Rogers functions and fluctuation theory

Mateusz Kwaśnicki

Wrocław University of Technology mateusz.kwasnicki@pwr.wroc.pl

Lévy Processes 7 Wrocław, July 16, 2013 ...it would be worth studying Lévy processes whose jump measure has a completely monotone density, and in particular, the Wiener-Hopf factorization of such.

Wiener–Hopf factorization of diffusions and Lévy processes

Proc. London Math. Soc. 47(3) (1983): 177-191

Outline

- L.C.G. Rogers's result
- Extension and further results
- 'Rogers functions' and their properties
- Wiener–Hopf factorisation
- Further research
- Rogers functions and fluctuation theory In preparation

Credits

Rogers's theorem

In connection with this presentation, I thank:

- L.C.G. Rogers
 - for an inspiring article
- A. Kuznetsov
 - for letting me know about it
- K. Kaleta, T. Kulczycki, J. Małecki, M. Ryznar
 - for joint research in the symmetric case
- P. Kim, Z. Vondraček
 - for a discussion of the non-symmetric case

CM jumps

Rogers's theorem

•00

 X_t is a 1-D Lévy process with Lévy measure v(x)dx

Notation: CM = completely monotone

Definition

 X_t has **CM jumps** $\Leftrightarrow v(x)$ and v(-x) are **CM** on $(0, \infty)$:

$$v(x) = \mathcal{L}\mu_+(x) = \int_{(0,\infty)} e^{-sx} \mu_+(ds) \qquad (x > 0)$$

$$v(x) = \mathcal{L}\mu_{-}(-x) = \int_{(0,\infty)} e^{sx} \mu_{-}(ds) \qquad (x < 0)$$

(see Bernstein's theorem)

Examples:

- Stable processes: $v(\pm x) = c_{\pm}x^{-1-\alpha}$
- Tempered stable processes: $v(\pm x) = c_{\pm}x^{-1-\alpha}e^{-m_{\pm}x}$
- Meromorphic processes

Rogers's theorem

Notation: **CBF** = **complete Bernstein function**

Definition

Rogers's theorem

$$f$$
 is a **CBF** \iff $\frac{1}{f} = \mathcal{L}g$ for a **CM** g \iff $\frac{1}{f} = \mathcal{L}\mathcal{L}\mu$

(there are many equivalent definitions)

Theorem [Rogers, 1983]

$$X_t$$
 has **CM jumps** \Leftrightarrow $\kappa(\tau;\xi)$ and $\hat{\kappa}(\tau;\xi)$ are **CBF**s of ξ for some/all τ

• $\kappa(\tau;\xi)$ and $\hat{\kappa}(\tau;\xi)$ are Laplace exponents of the ladder processes for X_t (describe extrema of X_t)

(more on this below)

Extension of Rogers's theorem

Theorem [K., 2013]

Rogers's theorem

 X_t has **CM jumps** and is **balanced**

 $\kappa(\tau;\xi)$ and $\hat{\kappa}(\tau;\xi)$ are **CBF**s of both τ and ξ

Furthermore, the following are **CBF**s of τ and ξ :

$$\frac{\kappa(\tau_{1};\xi)}{\kappa(\tau_{2};\xi)} \qquad \frac{\hat{\kappa}(\tau_{1};\xi)}{\hat{\kappa}(\tau_{2};\xi)} \qquad (0 \le \tau_{1} \le \tau_{2})$$

$$\frac{\kappa(\tau;\xi_{1})}{\kappa(\tau;\xi_{2})} \qquad \frac{\hat{\kappa}(\tau;\xi_{1})}{\hat{\kappa}(\tau;\xi_{2})} \qquad (0 \le \xi_{1} \le \xi_{2})$$

$$\kappa(\tau;\xi_{1})\hat{\kappa}(\tau;\xi_{2}) \qquad (0 \le \xi_{1} \le \xi_{2})$$

The meaning of 'balanced' is explained later

Supremum functional

Definition

Rogers's theorem

Supremum of X_t :

$$M_t = \sup_{s \in [0,t]} X_s$$

Time of supremum:

$$T_t \in [0,t] : M_t = X_{T_t}$$

Theorem

$$\int_0^\infty \left(\mathbf{E} e^{-\sigma T_t - \xi M_t} \right) e^{-\tau t} dt \, dx = \frac{1}{\tau} \frac{\kappa(\tau; 0)}{\kappa(\sigma + \tau; \xi)}$$

That is:

$$\mathcal{L}_{\substack{t \mapsto \tau \\ s \mapsto \sigma \\ x \mapsto \xi}} \mathbf{P}(T_t \in \mathsf{d}s, M_t \in \mathsf{d}x) = \frac{1}{\tau} \frac{\kappa(\tau; 0)}{\kappa(\sigma + \tau; \xi)}$$

Corollary [Rogers, 1983]

If X_t has **CM jumps**:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^\infty \mathrm{e}^{-\tau t} \mathbf{P}(M_t < x) \mathrm{d}t$$

is **CM** in x

Corollary [K.]

Rogers's theorem

If X_t has **CM jumps** and is **balanced**:

$$\frac{\mathrm{d}}{\mathrm{d}s} \int_{0}^{\infty} e^{-\tau t} \mathbf{P}(T_t < s) \mathrm{d}t$$

is CM in s

Corollary [K.]

If X_t has **CM jumps** and is **balanced**:

$$\mathbf{E}e^{-\xi M_t}$$

is CM in t

Space-only Laplace transform

Theorem [K.]

If X_t has **CM jumps** and is **balanced**:

$$\mathbf{E}e^{-\xi M_t} = \int_0^\infty e^{-tr} \frac{\xi \operatorname{Re} \Psi^{-1}(r)}{|i\xi - \Psi^{-1}(r)|^2} \frac{\Psi_r^*(\xi)}{r} dr$$

where

Rogers's theorem

$$\Psi_r^*(\xi) = \exp\left(\frac{1}{\pi} \int_{\Psi_r(0)}^{\infty} \arg\left(1 - \frac{i\xi}{\Psi_r^{-1}(s)}\right) \frac{\mathrm{d}s}{s}\right)$$

and

$$\Psi_r(\xi) = \frac{(\xi - \Psi^{-1}(r))(\xi + \overline{\Psi^{-1}(r)})}{\Psi(\xi) - r}$$

(Ψ is the Lévy-Khintchine exponent; more on this later)

Semi-explicit formula?

If one can justify the use of Fubini:

Theorem?

Rogers's theorem

If X_t has **CM jumps** and is **balanced**:

$$\mathbf{P}(M_t < x) = \int_0^\infty e^{-tr} F_r(x) dr$$

where

$$F_r(x) = c_r e^{lpha_r x} \sin(eta_r x + artheta_r) - \{ extsf{CM} ext{ correction} \}$$
 $lpha_r = \operatorname{Im}(\Psi^{-1}(r))$ $eta_r = \operatorname{Re}(\Psi^{-1}(r))$

 c_r , ϑ_r and the CM correction are given semi-explicitly

Potential applications

Rogers's theorem

- Semi-explicit expression for the distribution of M_t
- Asymptotic expansions and estimates of the above
- Eigenfunction expansion for X_t in half-line

For the symmetric case, see:

- K. Spectral analysis of subordinate Brownian motions... Studia Math. 206(3) (2011)
- K., J. Małecki, M. Ryznar Suprema of Lévy processes Ann. Probab. 41(3B) (2013)
- K., J. Małecki, M. Ryznar

 First passage times for subordinate Brownian...

 Stoch. Proc. Appl 123 (2013)

Lévy-Khintchine exponent

Definition

Rogers's theorem

$$\mathbf{E}e^{-i\xi X_t}=e^{-t\Psi(\xi)}$$

Lévy-Khintchine formula

$$\Psi(\xi) = a\xi^2 - ib\xi + \int_{\mathbf{R}} (1 - e^{i\xi x} + i\xi x \mathbf{1}_{|x| < 1}) v(x) dx$$

• Re $\Psi(\xi) \geq 0$

(b is different here and in the previous slide)

CM jumps revisited

Observation

If X_t has **CM jumps**:

$$v(x) = \mathcal{L}\mu_{+}(x) \qquad (x > 0)$$

$$v(x) = \mathcal{L}\mu_{-}(-x) \qquad (x < 0)$$

then

Rogers's theorem

$$\Psi(\xi) = a\xi^2 - ib\xi + \int_{\mathbf{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2}\right) \frac{\mu(\mathrm{d}s)}{|s|}$$

with

$$\mu(E) = \mu_{+}(E \cap (0, \infty)) + \mu_{-}((-E) \cap (-\infty, 0))$$

Rogers functions

Definition

Rogers's theorem

f is a Rogers function if

$$f(\xi) = a\xi^2 - ib\xi + c + \int_{\mathbf{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2}\right) \frac{\mu(\mathrm{d}s)}{|s|}$$

for $a \ge 0$, $b \in \mathbb{R}$, $c \ge 0$, $\mu \ge 0$

- f extends to C \ iR
- $f(-\overline{\xi}) = \overline{f(\xi)}$
- It suffices to consider f on $\{\xi : \text{Re } \xi > 0\}$

Proposition

Rogers's theorem

The following are equivalent:

(a) for $a \ge 0$, $b \in \mathbb{R}$, $c \ge 0$, $\mu \ge 0$:

$$f(\xi) = a\xi^2 - ib\xi + c + \int_{\mathbf{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2}\right) \frac{\mu(\mathrm{d}s)}{|s|}$$

(b) for $k \ge 0$, $\varphi \in [0, \pi]$:

$$f(\xi) = k \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{\xi}{\xi + is} - \frac{1}{1 + |s|}\right) \frac{\varphi(s) ds}{|s|}\right)$$

(c) f is holomorphic in $\{\xi : \text{Re } \xi > 0\}$ and:

$$\operatorname{Re} \frac{f(\xi)}{\xi} \ge 0$$
 if $\operatorname{Re} \xi > 0$

(that is, $f(\xi)/\xi$ is a Nevanlinna–Pick function)

Real values

Rogers's theorem

Theorem [K.]

If f is a Rogers function, then:

(a) For r > 0 there is at most one solution of

$$f(\xi) = r \qquad \qquad (\operatorname{Re} \xi > 0)$$

Write
$$\xi = f^{-1}(r)$$

(b) $|f^{-1}(r)|$ is increasing

Definition

A Rogers function f is **balanced** if

$$-\frac{\pi}{2} + \varepsilon \le \arg(f^{-1}(r)) \le \frac{\pi}{2} - \varepsilon$$

 X_t is **balanced** if Ψ is **balanced**

Real lines $\{\xi : f(\xi) \in (0, \infty)\}$ for some Rogers functions

Rogers's theorem

Definition

A Rogers function f is **nearly balanced** if

$$f \circ \Phi$$

is **balanced** for some Möbius transformation Φ which preserves $\{\xi : \text{Re } \xi > 0\}$ (e.g. vertical translation)

Theorem

Main results extend to **nearly balanced** processes

Examples of **nearly balanced** processes:

- Non-monotone strictly stable and their mixtures
- Tempered strictly stable:

$$v(\pm x) = c_{\pm}x^{-1-\alpha}e^{-m_{\pm}x}$$

(Completely) subordinate to above

Real lines $\{\xi : f(\xi) \in (0, \infty)\}$ for some Rogers functions

Analytical approach

Rogers's theorem

Wiener-Hopf method

For $A \in \mathcal{S}'(\mathbf{R})$ write

$$A = A^+ * A^-$$
 (or $\mathscr{F}A = \mathscr{F}A^+ \cdot \mathscr{F}A^-$)

where supp $A^+ \subseteq [0, \infty)$, supp $A^- \subseteq (-\infty, 0]$

• Fourier transform of A^+ extends to $\{\xi : \text{Im } \xi > 0\}$:

$$\log \mathscr{F}A^{+}(\xi) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{\xi - z} \log \mathscr{F}A(z) dz$$

• Fourier transform of A^- extends to $\{\xi : \text{Im } \xi < 0\}$:

$$\log \mathscr{F}A^{-}(\xi) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{\xi - z} \log \mathscr{F}A(z) dz$$
The proof to solve integral equations and PDEs

 Developed to solve integral equations and PDEs with mixed boundary conditions on $(-\infty, 0)$ and $(0, \infty)$

Wiener-Hopf in fluctuation theory

Wiener-Hopf factorization

Rogers's theorem

$$rac{1}{\Psi(\xi)+ au}=rac{1}{\kappa(au;-i\xi)}\cdotrac{1}{\hat{\kappa}(au;i\xi)}$$

- $\frac{1}{\Psi(\xi)+\tau} = \mathscr{F}U^{\tau}(\xi)$ with $U^{\tau}(E) = \int_{0}^{\infty} e^{-\tau t} \mathbf{P}(X_{t} \in E) dt$ $\left(\text{or } \frac{\tau}{\Psi(\xi)+\tau} \text{ is the Fourier transform of } X_{\mathbf{e}(\tau)} \right)$
- $\frac{1}{\kappa(\tau;-i\xi)} = \mathscr{F}V^{\tau}(\xi)$ and $\frac{1}{\kappa(\tau;\xi)} = \mathscr{L}V^{\tau}(\xi)$ $(V^{\tau}(\mathrm{d}x) \text{ is the renewal measure of the ascending})$

ladder height process for X_t killed at rate τ)

(and a dual version with $\hat{\kappa}$ and $\hat{V}^{\tau})$

•
$$U^{\tau}(E) = \int_{\mathbf{R}} \hat{V}^{\tau}(x-E)V^{\tau}(\mathrm{d}x)$$

Wiener-Hopf in fluctuation theory

Wiener-Hopf factorization

Rogers's theorem

$$rac{1}{\Psi(\xi)+ au}=rac{1}{\kappa(au;-i\xi)}\cdotrac{1}{\hat{\kappa}(au;i\xi)}$$

Baxter–Donsker-type formula:

$$\log \frac{\kappa(\tau;\xi)}{\kappa(\tau;1)} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{i\xi - z} - \frac{1}{i - z} \right) \log(\Psi(z) + \tau) dz$$

- Deform the contour of integration from R to:
- Exponential **CBF** representation of $\kappa(\tau; \xi)$ in ξ follows (proving Rogers's result)

Wiener-Hopf factorization

Rogers's theorem

$$\frac{1}{\Psi(\xi) + \tau} = \frac{1}{\kappa(\tau; -i\xi)} \cdot \frac{1}{\hat{\kappa}(\tau; i\xi)}$$

Baxter–Donsker-type formula:

$$\log \frac{\kappa(\tau; \xi_1)}{\kappa(\tau; \xi_2)} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{i\xi_1 - z} - \frac{1}{i\xi_2 - z} \right) \log(\Psi(z) + \tau) dz$$

- Deform the contour of integration from **R** to $\{\xi \in \mathbf{C} : \Psi(\xi) \in (0, \infty)\}$
- Then $\log(\Psi(z) + \tau)$ is holomorphic in $\tau \in \mathbf{C} \setminus (-\infty, 0]$ (a major step towards the extension)

(that is, drop the assumption that X_t is balanced)

 $(0 \le \tau_1 \le \tau_2)$

 $(0 \leq \xi_1 \leq \xi_2)$

Non-balanced processes

Problem

Rogers's theorem

Show that if X_t has **CM jumps**, then:

$$\kappa(\tau;\xi)$$
 $\hat{\kappa}(\tau;\xi)$

$$\frac{\kappa(\tau_1;\xi)}{\kappa(\tau_2;\xi)} \qquad \frac{\hat{\kappa}(\tau_1;\xi)}{\hat{\kappa}(\tau_2;\xi)}$$

$$\frac{\kappa(\tau;\xi_1)}{\kappa(\tau;\xi_2)} \qquad \frac{\hat{\kappa}(\tau;\xi_1)}{\hat{\kappa}(\tau;\xi_2)}$$

$$\kappa(\tau; \xi_2)$$
 $\hat{\kappa}(\tau; \xi_2)$

$$\kappa(\tau;\xi_1)\hat{\kappa}(\tau;\xi_2)$$

are **CBF**s of τ and ξ

Problem

When the above are **CBF**s of τ only?

Bivariate CBFs

Problem

Describe functions $f(\xi, \eta)$ such that

$$f(\xi, \eta)$$
, $\frac{f(\xi, \eta_1)}{f(\xi, \eta_2)}$ and $\frac{f(\xi_1, \eta)}{f(\xi_2, \eta)}$ $(0 \le \xi_1 \le \xi_2)$ $(0 \le \eta_1 \le \eta_2)$

are **CBF**s of ξ , η

Problem

Rogers's theorem

Justify the use of Fubini for the formula for $P(M_t < x)$

Problem

Prove generalised eigenfunction expansion for X_t killed upon leaving half-line

Work in progress

Hitting time of a point

$$\mathbf{P}(M_t < x) = \mathbf{P}(\tau_x > t) \quad \text{with} \quad \tau_x = \inf\{t : X_t \ge x\}$$

Problem

Rogers's theorem

Find a formula, estimates and asymptotic expansion of $\mathbf{P}(\sigma_x > t)$ for

$$\sigma_X = \inf\{t : X_t = x\}$$

For the symmetric case, see:

- - Spectral theory for one-dimensional symmetric... Electron. J. Probab. 17 (2012)
- T. Juszczyszyn, K. Hitting times of points for symmetric Lévy... In preparation