˜γζ0,ζ is the straight line connecting 0 and ζ̃0. Then
(36) is written in

w = −
∫

˜γζ0,ζ

f(sλ1c1, · · · , sλn−1cn−1, s;σ)
dσ

∂sΦ(s, ζ)
, (45)

where σ − y = Φ(ζ, s) ∼ λj log(ζ/s) and s is independent of y. Hence we
have

wy = −f(ζλ1

0 c1, · · · , ζλn−1

0 cn−1, ζ0; y + ζ̃0)
1

∂sΦ(ζ0, ζ)
(46)

+ f(ζλ1c1, · · · , ζλn−1cn−1, ζ; y)
1

∂sΦ(ζ, ζ)
.

Using (46) we have (44) by the same argument as ‖w‖ since ∂sΦ(ζ0, ζ)−1

and ∂sΦ(ζ, ζ)−1 are bounded.

Approximate sequence.



We will solve (31) in H(D,Ω). We define the approximate sequence ûn

(n = 0,1,2, . . . ) by

û1 = −P0Lv0, û0 = 0 (47)

û2 = P0

∑
|β|≥2

rβ(x + v0)
∂

∂y
(û1)

β
∗ − P0Lv0, (48)

...

ûn+1 = P0

∑
|β|≥2

rβ(x + v0)
∂

∂y
(ûn)

β
∗ − P0Lv0, (49)

where n = 1,2, . . .

Apriori estimate.

By definition for any ε > 0 we can take the domain D sufficiently small
that ‖Lv0‖ ≤ ε. By (43) we have

‖û1‖ ≤ ‖P0Lv0‖ ≤ C‖Lv0‖ ≤ Cε. (50)

Similarly by using (44) we have ‖(û1)y‖ ≤ Cε.

We have the apriori estimate

‖ûn‖ ≤ Cε(1 + ε), ‖(ûn)y‖ ≤ Cε(1 + ε), n = 0,1,2, . . . (51)



We will show the convergence of ûn by standard argument.

Revomal of singularities
-Hartogs type theorem for functions with exponential growth -

Let D and D′ be domains such that D ∩D′ �= ∅ and let vD and vD′ be the
corresponding Borel sum in D and D′, respectively. Because the Borel
sum with respect to η is unique for every x, we have that vD = vD′ on
D∩D′, from which we have an analytic continuation of vD to D∪D′. By
choosing the sequence of open sets D we make an analytic continuation
of vD to the set (C\0)n∩B0, where B0 is some open ball centered at the
origin. By the uniqueness of the Borel sum the analytic continuation of
v̂D(x, y) with respect to x in the set (C \ 0)n ∩ B0, y ∈ Ω is single-valued.
We also note that in view of the construction of v̂D the growth estimate
with respect to y of v̂D(x, y) is uniform for x ∈ (C \ 0)n ∩ B0. Therefore
we can define v̂(x, y) := v̂D(x, y) on x ∈ (C \ 0)n ∩ B0 and y ∈ Ω by taking
x ∈ D.

The function v̂(x, y) may have singularity on x ∈ (Cn \ (C \ 0)n) ∩ B0,
y ∈ Ω. We will prove that the singularity is removable. First consider
the singularity with codimension 1. For simplicity, take y0 ∈ Ω, x′

0 =
(x0

2, . . . , x0
n) with x0

j �= 0 and consider the expansion

v̂(x, y) =
∑

ν≥0,j≥0

v̂ν,j(x1)(x
′ − x′

0)
ν(y − y0)

j. (52)



By what we have proved in the above, the right hand side is convergent
if x′ − x′

0 and y − y0 are sufficiently small and x1 �= 0. Moreover, by the
boundedness of v̂(x, y) when x1 → 0 and the Cauchy’s integral formula we
have that v̂ν,j(x1) is holomorphic and single-valued and bounded in some
neighborhood of the origin except for x1 = 0. Hence the singularity of
v̂ν,j(x1) is removable for every ν and j. In the same way one can show
that the singularity of codimension one is removable.

Next we consider the singularity of codimension 2. For the sake of
simplicity, consider the one x1 = x2 = 0, x′′

0 = (x0
3, . . . , x0

n) with x0
j �=

0. By considering in the same way as in the codimension one case
we have the expansion similar to (52) where x′ − x′

0 and v̂ν,j(x1) are
replaced by x′′ − x′′

0 and v̂ν,j(x1, x2), respectively. Because v̂ν,j(x1, x2) is
holomorphic and single-valued except for x1 = x2 = 0, we see that
the singularity is removable by Hartogs theorem. Hence we see that
the singularity of codimension 2 is removable. As for the singularity
of higher codimension ≥ 3 we can argue in the same way by using
Hartogs theorem. We see that v̂(x, y) is holomorphic and single-valued
on x ∈ Cn ∩ B0, y ∈ Ω.

The exponential growth of v̂(x, y) when y → ∞ in y ∈ Ω for x ∈ Cn ∩ B0.
Set some ck to be equal to zero and make the same argument as for
v̂D(x, y). By what we have proved in the above, we have the assertion.
Hence we have proved the solvability of (31), and the summability of
the our solution as desired.



8. Some geometry.
Let v0(x) and Σ0 be given by (11) and (14), respectively. Because Σ0

is a main analytic set, it has the pure codimension one. Hence, by the
well known embedding theorem in several complex variables, for every
point b of Σ0 there exists a complex line L such that b ∈ Σ0∩L is isolated
in L. In the following we assume that L is given by xj = 0 (1 ≤ j ≤ n−1)
and Σ0 ∩L consists of isolated points in L. We denote the variable in L
by ζ. We may also assume λn = 1 without loss of generality by dividing
the equation with λn.

Σ0

L

9. Preparations

In Theorem 3 we have proved Borel summability of the formal SP-
solution v(x, η) in a neighborhood of the origin x = 0. We will study
Borel summability at other points ξ ∈ (Cn \ Σ0) ∩ Ω0, ξ �= 0.



Write ξ = (ξ′, ξn) and determine (ck)k by the relations ζ = ξn,(34) with
x′ = ξ′. Determine L with x′ = ξ′. Define the set T0 ⊂ L by

T0 := Σ0 ∩ {(ξ′, ζ); ζ ∈ L}.
Let a ∈ T0. With (ck) given in the above, define Φ(s, a) by (35) and the
curve Sa by the set of points s such that ImΦ(s, a) = 0, respectively.
Clearly, ξn �∈ T0 because ξ ∈ (Cn \Σ0)∩Ω0. Hence the following two cases
occur:
(a) ξn �∈ Sa for any a ∈ Σ0.
(b) ξn ∈ Sa for some a ∈ Σ0.
Because v0 has a singularity on Σ0 in general a branch cut emanating

from Σ0 may appear. We have

Theorem 5 Assume that R(x) is an entire function on x ∈ Cn and that
∇R(x + v0) is a diagonal matrix. Suppose 0 �∈ Σ0. Moreover, assume
that Reλj > 0 for j = 1,2, . . . , n. Let ξ ∈ (Cn \ Σ0) ∩ Ω(v0), ξ �= 0. Then
we have
The case (a). There exist a neighborhood D of ξ and an ε > 0 such
that if ‖v0‖ < ε, then v(x, η) is Borel-summable in the direction η with
η−1 ∈ (C0)c for any x ∈ D, where (C0)c is the complement of C0 in the
complex plane.
The case (b). Assume that ξn ∈ Sa which is not a branch cut of Φ′(s, ·) =
(d/ds)Φ(s, ·). Then there exist a neighborhood D of ξ and an ε > 0 such
that if ‖v0‖ < ε, then v(x, η) is Borel-summable in the direction η with
η−1 ∈ (C0)c for any x ∈ D.



10. Global summability

By using the results in the preceeding sections we can show the fol-
lowing facts. Given a domain K whose closure is compact. Then there
exists an ε > 0 such that if ‖v0‖ < ε and v0 is holomorphic in K, then
the SP-solution is Borel summable in the direction η with η−1 ∈ (C0)c for
any x ∈ K. Indeed, one can make analytic continuation by covering K
with a finite number of open sets. We note that the Borel sum gives
the desired solution of our equation.

11. Connection problem across singular directions and Poincaré’s the-
orem

Consider the connection problem with respect to η of the summed SP-
solution V (x, η) of (6) across a singular direction in C0. Let E0 be given
by

E0 :=

{〈λ, α〉
λk

; k = 1,2, . . . , n, α ∈ Zn
≥0, |α| ≥ 2

}
. (53)

We can show:
E0 is contained in the right half-plane Re η > 0 and η/|η| (η ∈ E0) are
dense in some sector of the complex plane.

Note that E0 gives the singular directions for the Borel sum V (x, η) which
is dense in C0. A connection problem occurs at a singular direction in



C0. We shall study the analytic continuation of V (x, η) from the negative
real axis to the point η = 1.

Theorem 6 Assume there exists a real ξ such that |arg λj − ξ| < π/4 for
j = 1,2, . . . , n and that λj (j = 1,2, . . . , n) be linearly independent over Z.
Then there exists a neighborhood W of the origin of x ∈ Cn such that
the connection coefficient across every singular direction in C0 vanishes.
Especially, V (x, η) is a single-valued meromorphic function with respect
to η with poles on E0 and analytic in x when x ∈ W .
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