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Geometric series and power function

The starting point of the theory of hypergeometric functions is, perhaps,
the Eulers’ analysis of the function deined by the series
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for |t| < 1 and where (x), := x(x + 1)...(x + n — 1) is the Pochhammer
function.
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Geometric series and power function

The starting point of the theory of hypergeometric functions is, perhaps,
the Eulers’ analysis of the function deined by the series

- =3 Do @)

n>0

for |t| < 1 and where (x), := x(x + 1)...(x + n — 1) is the Pochhammer
function.

If r =1, then (1) reduces to the well known geometric series. This
probably motivated the name for generalisations of (1), which will be
treated in this talk.

Although the formula (1) has allready been known before Euler, it was
him, who made significant contributions in the study of (1) and noticed,
that many known special functions can be put into the similar framework.



Euler-Gauss hypergeometric function

The classical Euler-Gauss hypergeometric function is defined by the series
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Euler-Gauss hypergeometric function

The classical Euler-Gauss hypergeometric function is defined by the series

u)p(v), t”
2I__1<u‘:VV t> — Z(()W()) m (2)
n>0 n ’
B u-v,  u(u+1)-v(v+1)t? 3
= 1+ b w(w £ 1) §+O(t),
where [t| < 1.

It has been introduced by Euler and studied by the leading matematicians
of the XIX and the beginning of XX century, including Gauss, Riemann
(monodromy, P-function, Riemann surfaces), Kummer (bases of
solutions, special values), Shwarz (Shwarz list) and others.



General classical hypergeometric function

One can easily generalize the classical Euler-Gauss hypergeometric
function, by the series (0 < p, g € Z are parameters, such that p < g+ 1)
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= (W1)n(W2)n... (Wg)n n!’
where |t| < 1. This is the classical general hypergeometric function.

If p < g+ 1, then function (3) is called confluent and if p = g + 1, then
it is called balanced.
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Hypergeometric differential equation

Hence
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Hence

(Ot + U) 2F1 (U‘:VV

t) = U2F1 <U+W17V

t> = voF (u, VW+ !

t) . (5)
) (6)

t> = (w—1),F (W”’_Vl

And in a similar way
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Hypergeometric differential equation

From the above differential-difference relations together with
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Hypergeometric differential equation

From the above differential-difference relations together with

5t2F1<u,;,,v t) :u—m‘//zF1<u+1’V+1 t>~ (8)

w+1
one obtains

(0: + u)(0: + v) 2 Fp (“V’VV t) = (0 + w)d; 2 F (“*Wl’v t). (9)
Or in equivalent form:
{t(t—1)07 + ((u+v+1)t—w)d +uv} oF (u;vv t) = 0. (10)




General classical hypergeometric equation

The analog of the Euler-Gauss hypergeometric equation for general
classical hypergeometric function can be written as

t P(6:) pFq = Q(0:) oF (11)

where

P(x) = (x4 uwu)(x+ w)...(x+ up)
QR(x) = (x+w—1)(x+wy—1)..(x+wg—1).



General classical hypergeometric equation

The analog of the Euler-Gauss hypergeometric equation for general
classical hypergeometric function can be written as

t P(6:) pFq = Q(0:) oF (11)
where
P(x) = (x4 uwu)(x+ w)...(x+ up)
QR(x) = (x+w—1)(x+wy—1)..(x+wg—1).

From the above differential equation, one can restore the classical
hypergeometric series, as a particular solution. But the hypergeometric
equation has order p, so there are p — 1 independent solutions to (11).
Usually they are also called hypergeometric functions. However they may
not be representable by hypergeometric series.



Balanced and confluent differential equations

Although general classical hypergeometric equation has polynomial
coefficients, there is significant difference between balanced and confluent
equations (coresponding to balanced and confluent functions).



Balanced and confluent differential equations

Although general classical hypergeometric equation has polynomial
coefficients, there is significant difference between balanced and confluent
equations (coresponding to balanced and confluent functions).

Balanced equation has only regular singular points, i.e. solutions around
singular points are at most of polynomial growth. This implies significant
differences between the two above cases.
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Hypergeometric functions can be represented by several types of
integrals. One of them is the Euler representation:

r(vyrf(w-v) (u,v
———2h

) t) = /01 X THL =X)L - )TV dx.

(12)

Formula (12) follows from the expansion of power function and integral
representation of Beta function

1
B(x,y) = /o (1 -ty Lt

It is also closely related to harmonic analysis on S*.



Gauss Theorem: integral representation of ,F;

In particular, putting t =1 in (12), we get
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transforms (analogous to evaluation of Fourier transform at t = 0).




Gauss Theorem: integral representation of ,F;

In particular, putting t =1 in (12), we get

- (uv,vv 1) T (w—u—v) (13)

o F(w—u)M(w—v)’
Value t = 1 has some special meaning in the context of integral
transforms (analogous to evaluation of Fourier transform at t = 0).

Although many particular cases of analogous formulas are known for ,Fg,
the general formula for
1> 7

ui,...,u
qu 1,5 Up
Wi, ..., Wy

doesn’t seem to be known.
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The other useful formula is the Mellin-Barnes integral:
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to harmonic analysis on R.



Integral representations ||

The other useful formula is the Mellin-Barnes integral:

r(#zvrv()v) F (u,v t) 14)

1 Fu+s)f(v+s)

= i T e TS

where the contour C is a line from —ico + sy to —ico + s, for some
so € R, separating poles of ['(—s) from the poles of the other [-factors.

Formula (14) follows from the Residue Theorem. It is also closely related
to harmonic analysis on R.

There are also other very interesting integral formulas which follow from
the integral geometry.



Integral representations and Meijer G-function

General hypergeometric series also admits the Mellin-Barnes integral
[(uy)...1 (up) £ ( Uty ...y Up

representation:
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with appropriately chosen contour C.



Integral representations and Meijer G-function

General hypergeometric series also admits the Mellin-Barnes integral

representation:
)
1 Mu +5s)... (up+5) s
= 2 e Tm ts) T(wg v sy (S ds (15)

r(ul)"'r(uP) F uy,...,Up
I_(W]_)I—(Wq) pra Wl)"')Wq

with appropriately chosen contour C. Formula (15) led Cornelis Simon
Meijer to the definition of the Meijer G-function:

m,n U1,...,Up
GP"’ (W17...7Wq t>
1 Hjn;1r(VW_5)H;=1r(1_”j+5)

= r(s)t°ds. (16
ot Je TP T — ) [ T —wy 15) | ()F s (16)
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In the year 1644 Pietro Mengoli, professor of the leading University of
Bologna, asked about the value of the infinite sum
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The Basel Problem

In the year 1644 Pietro Mengoli, professor of the leading University of
Bologna, asked about the value of the infinite sum

> (17)

n>0

Although many leading matematicians of the epoch, including Leibniz,
Bernoullies and Newton, tried to solve this problem, it was only Euler,
who in 1735 found the answer.



Eulers solution

Consider the series and infinite product expansions of the function
sinTx/mx:

sin Tx x)2n 2
= ) (-1) =1-x>2—+.. (18)
X = 2 + 2n+1)! 6
sinTx X<\ 5 1
—— = H(l—ﬁ>—1—x Zﬁ-i—... (19)
n>0 n>0



Eulers solution

Consider the series and infinite product expansions of the function

sinTx/mx:
sin Tx x)2n 72
= ) (-1) =1-x>— 4. (18)
X = 2 +1)| 6
sinTx X<\ 5 1
= H(l—ﬁ>—1—x§ i (19)
n>0 n>0

Comparing the coefficients after x> Euler obtained the correct result
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Consider the series and infinite product expansions of the function

sinTx/mx:
sin Tx x)2n 72
= ) (-1) =1-x>—+.. (18)
X = 2 + 2n+1)! 6
sinTx X<\ 5 1
= H(l—ﬁ>—1—x Zﬁ-i—... (19)
n>0 n>0
Comparing the coefficients after x> Euler obtained the correct result
1 w2
- == 2
D= (20)
n>0

The problem is named after Basel, hometown of Euler.



Eulers solution, first apearence of multiple zeta values

Note that in fact Euler obtained much more. By comparing the higher
coefficients, before x2", he was able to evaluate sums of the form

1 1
ZW’ > —oE (21)

n>m>0 n>m>/>0

and so on.



Multiple ¢ function

Definition

The multiple zeta function is defined by the series

Z nytny Zonp = ((s1, 92, s Sp), (22)

ny>...>n>n; >0

whenever (22) converges. Number p is called depth, and
|s| :=s1+ s+ ... + s, - weight of {(s1, S, ..., Sp). Multiple zeta values
(in short MZV), are values of multiple zeta function at integral points.



Multiple ¢ function

The multiple zeta function is defined by the series
Z nytny Zonp = ((s1, 92, s Sp), (22)

ny>...>n>n; >0

whenever (22) converges. Number p is called depth, and
|s| :=s1+ s+ ... + s, - weight of {(s1, S, ..., Sp). Multiple zeta values
(in short MZV), are values of multiple zeta function at integral points.

To simplify nontation, one writes ({s1, ..., S4}"), meaning
(S1y-+ey Sqs S1s-vs Sqy --v5 1y -, Sq ), Where (sq, ..., 5q) is repeated n times.



Multiple ¢ values

Multiple zeta values apeared for the first time in Euler's Meditationes
circa singulare serierum genus (1775), where he found the following
formula relating Multiple Zeta Values to 'single’ ones:

Z(nil) =¢(2,1) = 3)_2 = (23)

n>0

where H,, is the m-th harmonic number.



Multiple ¢ values

Multiple zeta values apeared for the first time in Euler's Meditationes
circa singulare serierum genus (1775), where he found the following
formula relating Multiple Zeta Values to 'single’ ones:

Z%—dzl @=3 (23)

n>0 n>0

where H,, is the m-th harmonic number.

If p =1, then multiple zeta function is simply the Riemann zeta function

SnE = (o), (24)

function which is a fundamental object of study in number theory.



Relations between multiple zeta values

MZV satisfy a lot of relations. For example

¢(rgls) = > m

m,n>0

SRS o Ers

m>n>0 n>m>0 m=n>0

= {(r,s)+<(s,r) +C(r +s). (25)



Relations between multiple zeta values

Other nontrivial relations can be obtained from Drinfeld-Kontsevich
integral:

Lis,,. .. s,(t) == /wg”_lwl...w;"_lwl, (26)
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where wo(x) = dx/x, wi(x) = dx/(1 — x) and
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Relations between multiple zeta values

Other nontrivial relations can be obtained from Drinfeld-Kontsevich
integral:

Lis,,. .. s,(t) == /wg”_lwl...w;"_lwl, (26)
T

where wo(x) = dx/x, wi(x) = dx/(1 — x) and
T={(t1,t2,.,tg) ERF: 0<ty < ... <ty <t <1}

Drinfeld-Kontsevich integral is a special case of Chen iterated integrals:
p
/wl ity = / T] #i(t) dts, (27)
Y 0t <...<tp,<1 71

where X is a manifold, w; € Q1(X), v : [0,1] — X is family of piecewise
smooth paths and y*w; = f;(t)dt.



DK integral and multiple polylogarithms

Treating the Drinfeld-Kontsevich integral as a (holomorphic) function of

t one gets the identities
/ dl’l / dt>
1-— tz’

. dt; [ dt dt
s = [
) dtl dty t2 dts

Liba(t) = / /1_t2/0 —

where Lir(t), Liz(t) are polylogarithmic functions and Li> 1(t) is, so
called, multiple polylogarithm.

Lig(t)




Multiple polylogarithms

General multiple polylogarithm has the following power series expansion:

S eyt = Lo (D), (28)

np>...>n>n; >0

from which one gets Li, .. s,(1) = ((s1, 52, ..., Sp)-
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Generating function and associated differential equation

The Drinfeld-Kontsevich integral can be used to construct Fuchsian
differential equation associaded to generating function of the sequence

C({(Sl’ 525 +ees SP)}H)'

We define opertor L as:

L :

(1= £)0:(td)* 1.1 — £)0u(£0,) . (29)

We have
L.Lish__.7sp(t) =1 (30)

and more generally

Ln.LI'{sl,m,Sp}n(t) =1 (31)



Generating function and associated differential equation

Holomorphic solution F(t, \) of the eigenequation
(L+Ashf =0, (32)

such that F(1,0) = 1, has the following expansion around t = 1:

FL,A) =) (=1)"¢C({s, -y sp} A", (33)

n>0



Generating function and associated differential equation

Holomorphic solution F(t, \) of the eigenequation
(L+Ashf =0, (32)

such that F(1,0) = 1, has the following expansion around t = 1:

FL,A) =) (=1)"¢C({s, -y sp} A", (33)

n>0

In other words, function F(1,\) is a generating function of the sequence

C({s1y .-, Sp}").
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If the depth p is equal to one, then L has the form
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Particular solutions associated to (({s}")

If the depth p is equal to one, then L has the form

L= (1—t)0:(td,) (34)
and F(1,)) is the generating function of (({s}").

In that case F is a sum of the series

F(t,\) = Z (M)\)n(ﬂ/2)\)n-~-(//65)\)n(_t)n’ (35)

= (nh)s

obtained from differential equation. Here i denotes the primitive s-th
degree root of unity.

We have

2 s
F(t,\) = oFos (MA’Nl,A.’.,"i’M A‘ t>. (36)
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Remark: assymptotic methods in the study of MZV

Recently MZV have been extensivelly studied in several different
directions and many interesting results were obtained.

For exmaple, in three papers written together with proffesor Zotadek:

Z. Z., Linear meromorphic differential equations and multiple zeta-values
I. Zeta (2), Fund. Math. 210 (2010), 207-242.

Z. Z., Linear meromorphic differential equations and multiple zeta-values
Il. Generalization of the WKB method, J. Math. Anal. Appl. 383 (2011),
55-70.

Z. Z., Linear meromorphic differential equations and multiple zeta-values
I. Zeta (3), J. Math. Phys. 53 (2012), 1-40.

we give new proofs of certain MZV-identities, examining equation (32)
asymptotic methods (WKB series, stationary phase approximation).
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When s = 2, then
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and F(1,\) is (the generating function of (({2}"))
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Particular solutions associated to (({2}")

When s = 2, then

and F(1,\) is (the generating function of (({2}"))

F(t,)\) _ Z(A)"(_)‘)"

n'n!
n>0

>‘)_>‘)
= 2F1< 1

)
1
= A NFa-N (38)

The last equality follows from the Gauss identity:

u,v Fw)rfr(w—u—v)
2F1< w 1) CF(w—u)(w—v) (39)
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Explicit expression for the generating function

And since (1 +A)(I —X)=a\/sinm), we have the explicit
expression for the generating function of the sequence ¢({2}"). Thus we
can also find all {(2k).
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Expression for the generating function of the higher values

We already mentioned that no general formula is known (to the speaker)

for
uy,...,u
F P,
pra <W1,...,Wq )
However, if one considers particular example of holomorphic (at t = 0)
solution F to the equation (L + Al*l)f =0, then

DTS T\
sFs1 <M M1,..,1 g '1>

1
T T AT s (40)

F(t,\)

Unfortunatelly, it is not sufficient to get enough number-theoretic
information about, for example ((2k + 1). But formula (40) suffices
enough to derive some relations between values of the form {(si, ..., sp),
where all s; are even.



Generating functions for multiple values

If p>1in
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not, in general, a hypergeometric function.
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Generating functions for multiple values

If p>1in

L = (1 - t)at(tat)sl_l...(l - t)at(tat)s"_l, (41)
then holomorphic (at t = 0) solution F to the equation (L + Al*I)f = 0'is
not, in general, a hypergeometric function.

Nor any general formula for F(1,\) is known (again, at least to the
speaker of this talk). Except the famous Broadhurst-Zagier formula:

o 2712\ _2-1/2)
1+ S (A Ligsayalt) = zFl( ! ‘t)x

1
n>0

“1/2:y _n—1/2;
R (2 ’A’12 ’A‘ t). (42)



Broadhurst-Zagier formula

If t =1, applying again Gauss formula

u,v rw)rf(w—u-v)
El77]1) = 4
A (1) = e (*)
one gets
n n 2—1/2)\7_2—1/2)\
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n>0
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Broadhurst-Zagier formula

If t =1, applying again Gauss formula

u,v Tw)l[(w—u—v)
A (% | 1) = T (*)
one gets
n n 2—1/2)\7_2—1/2)\
LA = oA (2N )«
n>0
—1/2;y _o—1/2;
JF (2 //\,1 2 ,/\‘ t)
sinTA sinh T\
= . 44
A TA (44)
And finally
, 27T4n
¢({3,1}") = ( (45)

4n+2)
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interesting. And one may ask the following questions:
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the simplest of the whole family of relations of the similar kind?
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The exceptional case of Broadhurst-Zagier formula seems to be very
interesting. And one may ask the following questions:

m Is BZ formula really exceptional? Or maybe (more likely) is is just
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The exceptional case of Broadhurst-Zagier formula seems to be very
interesting. And one may ask the following questions:

m Is BZ formula really exceptional? Or maybe (more likely) is is just
the simplest of the whole family of relations of the similar kind?

m Does there always exist formula for general F(1,A) that involves
only sum of products of [-factors?

One of the consequences of positive answers to the above questions
would be the description (at least theoretical) of the relations between all
MZVs. Careful study of the behaviour of solutions of near t = 1 doesn't
sem to be enough to achieve theese goals, because case p > 1 is, in a
way, much more complicated then the case p = 1. Thus it seems
reasonable to turn ones attention to multivariable hypergeometric
functions.



Appell functions

In 1880 P. Appell defined the following list of hypergeometric functions of

two variables:
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Appell and Horn functions

Series defining functions F1, F,, F3, F4 converge in regions

Dy = {(xy)eC: x| <1yl <1},
D, = {(xy)eC:|x|+y| <1},

D;s = {(x,y)€eC*:|x| <1,y <1},
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Appell and Horn functions

Series defining functions F1, F,, F3, F4 converge in regions

D1 = {(x,y)eC?®:|x| <1,y <1},

D, = {(x,y) €C?:|x|+|y| <1},

Ds = {(x,y)€C?®:|x| <1,y <1},
)

Dy = {(x,y)eC?: |x["2+|y"/2 < 1}.

In addition to the list of four Appell functions, there are 10 other
balanced hypergeometric series and futher 20 confluent series, that have
been enumerated by Horn (1931) and corrected by Borngasser (1933).

Lauricella (1893) generalized the notion of Appell’s functions to n
variables.
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Surprisingly, the function F; can also be expressed by the simple integral
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Gauss formula for Appell functions

Appell functions admit representations of the Gauss type, i.e., if

x =1 =y we have, for example,
Fl (U, Vi, V2 171>
w

F()rv)r(v)f(w—u—v—w)
r(w)f(w—u)f(w-—wv—w)




Mellin-Barnes integral representations

For general complex parameters, the F; function can be written as the
following contour integral

M) o (v
o A (0 ) 0

1 / r(u—Sl—Sz)/_(Vl—Sl)r(V2—52)
(27Ti)2 C r(W—Sl—Sg)
X T(s1)l(82)(—x)"(—y) "™ ds; ds,

where C is an appropriately chosen 2-cycle in C2.
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For general complex parameters, the F; function can be written as the
following contour integral
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1 / r(u—51—52)/_(V1—Sl)r(V2—52)
(27Ti)2 C I'(w—sl—52)
X T(s1)l(82)(—x)"(—y) "™ ds; ds,

where C is an appropriately chosen 2-cycle in C2.

Analogous formulas exist for all other Appel and Horn functions.



Horn's condition

Common properties of the classical, Appell's and Lauricella’s
hypergeometric functions led Horn to the following definition.
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Consider a Taylor series of the form (we use standard multiindex notation)
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Common properties of the classical, Appell's and Lauricella’s
hypergeometric functions led Horn to the following definition.

Definition (Horn function)

Consider a Taylor series of the form (we use standard multiindex notation)

F(t) = ) ant", (51)

neNP
where a, are such that ani¢;/a, € C(ny, ..., np).

All of the above functions (Euler-Gauss, Appell, Lauricella) are special
cases of Horn hypergeometric functions. Horn functions can also be
divided into confluent and balanced ones. All of them possess integral
representations and satisfy meromorphic differential equations
generalizing the one-dimensional case.
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Following W. Miller and his school, one may give the Euler-Gauss
function the following interpretation. Consider the Laplace operator

92 92 92 92
8x2 + 8x2 + 8x2 o (52)

Ix3 x;
which can be rewritten as

0105 — D30, (53)

in coordinates x; = t; + tp, xo = i(t; — tp), x3 = t3 — t4 and
X4 = i(t3 + t4).

Here (and further on) 9; := 0;,; the same convention applies to 6; := 0;..
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PDE satisfied by multivariable Euler-Gauss function

One may then prove (by straightforward calculation), the following

Proposition

The function

¢<u,v
w

satisfies the equation

u,v
w

A ) (54)

tito

—u g — -1
t17 t27 t37 t4> = tl ut2 Vt;v 2F1 <

(0105 — 9394)® = 0. (55)

This approach, which was motivated by the desire to find systems of
PDEs whose solutions could be expressed in terms of generalized
hypergeometric series, leads to the notion of GKZ systems.
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For Euler-Gauss hypergeometric series, the operator 6, + u may be
viewed as an index-raising operator. Similar is true in the case of 6; + v,
while and 6; + w lowers the third index.

One may introduce other raisingand lowering operators using the
recursion properties of the Pochhammer symbols. However, the
dependence of these operators on the parameters makes it difficult to
study, for example, their composition properties and thus the algebra
they generate.

Miller's idea is to replace the multiplication operators u, v, w by by Euler
operators 0, 8,,0,, corresponding to new variables x, y, z, respectively.
Now, since the Euler operator, 8, acts as multiplication by u on x¥, it is
natural, to define

_ u,v
Puvw(t) == x"y 2" 12F1< w

t> . (56)
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The following relations are immediate consequence of the above:

ex clDu,v,w = uq)u,v,w
ay q)u,v,w = Vv cl>u,v,w
0, ¢u,v,w = (W - 1) cDLI,V7W'
So
(91: + ax) (Du,v,w = Xuyvzw—l (et + U) 2F1 (u‘:vv t> (57)
and

x(0r +0x)Puvw = UPyi1vw- (58)

There are similar formulas for v and w.
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Together with relation

Xyzat q)u,v,w = uT:¢u,v,w (59)

we get all relations leading to the Euler-Gauss equation (i.e. one can
reconstruct »Fy).

However, there are several advantages. Identities (58), (59) and two
remaining ones are in parameter free form and they make sense for any
(appropriately regular) function on the variables t, x, y, z, while the
previous (the classica) form depended on the non-intrinsic parameters
u,v and w.

Another advantage is provided by the following

Proposition

The operators Ly := x(0; + 0x), Lo := y(0: +6,), L3 := z7(0: + 0,) and
Ly := xyz0; commute. Consequently, there exist coordinates &1, ...,&4 on
C* such that L; = O,.
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However, in this case we can write them explicitly as:
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Existence of such 0¢,, 0¢,, O¢, and 0O, follows from Frobenius’ Theorem.
However, in this case we can write them explicitly as:

61 = —X 7,

§2 = _V_l,

53 = 2z,

& = (o)t
Therefore

Ox —b¢, — O¢,

y = b, — 0,

0, = 053 054
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The above analysis leads to the following

Given complex numbers u,v and w ¢ —N, the function &, , ,, defined in
(73) satisfies the system of partial differential equations:
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Euler-Gauss PDE; towards GKZ system

The above analysis leads to the following

Given complex numbers u,v and w ¢ —N, the function &, , ,, defined in
(73) satisfies the system of partial differential equations:

(0140 +u)dyyw =

O+ 01+ Vv)Pyvw =
(=03 +0s+w—-1)d,,,

(0102 — D304) Py v =

©o o o o

First three equations can be written more simply, as

A0®, ., =0, (60)
with matrix A and 0 := (61, ..., 04).
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GKZ hypergeometric system

Let A denote d x n matrix of rank d with coefficients in Z.

Furthermore, assume, that
m The column vectos of A span Z9 over Z.
m The row span of A contains the vector (1,1,...,1).

Definition
Let u € C9. Define

Ia = {8% -0 : Aa = AB;a, 8 € N9} (61)

The GKZ hypergeometric system is the left ideal H(A, u) in the Weyl
algebra generated by the union of Ix and A6 — u. Solutions of GKZ
systems are called A-hypergeometric functions.

GKZ stands for Gelfand, Kapranov and Zelevinsky, who first studied the
general multivariable hypergeometric systems associated to A, u. Before,
certain general hypergeometric functions were studied by Aomoto.



Euler-Gauss function as GKZ hypergeometric system

As it has been allready seen before, the multivariable Euler-Gauss
function satisfies GKZ system associated to the data

0
0

10 1
A= (0 1 1 (62)
00 -1 1

and 1= (—u,—v,1—w).
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Appell function as GKZ hypergeometric system

Consider a GKZ system associated to the following data:

100 1 0 1

010 1 0 0
A=lo00 0 1 1 (63)

001 -1 0 -1

and o= (—u,—vq, —va, 1 — w).
Theese data correspond to the function ® associated with Appell F;.
Note, that here /4 is not principal, i.e. we have

In = (0105 — 0302, 0105 — D305, 020 — Da0s) . (64)



'Hypergeometric properties’ of GKZ system

Solutions of GKZ system have properties analogous to the classical
(including Euler-Gauss) hypergeometric functions. In " Generalized Euler
integrals and A-hypergeometric functions (Adv. Math. 84, 255-271),
Gelfand, Kapranov and Zelevinsky proved the following

Theorem (GKZ)
Let fi,fa, ..., fn € C[x1, X2, .., Xm], X, 8 € C™ and oo € C". Then

/ o1 f2 . o xP dx. (65)
C

where C is an m-dimensional real cycle, are A-hypergeometric functions
of the coefficients of the polynomials fi, f, ..., f,.
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The [-series and Mellin-Barnes integral

Solutions of GKZ system can be represented as [-series

t(Am),'+LI,'

ZI_Im_j!l_[ rF((Am); + uj +1)° (66)

The numbers m = (my, ma, ..., m,) are divided to | and J, such tahat
INJ =0, w. r. t. relation defining /4.

There is also a Mellin-Barnes representation, which can be regarded as
continuous analog of the I-series.
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Let g1, g2, ..., g, be linear forms in r variables. If the series
. ti, to, ., tr