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...it would be worth studying Lévy processes
whose jump measure has a completely monotone
density, and in particular, the Wiener-Hopf factor-
ization of such.

[@ L.C.G. Rogers
Wiener-Hopf factorization of diffusions and Lévy
processes
Proc. London Math. Soc. 47(3) (1983): 177-191
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CM jumps
Xt is a 1-D Lévy process with Lévy measure v(x)dx

Notation: CM = completely monotone
Xt has CM jumps < v(x) and v(—x) are CM on (0, ©):

v(X) = Lu(x) = J(o )e_SXM+(d5) (x >0)

v(X) =ZLu-(=x) = f(o )esxu—(ds) (x<0)

(see Bernstein’s theorem)

Examples:

e Stable processes: v(£x) = cex~17¢

e Tempered stable processes: v(£x) = cax~17%e~MX
e Meromorphic processes


http://en.wikipedia.org/wiki/Bernstein%27s_theorem_on_monotone_functions

Plot of v(x) for a sample process with CM jumps
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Rogers’s theorem

Notation: CBF = complete Bernstein function

fisaCBF & %:.Zg foraCMg & %:f.ﬂu

(there are many equivalent definitions)

Theorem [Rogers, 1983]

Xt has CM jumps
3

k(t; &) and k(t; &) are CBFs of & for some/all ©

e k(7;&) and k(t;&) are Laplace exponents of the
ladder processes for X; (describe extrema of X;)

(more on this below)
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Extension of Rogers’s theorem
Theorem [K., 2013]

Xt has CM jumps and is balanced

J
k(t;&) and k(7;&) are CBFs of both 7 and &

Furthermore, the following are CBFs of t and &:

k(7€) R(71; )
K(72;€) #(12;€) (0<71=<12)
K(T;gl) ,’(‘-(7;51)
k(7;&2) #(1:£2) (0<&1=&)

k(7 €1)R(T: &2)

e The meaning of ‘balanced’ is explained later

(stable are balanced; tempered stable can be made balanced)
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Supremum functional

Supremum of X;: M; = sup Xs
s€[0,t]
Time of supremum: Tt €[0,t] : Mt =Xr,

*° 1 0
f (Ee_UTt_th) e_Ttdth — &
0 T k(0 +71;§)

That is:

1 «x(r;0)
ogt-—»'r P(Tt (S dS, Mt € dX) R S
. T k(o +T;§)



Rogers’s theorem Results Rogers functions Wiener-Hopf Extensions
000 000000 0000

Properties of the supremum

Corollary [Rogers, 1983]

If Xt has CM jumps:

[0.0]

— | e "'P(M: < x)dt is CM in x
dx Jo

Corollary [K.]

If X has CM jumps and is balanced:

d (o]
—f e "'P(T; < s)dt isCMins
ds Jo

Corollary [K.]
If X; has CM jumps and is balanced:
Ee M isCMin t
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Space-only Laplace transform

Theorem [K.]

If X; has CM jumps and is balanced:
-1
0 lig =w=tn2 r

where

. 1 J°° 1 iE ds
r (&) =exp ; w,(O)arg - \Il;l(S) ?

_E-VH)E+YTID)
V) -T

(W is the Lévy-Khintchine exponent; more on this later)

and

vr(€)
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Semi-explicit formula?

If one can justify the use of Fubini:

Theorem?

If X; has CM jumps and is balanced:

P(M; < x) :J e "F (x)dr
0

where
Fr(x) = cre**sin(B-x + ¥) — {CM correction}
ar =Im(W=1(r))
Br = Re(W=(r))
cr, 9r and the CM correction are given semi-explicitly
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Potential applications

e Semi-explicit expression for the distribution of M;
e Asymptotic expansions and estimates of the above

e Eigenfunction expansion for X; in half-line

For the symmetric case, see:
@ K.
Spectral analysis of subordinate Brownian motions...
Studia Math. 206(3) (2011)
[ K., J. Matecki, M. Ryznar
Suprema of Lévy processes
Ann. Probab. 41(3B) (2013)

[ K., J. Matecki, M. Ryznar
First passage times for subordinate Brownian...
Stoch. Proc. Appl 123 (2013)
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Lévy-Khintchine exponent

Ee—i€Xt — a—tV(e)

Lévy-Khintchine formula

W(E) = ag? — ibg +J (1 — e 4+ iExLx<1)v(x)dx
R

e ReV(£)>0
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CM jumps revisited

If Xt has CM jumps:
v(X) = Ly (X) (x>0)
v(x)=Zu_(-x)  (x<0)
then

. 3 i£s ) u(ds)
V() =ac?—ib
E)=eE I§+me(€+B+1+§) |s|

. (b is different here and in the previous slide)
with

W(E) = p(EN(0, ) +u-((—=E) N (=00, 0))
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Rogers functions

f is a Rogers function if
3 igs "\ u(ds)
f(€)=ag? —ibg+c
) =ae= =it +J (£+i5+1+52) B

R\{0}
fora>0,beR,c>0,u=>0

e f extends to C\ /R

o f(-8)=f(&)

e |t suffices to consider f on {£:Re& >0}
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Equivalent definitions

The following are equivalent:
(a)fora>0,beR,c>0, u>0:

. 3 igs \ u(ds)
f(g)=ag? —ib
(&) =ag” —i §+C+JR\{O} (g+i5+ 1+52) =

(b) fork >0, ¢ €[0, «]:

1 [ £ 1 go(S)dS
f(g):keXp(Ef_oo(éJris_1+ISI) || )

(c) fis holomorphic in {£:Re& >0} and:

f
Re?zo if Reg& >0

(that is, f(&£)/¢ is a Nevanlinna-Pick function)
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Real values

Theorem [K.]

If f is a Rogers function, then:
(a) Forr > 0 there is at most one solution of
f(g)=r (Re& > 0)
Write & = f~1(r)
(b) |f~1(r)| is increasing

Definition

A Rogers function f is balanced if
—Zte<arg(fi(r)<Z-e

Xt is balanced if V is balanced



vIX
2 - = 2+ . 2 i
4 | = -4 . 4 e
o 2 4 s o 2 4 o o 2 4 o
BM with drift stable tempered stable
4 F . 4 . 4 F .
2 = 2 . i
or 1Xx 0 1X 1X
2 - - 2 |- - A
-4 i TR -4 | B b b
o 2z 4 e oz 4 e o 2z 4 e
mixed stable sample CPP sample meromorphic

Real lines {& : f(&) € (0, )} for some Rogers functions
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Extension

A Rogers function f is nearly balanced if

fod
is balanced for some Md&bius transformation ¢ which
preserves {&:Re& > 0} (e.g. vertical translation)

Theorem
Main results extend to nearly balanced processes

Examples of nearly balanced processes:
e Non-monotone strictly stable and their mixtures
e Tempered strictly stable:

v(£X) = cax1mreTMeX

e (Completely) subordinate to above

(that is, with a subordinator corresponding to a CBF)



2 — -2 - 2 4
4 F = -4 = 4 F .
o 2 4 s o 2 4 o 2 4 s

BM with drift stable tempered stable
4 F . 4 . 4 F -

2+ = 2+ = =
of 1x 0 1/ 41X
2 - 2 |- - A
-4 i TR -4 | B b T
0 2 4 6 0 2 4 6 0 2 4 6
mixed stable sample CPP sample meromorphic

Real lines {&: f(&) € (0, )} for some Rogers functions
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Analytical approach

Wiener-Hopf method

For A € #/(R) write
A=A" x A~ (or FA = ZAT . ZA™)
where suppA* C [0, ), suppA~ € (-0, 0]

e Fourier transform ofAJr extends to {&:Im& >0}

log FAT (&) = oy J

= 1097A()dz

e Fourier transform ofA extends to {£:Im& < 0}

log FA™ (&) = J — IogyA( )dz
" 2mi & —
(these are principal value intergals at o0)
e Developed to solve integral equations and PDEs
with mixed boundary conditions on (-0, 0) and (0, o)
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Wiener-Hopf in fluctuation theory

Wiener-Hopf factorization

11 1
U(E) +1 k(T —i&) R(7;0E)

o so==7FU () with U(E)= [, e "P(X; € E)dt

()
(or ‘U(éT)+; is the Fourier transform of Xe(r))
1 1

° x(T;—i&) = QVT(E) and e — ‘iﬂvr(g)

(V7 (dx) is the renewal measure of the ascending
ladder height process for X; killed at rate 1)

(and a dual version with & and V*)

. UT(E):f V¥ (x — E)V*(dx)
R
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Wiener-Hopf in fluctuation theory

Wiener-Hopf factorization

1 B 1 1
V(E) +t k(T —i&) R(7;iE)

e Baxter-Donsker-type formula:

log K(7:E) LJOO ( : L) log(V(z)+ 7)dz

k(t:1) 2mi) o \iE—2z i-2z

e Deform the contour of integration from R to:

e Exponential CBF representation
of x(7;&) in & follows

(proving Rogers’s result)

T
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Wiener-Hopf in fluctuation theory

Wiener-Hopf factorization

11 1
U(E) +1 k(T —i&) R(7;0E)

e Baxter-Donsker-type formula:
k(T;€1) 1 (*® ( 1 1

iE1—z i&2—-2

lo =
O rier)  2ni )

) log(V(z)+ 7)dz
e Deform the contour of integration from R to
{€eC:V(£) € (0,00)}

e Then log(V¥(z) + 7) is holomorphic in T € C\ (=0, 0]
(a major step towards the extension)
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Non-balanced processes

Show that if X has CM jumps, then:

(that is, drop the assumption that Xt is balanced)

k(r1:8)  R(71;8)

K(t2:E)  R(r2:E) (071 =72)

k(Ti81)  R(T:&1)

k(7 &2) k(7;&2) (0=¢&1=¢&)
k(7 E1)R(T:€2)

are CBFs of T and &

When the above are CBFs of t only?
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Bivariate CBFs

Describe functions f(&, n) such that
f(&, 1) f(&1,m) (0<¢&12¢&2)
f(&, m), and

) f(&, m2) f(€2,m) (0<n1=1n2)
are CBFs of &,
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Distribution of the supremum functional

Justify the use of Fubini for the formula for P(M; < x)

Prove generalised eigenfunction expansion for X;
killed upon leaving half-line

e Work in progress
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P(M: < x) =P(tx > t) with Tx = Inf{t: Xt > x}

Problem

Find a formula, estimates and asymptotic expansion of
P(ox > t) for

ox =inf{t: Xt =x}

For the symmetric case, see:

[ K

Spectral theory for one-dimensional symmetric...
Electron. J. Probab. 17 (2012)

@ T.Juszczyszyn, K.

Hitting times of points for symmetric Lévy...
In preparation
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