SDEs driven by stable processes

Leonid Mytnik (Technion)

Joint work with J. Berestycki, L. Döring, L. Zambotti

7th International Conference on Lévy Processes Wrocław

July 18, 2013

SDE driven by stable noise

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) L(d s)+\int_{0}^{t} g\left(X_{s}\right) d s
$$

where $\sigma \geq 0$, is Hölder continuous with exponent $\beta \in(0,1), g \geq 0$,
L is spectrally positive α-stable, $\alpha \in(1,2)$:

$$
E e^{-\lambda L_{t}}=e^{-\lambda^{\alpha} t}, \lambda>0, t \geq 0
$$

Uniqueness of non-negative solutions? Hitting zero?

Pathwise uniqueness for SDEs driven by Brownian motion

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}
$$

B_{t} is a one-dimensional Brownian motion.
Theorem (Yamada, Watanabe (71))
If σ is Hölder continuous with exponent $1 / 2$, then PU holds.

Pathwise uniqueness for SDEs driven by Brownian motion

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}
$$

B_{t} is a one-dimensional Brownian motion.
Theorem (Yamada, Watanabe (71))
If σ is Hölder continuous with exponent $1 / 2$, then PU holds.

Remark

There are counter examples for σ which is Hölder continuous with exponent less than $1 / 2$.

SDE driven by stable noise. Previous Results

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)
$$

- L-symmetric α-stable noise, $\alpha \in(1,2)$. Pathwise uniqueness (PU) holds for σ Hölder ($1 / \alpha$) (Komatsu(82), Bass(02)). The result is sharp.

SDE driven by stable noise. Previous Results

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)
$$

- L-symmetric α-stable noise, $\alpha \in(1,2)$. Pathwise uniqueness (PU) holds for σ Hölder ($1 / \alpha$) (Komatsu(82), Bass(02)). The result is sharp.
- L - spectrally positive α-stable, $\alpha \in(1,2)$. PU holds for σ non-decreasing, Hölder(1-1/ α) (Li, M. (11)) Improved by Li, Pu (12), Fournier (13).

SDE driven by stable noise. Previous Results

$$
x_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)
$$

- L - symmetric α-stable noise, $\alpha \in(1,2)$. Pathwise uniqueness (PU) holds for σ Hölder ($1 / \alpha$) (Komatsu(82), Bass(02)). The result is sharp.
- L - spectrally positive α-stable, $\alpha \in(1,2)$.

PU holds for σ non-decreasing, $\operatorname{Hölder}(1-1 / \alpha)(L i, M .(11))$ Improved by Li, Pu (12), Fournier (13).

- $L=a_{1} L^{1}-a_{2} L^{2} ; L^{i}$ - spectrally positive α-stable; $a_{i} \geq 0$: $\exists \gamma=\gamma\left(\alpha, a_{1}, a_{2}\right) \in[1-1 / \alpha, 1 / \alpha]$, s.t.
PU holds for $\sigma \operatorname{Hölder}(\gamma)$ and $\left(a_{1}-a_{2}\right) \sigma$ non-decreasing (Fournier(13))

SDE driven by stable noise. Add drift

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\int_{0}^{t} g\left(X_{s-}\right) d s .
$$

- If σ non-decreasing, $\operatorname{Hölder}(1-1 / \alpha), g-\operatorname{Lip}$, then PU holds.

SDE driven by stable noise. Add drift

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\int_{0}^{t} g\left(X_{s-}\right) d s
$$

- If σ non-decreasing, $\operatorname{Hölder}(1-1 / \alpha), g-\operatorname{Lip}$, then $\mathbf{P U}$ holds.
- We will consider

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s
$$

L - spectrally positive α-stable, $\alpha \in(1,2)$. $X_{0} \geq 0, \theta \geq 0$. PU?

SDE driven by stable noise. Add drift

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\int_{0}^{t} g\left(X_{s-}\right) d s
$$

- If σ non-decreasing, Hölder($1-1 / \alpha$), g - Lip, then PU holds.
- We will consider

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s,
$$

L - spectrally positive α-stable, $\alpha \in(1,2)$. $X_{0} \geq 0, \theta \geq 0$. PU?

- Clearly for $\beta \geq 1-1 / \alpha, \theta=0$: PU holds.

SDE driven by stable noise. Add drift

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\int_{0}^{t} g\left(X_{s-}\right) d s
$$

- If σ non-decreasing, Hölder($1-1 / \alpha$), g - Lip, then PU holds.
- We will consider

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s,
$$

L - spectrally positive α-stable, $\alpha \in(1,2)$. $X_{0} \geq 0, \theta \geq 0$. PU?

- Clearly for $\beta \geq 1-1 / \alpha, \theta=0$: PU holds.
- $\beta \geq 1-1 / \alpha ; \eta=0$ or $\eta=1$: PU holds.

SDE driven by stable noise

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s
$$

From now on:

$$
\beta \in[1-1 / \alpha, 1) .
$$

For $\eta \in(0,1)$, $\mathbf{P U}$ holds until

$$
T_{0}=\inf \left\{t \geq 0: X_{t}=0\right\}
$$

- $T_{0}<\infty$?

SDE driven by stable noise

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s
$$

From now on:

$$
\beta \in[1-1 / \alpha, 1)
$$

For $\eta \in(0,1)$, $\mathbf{P U}$ holds until

$$
T_{0}=\inf \left\{t \geq 0: X_{t}=0\right\}
$$

- $T_{0}<\infty$?
- If $T_{0}<\infty$, does PU hold?

SDE driven by stable noise

$$
\begin{aligned}
& \quad X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \\
& \text { Let } \quad X_{0}>0, \beta \in[1-1 / \alpha, 1), \eta=1-\alpha(1-\beta) .
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& T_{0}<\infty, \text { a.s. iff } 0 \leq \theta<\Gamma(\alpha) . \\
& T_{0}=\infty, \text { a.s. iff } \theta \geq \Gamma(\alpha)
\end{aligned}
$$

SDE driven by stable noise

$$
\begin{aligned}
& \qquad X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \\
& \text { Let } \quad X_{0}>0, \beta \in[1-1 / \alpha, 1), \eta=1-\alpha(1-\beta) .
\end{aligned}
$$

Theorem 1

$$
T_{0}<\infty, \text { a.s. iff } 0 \leq \theta<\Gamma(\alpha)
$$

$$
T_{0}=\infty, \text { a.s. iff } \theta \geq \Gamma(\alpha)
$$

- Theorem 2
(i) $\theta \geq \Gamma(\alpha)$. \exists ! strong non-negative solution that never hits zero.
(ii) $\theta \leq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$. \exists ! strong non-negative solution. Trapped at zero.
(iii) $\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}<\theta<\Gamma(\alpha)$. \exists ! strong solution in \mathcal{S}
(\mathcal{S} : non-negative that spend zero time at zero.)

SDE driven by stable noise

$$
\begin{aligned}
& \qquad X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \\
& \text { Let } \quad X_{0}>0, \beta \in[1-1 / \alpha, 1), \eta=1-\alpha(1-\beta) .
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& T_{0}<\infty, \text { a.s. iff } 0 \leq \theta<\Gamma(\alpha) \\
& T_{0}=\infty, \text { a.s. iff } \theta \geq \Gamma(\alpha)
\end{aligned}
$$

- Theorem 2
(i) $\theta \geq \Gamma(\alpha)$. \exists ! strong non-negative solution that never hits zero.
(ii) $\theta \leq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$. \exists ! strong non-negative solution. Trapped at zero.
(iii) $\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}<\theta<\Gamma(\alpha)$. \exists ! strong solution in \mathcal{S}
(\mathcal{S} : non-negative that spend zero time at zero.)
- $\theta>0$. For $\eta<1-\alpha(1-\beta) \Rightarrow T_{0}=\infty \Rightarrow \exists$! strong solution

SDE driven by stable noise

$$
\begin{aligned}
& \quad X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s . \\
& \text { Let } \quad X_{0}>0, \beta \in[1-1 / \alpha, 1), \eta=1-\alpha(1-\beta) .
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& T_{0}<\infty, \text { a.s. iff } 0 \leq \theta<\Gamma(\alpha) . \\
& T_{0}=\infty, \text { a.s. iff } \theta \geq \Gamma(\alpha) .
\end{aligned}
$$

- Theorem 2
(i) $\theta \geq \Gamma(\alpha)$. \exists ! strong non-negative solution that never hits zero.
(ii) $\theta \leq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$. \exists ! strong non-negative solution. Trapped at zero.
(iii) $\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}<\theta<\Gamma(\alpha)$. \exists ! strong solution in \mathcal{S}
(\mathcal{S} : non-negative that spend zero time at zero.)
- $\theta>0$. For $\eta<1-\alpha(1-\beta) \Rightarrow T_{0}=\infty \Rightarrow \exists$! strong solution
- For $\eta>1-\alpha(1-\beta), \exists$! strong solution.

SDE driven by stable noise

$$
\begin{aligned}
X_{t}= & X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \\
& \beta \geq 1-1 / \alpha, \eta=1-\alpha(1-\beta)
\end{aligned}
$$

Remarks

- $\alpha=2(L$ is Brownian motion $) \Rightarrow \eta=2 \beta-1$.
- $T_{0}<\infty$, a.s. iff $0 \leq \theta<1$. $T_{0}=\infty$, a.s. iff $\theta \geq 1$.
- (i) $\theta>1$. \exists ! strong non-negative solution that never hits zero.
(ii) $\theta \leq 2 \beta-1$. ヨ! strong non-negative solution. Trapped at zero.
(iii) $2 \beta-1<\theta<1$. ヨ! strong solution in \mathcal{S}.
(Cherny, Engelbert (05)).

SDE driven by stable noise

$$
\begin{aligned}
X_{t}= & X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \\
& \beta \geq 1-1 / \alpha, \eta=1-\alpha(1-\beta)
\end{aligned}
$$

Remarks

- $\alpha=2(L$ is Brownian motion $) \Rightarrow \eta=2 \beta-1$.
- $T_{0}<\infty$, a.s. iff $0 \leq \theta<1$.
$T_{0}=\infty$, a.s. iff $\theta \geq 1$.
- (i) $\theta>1$. \exists ! strong non-negative solution that never hits zero.
(ii) $\theta \leq 2 \beta-1$. \exists ! strong non-negative solution. Trapped at zero.
(iii) $2 \beta-1<\theta<1$. \exists ! strong solution in \mathcal{S}.
(Cherny, Engelbert (05)).
- $\beta=1 / \alpha \Rightarrow \eta=2-\alpha$.

If $\theta=0$ then X is continuous state branching process (CSBP).
If $\alpha=2$, then X is continuous CSBP with immigration $\theta d t$.
$2 X_{t}$ is a squared Bessel process of dimension=2 θ.
1 st dichotomy is well known. PU for all $\theta \geq 0$.

Self-similarity

$$
\begin{align*}
X_{t}= & X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s . \tag{1}\\
& \beta \geq 1-1 / \alpha, \eta=1-\alpha(1-\beta) .
\end{align*}
$$

For $x>0$, let P^{x} be the law of X_{t} absorbed at 0 with $X_{0}=x$.
Lemma 3
Let $X_{0}=x>0$. The SDE (1) admits a unique non-negative self-similar solution of index $1 /(1-\eta) \geq 1$ absorbed at zero. That is

$$
\operatorname{Law}\left(\left(c X_{c-(1-\eta) t}\right)_{t \geq 0}\right)=P^{c x} .
$$

Proof of Theorem 1

Lamperti transformation: Let $X_{0}=x>0$. There exists a Lévy proceess ξ such that

$$
\left(X_{t \wedge T_{0}}\right)_{t \geq 0} \stackrel{d}{=}\left(x \exp \left(\xi_{\tau(t x-(1-\eta)}\right)\right)_{t \geq 0}
$$

where

$$
\tau(t):=\inf \left\{s \geq 0: A_{s}>t\right\} \quad \text { and } \quad A_{t}:=\int_{0}^{t} \exp \left((1-\eta) \xi_{s}\right) d s
$$

Hence

$$
\begin{equation*}
T_{0}<\infty \quad \Longleftrightarrow \quad \xi \text { drifts to }-\infty \tag{2}
\end{equation*}
$$

Easy to check, for $\lambda \in[0,1)$,

$$
\begin{gather*}
E\left[\exp \left(\lambda \xi_{1}\right)\right]=\exp \left(\lambda\left(\theta-\frac{\Gamma(\alpha-\lambda)}{\Gamma(1-\lambda)}\right)\right) \tag{3}\\
\Rightarrow \xi \text { drifts to }-\infty \text { iff } \theta<\Gamma(\alpha)
\end{gather*}
$$

Proof of Theorem 2

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s
$$

Representation of L :

$$
L(d s)=\int_{z=0}^{\infty} z\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d z)
$$

where \mathcal{N} is a PPP on $(0, \infty) \times(0, \infty)$ with intensity measure $\mathcal{N}^{\prime}(d s, d x)=d s \otimes c_{\alpha} x^{-1-\alpha}$.

$$
X_{t}=X_{0}+\int_{0}^{t} \int_{z=0}^{\infty}\left(X_{s-}\right)^{\beta} z\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d z)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s
$$

The proof is based on the simple power transformation $x \mapsto x^{1-\eta}$.

Proof of Theorem 2

Lemma 4
$V=X^{1-\eta}$ is a solution to

$$
\begin{aligned}
V_{t}= & x_{0}^{1-\eta}+(1-\eta) \int_{0}^{t}\left(\theta-\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}\right) 1\left\{V_{s} \neq 0\right\} d s \\
& +\int_{0}^{t} \int_{0}^{\infty}\left(\left(V_{s-1}^{\left.\frac{1}{1-1}-\eta\right)}+V_{s-}^{\frac{\beta}{1-\eta}} z\right)^{1-\eta}-V_{s-}\right)\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d z) .
\end{aligned}
$$

Proof Itô's formula.

If $\theta \leq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}, V$ is non-neg. supermartingale: trap. at zero \Rightarrow uniqueness.
If $\theta>\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$ and X spends zero time at 0 , then $V=X^{1-\eta}$ solves

$$
\begin{aligned}
V_{t}= & X_{0}^{1-\eta}+(1-\eta)\left(\theta-\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}\right) t \\
& +\int_{0}^{t} \int_{0}^{\infty}\left(\left(V_{s-}^{\frac{1}{(1-\eta)}}+V_{s-}^{\frac{\beta}{11-\eta}} z\right)^{1-\eta}-V_{s-}\right)\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d z)
\end{aligned}
$$

Proof of Theorem 2

Lemma 5

If $\theta \geq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$ and $V_{0} \geq 0$, then \exists ! non-negative strong solution V to

$$
\begin{aligned}
V_{t}= & V_{0}+(1-\eta)\left(\theta-\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}\right) t \\
& +\int_{0}^{t} \int_{0}^{\infty}\left(\left(V_{s-}^{\frac{1}{1-\eta}}+V_{s-}^{\frac{\beta}{1-\eta}} x\right)^{1-\eta}-V_{s-}\right)\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d x)
\end{aligned}
$$

If $\theta>\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$, then $V \in \mathcal{S}$. Moreover $V^{1 /(1-\eta)}$ solves $S D E$ for X.

Proof of Theorem 2

Lemma 5

If $\theta \geq \frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$ and $V_{0} \geq 0$, then \exists ! non-negative strong solution V to

$$
\begin{aligned}
V_{t}= & V_{0}+(1-\eta)\left(\theta-\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}\right) t \\
& +\int_{0}^{t} \int_{0}^{\infty}\left(\left(V_{s-}^{\frac{1}{1-\eta}}+V_{s-}^{\frac{\beta}{1-\eta}} x\right)^{1-\eta}-V_{s-}\right)\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(d s, d x)
\end{aligned}
$$

If $\theta>\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$, then $V \in \mathcal{S}$. Moreover $V^{1 /(1-\eta)}$ solves $S D E$ for X.
Proof $g(v, x) \equiv\left(v^{\frac{1}{1-\eta}}+v^{\frac{\beta}{1-\eta}} x\right)^{1-\eta}-v$. One can show

$$
|g(v, x)-g(u, x)| \leq c x|u-v|^{1-1 / \alpha} .
$$

Then the proof of $\mathbf{P U}$ is an adaptation of Yamada-Watanabe argument used in Li, M. (11).

Weak existence is easy to check. $\mathbf{P U}+$ weak existence $\Rightarrow \exists$! strong solution.

By Lemmas 4,5 we finish the proof of Theorem 2.

Self-Similar Extensions

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s \tag{1}
\end{equation*}
$$

Several corollaries of the main results.

Lemma 6

Let $\theta>\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}, X_{0}=x \geq 0$. Then the solution $X \in \mathcal{S}$ is self-similar.
Remark Before we knew it just for the solution absorbed at zero.
Existence of recurrent non-negative Markovian extension after time T_{0} for self-similar processes has been studied in the literature (Rivero $(05,07)$, Fitzsimmons (06)). Here we have it for free.
Lemma 7
Let $\Gamma(\alpha)>\theta>\frac{\Gamma(\alpha \beta)}{\Gamma(\eta)}$. Let $\left(P^{x}\right)_{x>0}$ be the laws of solutions to (1).
Then there exists $\left(\bar{P}^{x}\right)_{x \geq 0}$ - the unique extension of $\left(P^{x}\right)_{x>0}$ that leaves zero continuously.
Proof: \bar{P}^{0} describes the unique solution of (1) starting at 0 .
\bar{P}^{0} can be also defined for the case $\theta \geq \Gamma(\alpha)$. In this case we have: Lemma 8 Let $\beta \in[1-1 / \alpha, 1)$ and $\theta \geq \Gamma(\alpha)$. Then $\left(\bar{P}^{x}\right)_{x \geq 0}$ is weakly continuous in the initial condition.

Open Problems

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s .
$$

- $\beta<1-1 / \alpha$. Conditions for PU.

Open Problems

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s .
$$

- $\beta<1-1 / \alpha$. Conditions for PU.
- Allow more general coefficients:

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\theta \int_{0}^{t} g\left(X_{s-}\right) d s
$$

Conditions on σ, g for PU.

Open Problems

$$
X_{t}=X_{0}+\int_{0}^{t}\left(X_{s-}\right)^{\beta} L(d s)+\theta \int_{0}^{t}\left(X_{s-}\right)^{\eta} d s .
$$

- $\beta<1-1 / \alpha$. Conditions for PU.
- Allow more general coefficients:

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) L(d s)+\theta \int_{0}^{t} g\left(X_{s-}\right) d s
$$

Conditions on σ, g for PU.

- Signed solutions?

Thank You

