SDEs driven by stable processes

Leonid Mytnik (Technion)

Joint work with J. Berestycki, L. Döring, L. Zambotti

7th International Conference on Lévy Processes
Wrocław

July 18, 2013

$$X_t = X_0 + \int_0^t \sigma(X_s)L(ds) + \int_0^t g(X_s) ds,$$

where $\sigma \geq 0$, is Hölder continuous with exponent $\beta \in (0,1)$, $g \geq 0$,

L is spectrally positive α -stable, $\alpha \in (1,2)$:

$$Ee^{-\lambda L_t} = e^{-\lambda^{\alpha} t}, \lambda > 0, t \geq 0.$$

Uniqueness of non-negative solutions? Hitting zero?

Pathwise uniqueness for SDEs driven by Brownian motion

$$X_t = X_0 + \int_0^t \sigma(X_s) dB_s$$

 B_t is a one-dimensional Brownian motion.

Theorem (Yamada, Watanabe (71))

If σ is Hölder continuous with exponent 1/2, then PU holds.

Pathwise uniqueness for SDEs driven by Brownian motion

$$X_t = X_0 + \int_0^t \sigma(X_s) dB_s$$

 B_t is a one-dimensional Brownian motion.

Theorem (Yamada, Watanabe (71))

If σ is Hölder continuous with exponent 1/2, then PU holds.

Remark

There are counter examples for σ which is Hölder continuous with exponent less than 1/2.

SDE driven by stable noise. Previous Results

$$X_t = X_0 + \int_0^t \sigma(X_{s-}) L(ds),$$

▶ L — symmetric α -stable noise, $\alpha \in (1,2)$. Pathwise uniqueness (**PU**) holds for σ Hölder($1/\alpha$) (Komatsu(82), Bass(02)). The result is sharp.

SDE driven by stable noise. Previous Results

$$X_t = X_0 + \int_0^t \sigma(X_{s-}) L(ds),$$

- ▶ L symmetric α -stable noise, $\alpha \in (1,2)$. Pathwise uniqueness (**PU**) holds for σ Hölder($1/\alpha$) (Komatsu(82), Bass(02)). The result is sharp.
- ▶ L spectrally positive α -stable, $\alpha \in (1,2)$. **PU** holds for σ non-decreasing, Hölder $(1-1/\alpha)$ (Li, M. (11)) Improved by Li, Pu (12), Fournier (13).

SDE driven by stable noise. Previous Results

$$X_t = X_0 + \int_0^t \sigma(X_{s-}) L(ds),$$

- ▶ L symmetric α -stable noise, $\alpha \in (1,2)$. Pathwise uniqueness (**PU**) holds for σ Hölder($1/\alpha$) (Komatsu(82), Bass(02)). The result is sharp.
- ▶ L spectrally positive α -stable, $\alpha \in (1,2)$. **PU** holds for σ non-decreasing, Hölder $(1-1/\alpha)$ (Li, M. (11)) Improved by Li, Pu (12), Fournier (13).
- ▶ $L = a_1 L^1 a_2 L^2$; L^i spectrally positive α -stable; $a_i \ge 0$: $\exists \gamma = \gamma(\alpha, a_1, a_2) \in [1 1/\alpha, 1/\alpha]$, s.t. **PU** holds for σ Hölder(γ) and $(a_1 a_2)\sigma$ non-decreasing (Fournier(13))

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \int_0^t g(X_{s-})ds.$$

▶ If σ non-decreasing, Hölder $(1-1/\alpha)$, g — Lip, then **PU** holds.

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \int_0^t g(X_{s-})ds.$$

- ▶ If σ non-decreasing, Hölder $(1-1/\alpha)$, g Lip, then **PU** holds.
- We will consider

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds,$$

L — spectrally positive α -stable, $\alpha \in (1,2)$. $X_0 > 0$. $\theta > 0$. **PU**?

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \int_0^t g(X_{s-})ds.$$

- ▶ If σ non-decreasing, Hölder $(1-1/\alpha)$, g Lip, then **PU** holds.
- We will consider

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds,$$

L — spectrally positive α -stable, $\alpha \in (1,2)$. $X_0 > 0$, $\theta > 0$. **PU**?

▶ Clearly for $\beta \ge 1 - 1/\alpha, \theta = 0$: **PU** holds.

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \int_0^t g(X_{s-})ds.$$

- ▶ If σ non-decreasing, Hölder $(1-1/\alpha)$, g Lip, then **PU** holds.
- We will consider

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds,$$

L — spectrally positive α -stable, $\alpha \in (1,2)$.

- $X_0 \ge 0, \ \theta \ge 0.$ **PU**?
- ▶ Clearly for $\beta \ge 1 1/\alpha, \theta = 0$: **PU** holds.
- $\beta \geq 1 1/\alpha$; $\eta = 0$ or $\eta = 1$: **PU** holds.

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

From now on:

$$\beta \in [1 - 1/\alpha, 1).$$

For $\eta \in (0,1)$, **PU** holds until

$$T_0 = \inf\{t \geq 0 : X_t = 0\}.$$

 $ightharpoonup T_0 < \infty$?

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

From now on:

$$\beta \in [1 - 1/\alpha, 1).$$

For $\eta \in (0,1)$, **PU** holds until

$$T_0 = \inf\{t \geq 0 : X_t = 0\}.$$

- $ightharpoonup T_0 < \infty$?
- ▶ If $T_0 < \infty$, does **PU** hold?

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
Let $X_{0} > 0$, $\beta \in [1 - 1/\alpha, 1)$, $\eta = 1 - \alpha(1 - \beta)$.

Theorem 1

$$T_0 < \infty$$
, a.s. iff $0 \le \theta < \Gamma(\alpha)$.

$$T_0 = \infty$$
, a.s. iff $\theta \ge \Gamma(\alpha)$.

▶

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
Let $X_{0} > 0$, $\beta \in [1 - 1/\alpha, 1)$, $\eta = 1 - \alpha(1 - \beta)$.

Theorem 1

$$T_0 < \infty$$
, a.s. iff $0 \le \theta < \Gamma(\alpha)$.
 $T_0 = \infty$, a.s. iff $\theta > \Gamma(\alpha)$.

- ► Theorem 2
 - (i) $\theta \geq \Gamma(\alpha)$. $\exists !$ strong non-negative solution that never hits zero.
 - (ii) $\theta \leq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$. $\exists !$ strong non-negative solution. Trapped at zero.
 - (iii) $\frac{\Gamma(\alpha\beta)}{\Gamma(\eta)} < \theta < \Gamma(\alpha)$. $\exists !$ strong solution in \mathcal{S} (\mathcal{S} : non-negative that spend zero time at zero.)

•

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
Let $X_{0} > 0$, $\beta \in [1 - 1/\alpha, 1)$, $\eta = 1 - \alpha(1 - \beta)$.

Theorem 1

$$T_0 < \infty$$
, a.s. iff $0 \le \theta < \Gamma(\alpha)$.
 $T_0 = \infty$, a.s. iff $\theta \ge \Gamma(\alpha)$.

- ► Theorem 2
 - (i) $\theta \geq \Gamma(\alpha)$. $\exists !$ strong non-negative solution that never hits zero.
 - (ii) $\theta \leq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$. $\exists !$ strong non-negative solution. Trapped at zero.
 - (iii) $\frac{\Gamma(\alpha\beta)}{\Gamma(\eta)} < \theta < \Gamma(\alpha)$. $\exists !$ strong solution in \mathcal{S} (\mathcal{S} : non-negative that spend zero time at zero.)
 - ▶ $\theta > 0$. For $\eta < 1 \alpha(1 \beta) \Rightarrow T_0 = \infty \Rightarrow \exists!$ strong solution

•

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
Let $X_{0} > 0$, $\beta \in [1 - 1/\alpha, 1)$, $\eta = 1 - \alpha(1 - \beta)$.

Theorem 1

 $T_0 < \infty$, a.s. iff $0 \le \theta < \Gamma(\alpha)$. $T_0 = \infty$, a.s. iff $\theta \ge \Gamma(\alpha)$.

- ► Theorem 2
 - (i) $\theta \geq \Gamma(\alpha)$. $\exists !$ strong non-negative solution that never hits zero.
 - (ii) $\theta \leq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$. $\exists !$ strong non-negative solution. Trapped at zero.
 - (iii) $\frac{\Gamma(\alpha\beta)}{\Gamma(\eta)} < \theta < \Gamma(\alpha)$. $\exists !$ strong solution in \mathcal{S} (\mathcal{S} : non-negative that spend zero time at zero.)
 - ▶ $\theta > 0$. For $\eta < 1 \alpha(1 \beta) \Rightarrow T_0 = \infty \Rightarrow \exists!$ strong solution
 - ▶ For $\eta > 1 \alpha(1 \beta)$, $\exists !$ strong solution.

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

 $\beta \ge 1 - 1/\alpha, \eta = 1 - \alpha(1 - \beta).$

Remarks

- $\alpha = 2$ (*L* is Brownian motion) $\Rightarrow \eta = 2\beta 1$.
 - ► $T_0 < \infty$, a.s. iff $0 \le \theta < 1$. $T_0 = \infty$, a.s. iff $\theta > 1$.
 - ▶ (i) $\theta > 1$. \exists ! strong non-negative solution that never hits zero.
 - (ii) $\theta \le 2\beta 1$. $\exists !$ strong non-negative solution. Trapped at zero.
 - (iii) $2\beta 1 < \theta < 1$. $\exists !$ strong solution in \mathcal{S} . (Cherny, Engelbert (05)).

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

 $\beta \ge 1 - 1/\alpha, \eta = 1 - \alpha(1 - \beta).$

Remarks

- ho $\alpha = 2$ (*L* is Brownian motion) $\Rightarrow \eta = 2\beta 1$.
 - ► $T_0 < \infty$, a.s. iff $0 \le \theta < 1$. $T_0 = \infty$, a.s. iff $\theta > 1$.
 - ▶ (i) $\theta > 1$. \exists ! strong non-negative solution that never hits zero.
 - (ii) $\theta \le 2\beta 1$. $\exists !$ strong non-negative solution. Trapped at zero.
 - (iii) $2\beta 1 < \theta < 1$. $\exists !$ strong solution in \mathcal{S} . (Cherny, Engelbert (05)).
- $\beta = 1/\alpha \Rightarrow \eta = 2 \alpha.$
 - If $\theta = 0$ then X is continuous state branching process (CSBP). If $\alpha = 2$, then X is continuous CSBP with immigration θdt .
 - $2X_t$ is a squared Bessel process of dimension= 2θ .

Self-similarity

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
 (1)
$$\beta \geq 1 - 1/\alpha, \eta = 1 - \alpha(1 - \beta).$$

For x > 0, let P^x be the law of X_t absorbed at 0 with $X_0 = x$.

Lemma 3

Let $X_0=x>0$. The SDE (1) admits a unique non-negative self-similar solution of index $1/(1-\eta)\geq 1$ absorbed at zero. That is

$$Law((cX_{c^{-(1-\eta)}t})_{t\geq 0}) = P^{cx}.$$

Lamperti transformation: Let $X_0 = x > 0$. There exists a Lévy proceess ξ such that

$$(X_{t\wedge T_0})_{t\geq 0}\stackrel{d}{=} \left(x\exp\left(\xi_{\tau\left(tx^{-(1-\eta)}\right)}\right)\right)_{t\geq 0},$$

where

$$au(t):=\inf\{s\geq 0: A_s>t\} \qquad ext{and} \qquad A_t:=\int_0^t \exp\left((1-\eta)\xi_s
ight)\,ds.$$

Hence

$$T_0 < \infty \qquad \iff \quad \xi \text{ drifts to } -\infty$$
 (2)

Easy to check, for $\lambda \in [0,1)$,

$$E[\exp(\lambda \xi_1)] = \exp\left(\lambda \left(\theta - \frac{\Gamma(\alpha - \lambda)}{\Gamma(1 - \lambda)}\right)\right)$$
(3)

$$\Rightarrow \xi$$
 drifts to $-\infty$ iff $\theta < \Gamma(\alpha)$.

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

Representation of *L*:

$$L(ds) = \int_{z=0}^{\infty} z(\mathcal{N} - \mathcal{N}')(ds, dz),$$

where $\mathcal N$ is a PPP on $(0,\infty) \times (0,\infty)$ with intensity measure $\mathcal N'(ds,dx) = ds \otimes c_\alpha x^{-1-\alpha}$.

$$X_t = X_0 + \int_0^t \int_{z=0}^\infty (X_{s-})^{\beta} z (\mathcal{N} - \mathcal{N}') (ds, dz) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

The proof is based on the simple power transformation $x \mapsto x^{1-\eta}$.

Lemma 4

 $V = X^{1-\eta}$ is a solution to

$$\begin{split} V_t &= X_0^{1-\eta} + (1-\eta) \int_0^t \left(\theta - \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}\right) 1\{V_s \neq 0\} \, ds \\ &+ \int_0^t \int_0^\infty \left(\left(V_{s-}^{\frac{1}{(1-\eta)}} + V_{s-}^{\frac{\beta}{1-\eta}} z\right)^{1-\eta} - V_{s-}\right) (\mathcal{N} - \mathcal{N}') (ds, dz). \end{split}$$

Proof Itô's formula.

If $\theta \leq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$, V is non-neg. supermartingale: trap. at zero \Rightarrow uniqueness. If $\theta > \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$ and X spends zero time at 0, then $V = X^{1-\eta}$ solves

$$\begin{split} V_t &= X_0^{1-\eta} + (1-\eta) \left(\theta - \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}\right) t \\ &+ \int_0^t \int_0^\infty \left(\left(V_{s-}^{\frac{1}{(1-\eta)}} + V_{s-}^{\frac{\beta}{1-\eta}} z\right)^{1-\eta} - V_{s-}\right) (\mathcal{N} - \mathcal{N}') (ds, dz). \end{split}$$

Lemma 5

If $\theta \geq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$ and $V_0 \geq 0$, then $\exists !$ non-negative strong solution V to

$$\begin{split} V_t &= V_0 + (1 - \eta) \left(\theta - \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}\right) t \\ &+ \int_0^t \int_0^\infty \left(\left(V_{s-}^{\frac{1}{1-\eta}} + V_{s-}^{\frac{\beta}{1-\eta}} x\right)^{1-\eta} - V_{s-}\right) (\mathcal{N} - \mathcal{N}') (ds, dx). \end{split}$$

If $\theta > \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$, then $V \in \mathcal{S}$. Moreover $V^{1/(1-\eta)}$ solves SDE for X.

Lemma 5

If $\theta \geq \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$ and $V_0 \geq 0$, then $\exists !$ non-negative strong solution V to

$$\begin{split} V_t &= V_0 + (1 - \eta) \left(\theta - \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}\right) t \\ &+ \int_0^t \int_0^\infty \left(\left(V_{s-}^{\frac{1}{1-\eta}} + V_{s-}^{\frac{\beta}{1-\eta}} x\right)^{1-\eta} - V_{s-}\right) (\mathcal{N} - \mathcal{N}') (ds, dx). \end{split}$$

If $\theta > \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$, then $V \in \mathcal{S}$. Moreover $V^{1/(1-\eta)}$ solves SDE for X.

Proof
$$g(v,x) \equiv \left(v^{\frac{1}{1-\eta}} + v^{\frac{\beta}{1-\eta}}x\right)^{1-\eta} - v$$
. One can show

$$|g(v,x)-g(u,x)|\leq cx|u-v|^{1-1/\alpha}.$$

Then the proof of **PU** is an adaptation of Yamada-Watanabe argument used in Li, M. (11).

Weak existence is easy to check.

PU + weak existence $\Rightarrow \exists!$ strong solution.

By Lemmas 4,5 we finish the proof of Theorem 2.

Self-Similar Extensions

$$X_{t} = X_{0} + \int_{0}^{t} (X_{s-})^{\beta} L(ds) + \theta \int_{0}^{t} (X_{s-})^{\eta} ds.$$
 (1)

Several corollaries of the main results.

Lemma 6

Let $\theta > \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$, $X_0 = x \ge 0$. Then the solution $X \in \mathcal{S}$ is self-similar.

Remark Before we knew it just for the solution absorbed at zero. Existence of recurrent non-negative Markovian extension after time T_0 for self-similar processes has been studied in the literature (Rivero (05,07), Fitzsimmons (06)). Here we have it for free.

Lemma 7

Let $\Gamma(\alpha) > \theta > \frac{\Gamma(\alpha\beta)}{\Gamma(\eta)}$. Let $(P^x)_{x>0}$ be the laws of solutions to (1). Then there exists $(P^x)_{x\geq 0}$ — the unique extension of $(P^x)_{x>0}$ that leaves zero continuously.

Proof: \bar{P}^0 describes the unique solution of (1) starting at 0.

 \bar{P}^0 can be also defined for the case $\theta \geq \Gamma(\alpha)$. In this case we have:

Lemma 8

Let $\beta \in [1 - 1/\alpha, 1)$ and $\theta \ge \Gamma(\alpha)$. Then $(\bar{P}^x)_{x \ge 0}$ is weakly continuous in the initial condition.

Open Problems

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

▶ $\beta < 1 - 1/\alpha$. Conditions for **PU**.

Open Problems

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

- ▶ $\beta < 1 1/\alpha$. Conditions for **PU**.
- ► Allow more general coefficients:

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \theta \int_0^t g(X_{s-})ds.$$

Conditions on σ , g for **PU**.

Open Problems

$$X_t = X_0 + \int_0^t (X_{s-})^{\beta} L(ds) + \theta \int_0^t (X_{s-})^{\eta} ds.$$

- ▶ $\beta < 1 1/\alpha$. Conditions for **PU**.
- ► Allow more general coefficients:

$$X_t = X_0 + \int_0^t \sigma(X_{s-})L(ds) + \theta \int_0^t g(X_{s-})ds.$$

Conditions on σ , g for **PU**.

Signed solutions?

Thank You