Martin boundary for subordinate Brownian motion

Zoran Vondraček
(joint work with Panki Kim and Renming Song)

Department of Mathematics
University of Zagreb
Croatia

1. Motivation

2. Description of the class of processes - subordinate BM

3. Boundary Harnack principle

4. Boundary Harnack principle at infinity

5. Martin boundary of unbounded sets

6. Minimal thinness
Representation of harmonic functions on the halfspace

\[\mathbb{H} = \{ x = (\tilde{x}, x_d) : \tilde{x} \in \mathbb{R}^{d-1}, x_d > 0\} - \text{halfspace in } \mathbb{R}^d. \]
 Representation of harmonic functions on the halfspace

$$\mathbb{H} = \{ x = (\tilde{x}, x_d) : \tilde{x} \in \mathbb{R}^{d-1}, x_d > 0 \}$$ – halfspace in \(\mathbb{R}^d \).

If \(h : \mathbb{H} \to [0, \infty) \) harmonic in \(\mathbb{H} \), then

$$h(x) = cx_d + \int_{\partial \mathbb{H}} \frac{x_d}{|x - z|^d} \, \mu(dz) = cx_d + \int_{\partial \mathbb{H}} \frac{x_d}{|x - z|^d} (1 + |z|^2)^{d/2} \, \nu(dz),$$

and a measure \(\mu \) on \(\partial \mathbb{H} \).
Representation of harmonic functions on the halfspace

\[\mathbb{H} = \{ x = (\tilde{x}, x_d) : \tilde{x} \in \mathbb{R}^{d-1}, x_d > 0 \} - \text{halfspace in } \mathbb{R}^d. \]

If \(h : \mathbb{H} \to [0, \infty) \) harmonic in \(\mathbb{H} \), then

\[h(x) = cx_d + \int_{\partial \mathbb{H}} \frac{x_d}{|x - z|} \mu(dz) = cx_d + \int_{\partial \mathbb{H}} \frac{x_d}{|x - z|} (1 + |z|^2)^{d/2} \nu(dz), \]

\(c \geq 0 \) and a measure \(\mu \) on \(\partial \mathbb{H} \).

1–1 correspondence: \(\partial \mathbb{H} \ni z \leftrightarrow M(x, z) := \frac{x_d}{|x - z|} (1 + |z|^2)^{d/2} \),

\(\infty \leftrightarrow M(x, \infty) := x_d. \)
Representation of harmonic functions on the halfspace

\[H = \{ x = (\tilde{x}, x_d) : \tilde{x} \in \mathbb{R}^{d-1}, x_d > 0 \} \] – halfspace in \(\mathbb{R}^d \).

If \(h : H \to [0, \infty) \) harmonic in \(H \), then

\[
h(x) = cx_d + \int_{\partial H} \frac{x_d}{|x - z|^d} \mu(dz) = cx_d + \int_{\partial H} \frac{x_d}{|x - z|^d} (1 + |z|^2)^{d/2} \nu(dz),
\]

\[c \geq 0 \] and a measure \(\mu \) on \(\partial H \).

1−1 correspondence: \(\partial H \ni z \leftrightarrow M(x, z) := \frac{x_d}{|x - z|^d} (1 + |z|^2)^{d/2} \),

\(\infty \leftrightarrow M(x, \infty) := x_d \).

Martin boundary of \(H \): \(\partial H \cup \{ \infty \} \):

\[
h(x) = \int_{\partial H \cup \{ \infty \}} M(x, z) \nu(dz).
\]
Motivation

Representation of $\alpha/2$-harmonic functions

$h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic in \mathbb{H}, $0 < \alpha < 2$, if “$\Delta^{\alpha/2} h = 0$ in \mathbb{H}”.

Probabilistic interpretation: $X = (X_t, P_x)$ isotropic α-stable process. Then h is harmonic in \mathbb{H} (wrt to X) if for every relatively compact open $G \subset \mathbb{H}$

$h(x) = E_x h(X_{\tau_G}), \forall x \in G$,

and regular harmonic in \mathbb{H} if

$h(x) = E_x h(X_{\tau_H}), \forall x \in \mathbb{H}$.

If $P_x(z) dz = P_x(X_{\tau_H} \in dz)$ - Poisson kernel, then regular harmonic h has a representation

$h(x) = \int_{\mathbb{H}} c P(x, z) h(z) dz$.

$x \mapsto P(x, z)$ is not harmonic in \mathbb{H}.
Representation of $\alpha/2$-harmonic functions

$h : \mathbb{R}^d \rightarrow [0, \infty)$ is $\alpha/2$-harmonic in \mathbb{H}, $0 < \alpha < 2$, if \(\Delta^{\alpha/2} h = 0 \) in \mathbb{H}. Probabilistic interpretation: $X = (X_t, P_x)$ isotropic α-stable process. Then h is harmonic in \mathbb{H} (wrt to X) if for every relatively compact open $G \subset \mathbb{H}$

$$h(x) = \mathbb{E}_x h(X_{\tau_G}), \quad \forall x \in G,$$

and regular harmonic if

$$h(x) = \mathbb{E}_x h(X_{\tau_H}), \quad \forall x \in \mathbb{H}.$$
Representation of $\alpha/2$-harmonic functions

$h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic in \mathbb{H}, $0 < \alpha < 2$, if "$\Delta^{\alpha/2} h = 0$ in \mathbb{H}". Probabilistic interpretation: $X = (X_t, \mathbb{P}_x)$ isotropic α-stable process. Then h is harmonic in \mathbb{H} (wrt to X) if for every relatively compact open $G \subset \mathbb{H}$

$$h(x) = \mathbb{E}_x h(X_{\tau_G}), \quad \forall x \in G,$$

and regular harmonic in \mathbb{H} if

$$h(x) = \mathbb{E}_x h(X_{\tau_{\mathbb{H}}}), \quad \forall x \in \mathbb{H}.$$
Representation of $\alpha/2$-harmonic functions

$h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic in \mathbb{H}, $0 < \alpha < 2$, if “$\Delta^{\alpha/2} h = 0$ in \mathbb{H}”.

Probabilistic interpretation: $X = (X_t, \mathbb{P}_x)$ isotropic α-stable process. Then h is harmonic in \mathbb{H} (wrt to X) if for every relatively compact open $G \subset \mathbb{H}$

$$h(x) = \mathbb{E}_x h(X_{\tau_G}) , \quad \forall x \in G ,$$

and regular harmonic in \mathbb{H} if

$$h(x) = \mathbb{E}_x h(X_{\tau_{\mathbb{H}}}) , \quad \forall x \in \mathbb{H} .$$

If $P(x, z) \, dz = \mathbb{P}_x(X_{\tau_{\mathbb{H}}} \in dz)$ - Poisson kernel, then regular harmonic h has a representation

$$h(x) = \int_{\mathbb{H}^c} P(x, z) h(z) \, dz .$$
Representation of $\alpha/2$-harmonic functions

$h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic in \mathbb{H}, $0 < \alpha < 2$, if \(\Delta^{\alpha/2} h = 0 \) in \mathbb{H}. Probabilistic interpretation: $X = (X_t, P_x)$ isotropic α-stable process. Then h is harmonic in \mathbb{H} (wrt to X) if for every relatively compact open $G \subset \mathbb{H}$

$$h(x) = \mathbb{E}_x h(X_{\tau_G}), \quad \forall x \in G,$$

and regular harmonic in \mathbb{H} if

$$h(x) = \mathbb{E}_x h(X_{\tau_{\mathbb{H}}}), \quad \forall x \in \mathbb{H}.$$

If $P(x, z) \, dz = P_x(X_{\tau_{\mathbb{H}}} \in dz)$ - Poisson kernel, then regular harmonic h has a representation

$$h(x) = \int_{\mathbb{H}^c} P(x, z) h(z) \, dz.$$

$x \mapsto P(x, z)$ is not harmonic in \mathbb{H}.
Representation of singular $\alpha/2$-harmonic functions

Suppose $h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic and $h \equiv 0$ on \mathbb{H}^c. Then h is called singular harmonic. This corresponds to harmonic functions of the killed process $X^\mathbb{H}$.
Suppose \(h : \mathbb{R}^d \to [0, \infty) \) is \(\alpha/2 \)-harmonic and \(h \equiv 0 \) on \(\mathbb{H}^c \). Then \(h \) is called **singular harmonic**. This corresponds to harmonic functions of the killed process \(X^\mathbb{H} \).

Representation of harmonic functions for \(X^\mathbb{H} \). Let

\[
M(x, z) := \frac{x^\alpha/2}{|x - z|^d} (1 + |z|^2)^{d/2}, \quad M(x, \infty) := x^\alpha/2.
\]
Representation of singular $\alpha/2$-harmonic functions

Suppose $h : \mathbb{R}^d \rightarrow [0, \infty)$ is $\alpha/2$-harmonic and $h \equiv 0$ on \mathbb{H}^c. Then h is called singular harmonic. This corresponds to harmonic functions of the killed process $X^\mathbb{H}$.

Representation of harmonic functions for $X^\mathbb{H}$. Let

$$M(x, z) := \frac{x^{\alpha/2}_d}{|x - z|^d} (1 + |z|^2)^{d/2}, \quad M(x, \infty) := x^{\alpha/2}_d.$$

If $h : \mathbb{H} \rightarrow [0, \infty)$ is harmonic wrt $X^\mathbb{H}$ (singular $\alpha/2$-harmonic), then there exists a unique measure ν on $\partial \mathbb{H} \cup \{\infty\}$ such that

$$h(x) = \int_{\partial \mathbb{H} \cup \{\infty\}} M(x, z) \nu(dz) = c x^{\alpha/2}_d + \int_{\partial \mathbb{H}} \frac{x^{\alpha/2}_d}{|x - z|^d} (1 + |z|^2)^{d/2} \nu(dz).$$
Representation of singular $\alpha/2$-harmonic functions

Suppose $h : \mathbb{R}^d \to [0, \infty)$ is $\alpha/2$-harmonic and $h \equiv 0$ on \mathbb{H}^c. Then h is called singular harmonic. This corresponds to harmonic functions of the killed process $X^\mathbb{H}$.

Representation of harmonic functions for $X^\mathbb{H}$. Let

$$M(x, z) := \frac{x_d^{\alpha/2}}{|x - z|^d} (1 + |z|^2)^{d/2}, \quad M(x, \infty) := x_d^{\alpha/2}.$$

If $h : \mathbb{H} \to [0, \infty)$ is harmonic wrt $X^\mathbb{H}$ (singular $\alpha/2$-harmonic), then there exists a unique measure ν on $\partial\mathbb{H} \cup \{\infty\}$ such that

$$h(x) = \int_{\partial\mathbb{H} \cup \{\infty\}} M(x, z) \nu(dz) = c x_d^{\alpha/2} + \int_{\partial\mathbb{H}} \frac{x_d^{\alpha/2}}{|x - z|^d} (1 + |z|^2)^{d/2} \nu(dz).$$

Martin boundary of \mathbb{H} with respect to X: $\partial\mathbb{H} \cup \{\infty\}$.
Let $X = (X_t, \mathbb{P}_x)$ be rotationally invariant Lévy process in \mathbb{R}^d, $D \subset \mathbb{R}^d$ open, X^D the killed process, $G_D(x, y)$ the Green function of X^D.

D has a Martin boundary ∂M_D with respect to X^D satisfying the following properties:

1. $D \cup \partial M_D$ is compact metric space;
2. D is open and dense in $D \cup \partial M_D$, and its relative topology coincides with its original topology;
3. $M_D(x, \cdot)$ can be uniquely extended to ∂M_D in such a way that, $M_D(x, y)$ converges to $M_D(x, z)$ as $y \to z \in \partial M_D$, the function $x \to M_D(x, z)$ is excessive with respect to X^D, the function $(x, z) \to M_D(x, z)$ is jointly continuous on $D \times \partial M_D$ and $M_D(\cdot, z_1) \neq M_D(\cdot, z_2)$ if $z_1 \neq z_2$.

Zoran Vondraček (University of Zagreb)
Martin boundary

Let $X = (X_t, \mathbb{P}_x)$ be rotationally invariant Lévy process in \mathbb{R}^d, $D \subset \mathbb{R}^d$ open, X^D the killed process, $G_D(x, y)$ the Green function of X^D. Fix $x_0 \in D$ and define $M_D(x, y) := \frac{G_D(x, y)}{G_D(x_0, y)}$, $x, y \in D$.
Let $X = (X_t, \mathbb{P}_x)$ be rotationally invariant Lévy process in \mathbb{R}^d, $D \subset \mathbb{R}^d$ open, X^D the killed process, $G_D(x, y)$ the Green function of X^D. Fix $x_0 \in D$ and define $M_D(x, y) := \frac{G_D(x, y)}{G_D(x_0, y)}$, $x, y \in D$.

D has a **Martin boundary** $\partial_M D$ with respect to X^D satisfying the following properties:

1. $D \cup \partial_M D$ is compact metric space;
2. D is open and dense in $D \cup \partial_M D$, and its relative topology coincides with its original topology;
Let $X = (X_t, \mathbb{P}_x)$ be rotationally invariant Lévy process in \mathbb{R}^d, $D \subset \mathbb{R}^d$ open, X^D the killed process, $G_D(x, y)$ the Green function of X^D. Fix $x_0 \in D$ and define $M_D(x, y) := \frac{G_D(x, y)}{G_D(x_0, y)}$, $x, y \in D$.

D has a **Martin boundary** $\partial_M D$ with respect to X^D satisfying the following properties:

1. $D \cup \partial_M D$ is compact metric space;
2. D is open and dense in $D \cup \partial_M D$, and its relative topology coincides with its original topology;
3. $M_D(x, \cdot)$ can be uniquely extended to $\partial_M D$ in such a way that, $M_D(x, y)$ converges to $M_D(x, z)$ as $y \to z \in \partial_M D$, the function $x \to M_D(x, z)$ is excessive with respect to X^D, the function $(x, z) \to M_D(x, z)$ is jointly continuous on $D \times \partial_M D$ and $M_D(\cdot, z_1) \neq M_D(\cdot, z_2)$ if $z_1 \neq z_2$.

Zoran Vondraček (University of Zagreb)
A harmonic function $h : D \to [0, \infty)$ is minimal (with respect to X^D), if $g \leq h$, g harmonic, implies that $g = ch$.

The minimal Martin boundary of X^D is defined as

$$\partial m^D = \{ z \in \partial M^D : M^D(\cdot, z) \text{ is minimal harmonic with respect to } X^D \}.$$
Minimal Martin boundary

A harmonic function $h : D \to [0, \infty)$ is minimal (with respect to X^D), if $g \leq h$, g harmonic, implies that $g = ch$.

The minimal Martin boundary of X^D is defined as

$$\partial_m D = \{ z \in \partial_M D : M_D(\cdot, z) \text{ is minimal harmonic with respect to } X^D \}.$$
A harmonic function $h : D \to [0, \infty)$ is minimal (with respect to X^D), if $g \leq h$, g harmonic, implies that $g = ch$.

The **minimal Martin boundary** of X^D is defined as

$$\partial_m D = \{ z \in \partial_M D : M_D(\cdot, z) \text{ is minimal harmonic with respect to } X^D \}.$$

A function $h : D \to [0, \infty)$ is harmonic if and only if there exists a finite measure ν on $\partial_m D$ such that

$$h(x) = \int_{\partial_m D} M_D(x, z) \nu(dz), \quad \text{Martin integral representation.}$$
The notion of Martin boundary goes back to Robert S. Martin (1941) for the case classical harmonic functions (i.e. X is Brownian motion).
The notion of Martin boundary goes back to Robert S. Martin (1941) for the case classical harmonic functions (i.e. X is Brownian motion). General theory of Martin boundary for strong Markov processes (in duality) developed by Kunita and Watanabe (1965).
Some history

The notion of Martin boundary goes back to Robert S. Martin (1941) for the case classical harmonic functions (i.e. X is Brownian motion). General theory of Martin boundary for strong Markov processes (in duality) developed by Kunita and Watanabe (1965).

X is Brownian motion, D bounded Lipschitz domain D: Hunt and Wheeden (1970) proved that the (minimal) Martin boundary can be identified with the Euclidean boundary.
Some history

The notion of Martin boundary goes back to Robert S. Martin (1941) for the case classical harmonic functions (i.e. X is Brownian motion). General theory of Martin boundary for strong Markov processes (in duality) developed by Kunita and Watanabe (1965).

X is Brownian motion, D bounded Lipschitz domain D: Hunt and Wheeden (1970) proved that the (minimal) Martin boundary can be identified with the Euclidean boundary. X rotationally invariant α-stable process, $0 < \alpha < 2$. Identification of the (minimal) Martin boundary with the Euclidean boundary:

(1) Bounded Lipschitz domain: Chen and Song (1998) and Bogdan (1999);

(2) Bounded κ-fat open set: Song and Wu (1999).
Some history

The notion of Martin boundary goes back to Robert S. Martin (1941) for the case classical harmonic functions (i.e. X is Brownian motion). General theory of Martin boundary for strong Markov processes (in duality) developed by Kunita and Watanabe (1965).

X is Brownian motion, D bounded Lipschitz domain D: Hunt and Wheeden (1970) proved that the (minimal) Martin boundary can be identified with the Euclidean boundary. X rotationally invariant α-stable process, $0 < \alpha < 2$. Identification of the (minimal) Martin boundary with the Euclidean boundary:

1. Bounded Lipschitz domain: Chen and Song (1998) and Bogdan (1999);

Certain subordinate BM, D bounded κ-fat open set: Kim, Song, V. (2009).
Martin boundary for unbounded sets?

In all mentioned results D is bounded. The reason: Proofs depend on the boundary Harnack principle for non-negative harmonic functions which implies the existence of the limit $\lim_{y \to z \in \partial D} M_D(x, y)$.
In all mentioned results D is bounded. The reason: Proofs depend on the boundary Harnack principle for non-negative harmonic functions which implies the existence of the limit $\lim_{y \to z \in \partial D} M_D(x, y)$.

Known results for unbounded sets. Complete description of the Martin boundary only for Brownian motion and isotropic stable processes. Explicit formulae for the Martin kernel in case of the half-space \mathbb{H}.
In all mentioned results D is bounded. The reason: Proofs depend on the boundary Harnack principle for non-negative harmonic functions which implies the existence of the limit $\lim_{y \to z \in \partial D} M_D(x, y)$.

Known results for unbounded sets. Complete description of the Martin boundary only for Brownian motion and isotropic stable processes. Explicit formulae for the Martin kernel in case of the half-space \mathbb{H}.

In case of unbounded open D, inversion through the sphere implies the existence of $M_D(x, \infty) := \lim_{|y| \to \infty, y \in D} M_D(x, y)$: Bogdan, Kulczycki, Kwaśnicki (2008)
Finite part and infinite part of Martin boundary

Partial results for some subordinate Brownian motion – description of the finite part of the Martin boundary.
Finite part and infinite part of Martin boundary

Partial results for some subordinate Brownian motion – description of the finite part of the Martin boundary.

A point $z \in \partial_M D$ is called a **finite Martin boundary point** if there exists a bounded sequence $(y_n)_{n \geq 1}$ converging to z in the Martin topology.
Partial results for some subordinate Brownian motion – description of the finite part of the Martin boundary.

A point \(z \in \partial_M D \) is called a **finite Martin boundary point** if there exists a bounded sequence \((y_n)_{n \geq 1} \) converging to \(z \) in the Martin topology.

A point \(z \) is called an **infinite Martin boundary point** if every sequence \((y_n)_{n \geq 1} \) converging to \(z \) in the Martin topology is unbounded.
Finite part and infinite part of Martin boundary

Partial results for some subordinate Brownian motion – description of the finite part of the Martin boundary.

A point \(z \in \partial_M D \) is called a **finite Martin boundary point** if there exists a bounded sequence \((y_n)_{n \geq 1} \) converging to \(z \) in the Martin topology.

A point \(z \) is called an **infinite Martin boundary point** if every sequence \((y_n)_{n \geq 1} \) converging to \(z \) in the Martin topology is unbounded.

In case \(X \) is a subordinate Brownian motion satisfying certain condition, the finite part of the Martin boundary of \(\mathbb{H} \) can be identified with the Euclidean boundary \(\partial \mathbb{H} \), Kim, Song, V. (2011).
Describe under what conditions on the process X and the unbounded open set D one can identify the (minimal) Martin boundary of D with $\partial D \cup \{\infty\}$.

Two types of assumptions for the process: small time-small scale, and large time-large scale.

Assumptions on D: κ-fat at each boundary point, and κ-fat at infinity.
Goal of the talk

Describe under what conditions on the process X and the unbounded open set D one can identify the (minimal) Martin boundary of D with $\partial D \cup \{\infty\}$.

Two types of assumptions for the process: small time-small scale, and large time-large scale.
Goal of the talk

Describe under what conditions on the process X and the unbounded open set D one can identify the (minimal) Martin boundary of D with $\partial D \cup \{\infty\}$.

Two types of assumptions for the process: small time-small scale, and large time-large scale.
Assumptions on D: κ-fat at each boundary point, and κ-fat at infinity.
1. Motivation

2. Description of the class of processes - subordinate BM

3. Boundary Harnack principle

4. Boundary Harnack principle at infinity

5. Martin boundary of unbounded sets

6. Minimal thinness
Subordinators

$S = (S_t)_{t \geq 0}$ a subordinator with the Laplace exponent ϕ:

$$\mathbb{E}[e^{-\lambda S_t}] = e^{-t\phi(\lambda)}, \quad \phi(t) = \int_{(0,\infty)} (1 - e^{-\lambda t}) \mu(dt)$$
Subordinators

\(S = (S_t)_{t \geq 0} \) a subordinator with the Laplace exponent \(\phi \):

\[
\mathbb{E}[e^{-\lambda S_t}] = e^{-t\phi(\lambda)}, \quad \phi(t) = \int_{(0,\infty)} (1 - e^{-\lambda t}) \mu(dt)
\]

Assumptions on \(\phi \): \(\phi \) is \(\mathcal{CBF} - \mu(dt) = \mu(t) dt \) where \(\mu \) is \(\mathcal{CM} \).

Consequence: the renewal measure has a \(\mathcal{CM} \) density \(u \). WLOG \(\phi(1) = 1 \).
Subordinators

\(S = (S_t)_{t \geq 0} \) a subordinator with the Laplace exponent \(\phi \):

\[
\mathbb{E}[e^{-\lambda S_t}] = e^{-t \phi(\lambda)}, \quad \phi(t) = \int_{(0,\infty)} (1 - e^{-\lambda t}) \mu(dt)
\]

Assumptions on \(\phi \): \(\phi \) is \(CBF - \mu(dt) = \mu(t) dt \) where \(\mu \) is \(CM \).

Consequence: the renewal measure has a \(CM \) density \(u \). WLOG \(\phi(1) = 1 \).

Upper and lower scaling conditions at infinity and at zero:

(H1): There exist constants \(0 < \delta_1 \leq \delta_2 < 1 \) and \(a_1, a_2 > 0 \) such that

\[
a_1 \lambda^{\delta_1} \phi(t) \leq \phi(\lambda t) \leq a_2 \lambda^{\delta_2} \phi(t), \quad \lambda \geq 1, \ t \geq 1.
\]
Subordinators

\(S = (S_t)_{t \geq 0} \) a subordinator with the Laplace exponent \(\phi \):

\[
\mathbb{E}[e^{-\lambda S_t}] = e^{-t \phi(\lambda)}, \quad \phi(t) = \int_{(0,\infty)} (1 - e^{-\lambda t}) \mu(dt)
\]

Assumptions on \(\phi \): \(\phi \) is CB\(\mathcal{F} \) – \(\mu(dt) = \mu(t) dt \) where \(\mu \) is CM.
Consequence: the renewal measure has a CM density \(u \). WLOG \(\phi(1) = 1 \).
Upper and lower scaling conditions at infinity and at zero:
(H1): There exist constants \(0 < \delta_1 \leq \delta_2 < 1 \) and \(a_1, a_2 > 0 \) such that

\[
a_1 \lambda^{\delta_1} \phi(t) \leq \phi(\lambda t) \leq a_2 \lambda^{\delta_2} \phi(t), \quad \lambda \geq 1, t \geq 1.
\]

(H2): There exist constants \(0 < \delta_3 \leq \delta_4 < 1 \) and \(a_3, a_4 > 0 \) such that

\[
a_3 \lambda^{\delta_4} \phi(t) \leq \phi(\lambda t) \leq a_4 \lambda^{\delta_3} \phi(t), \quad \lambda \leq 1, t \leq 1.
\]
Examples

If $0 < \alpha < 2$ and $\tilde{\ell}$ slowly varying at infinity, then

$$\phi(\lambda) \asymp \lambda^{\alpha/2} \tilde{\ell}(\lambda), \quad \lambda \to \infty,$$

implies (H1). Assumption on the behavior of the subordinator (hence SBM) for small time, small space.
Examples

If $0 < \alpha < 2$ and $\tilde{\ell}$ slowly varying at infinity, then

$$\phi(\lambda) \asymp \lambda^{\alpha/2} \tilde{\ell}(\lambda), \quad \lambda \to \infty,$$

implies (H1). Assumption on the behavior of the subordinator (hence SBM) for small time, small space.

If $0 < \beta < 2$ and ℓ slowly varying at infinity, then

$$\phi(\lambda) \asymp \lambda^{\beta/2} \ell(\lambda), \quad \lambda \to 0,$$

implies (H2). Assumption on the behavior of the subordinator (hence SBM) for large time, large space.
Examples

If $0 < \alpha < 2$ and ℓ slowly varying at infinity, then

$$\phi(\lambda) \asymp \lambda^{\alpha/2} \ell(\lambda), \quad \lambda \to \infty,$$

implies (H1). Assumption on the behavior of the subordinator (hence SBM) for small time, small space.

If $0 < \beta < 2$ and ℓ slowly varying at infinity, then

$$\phi(\lambda) \asymp \lambda^{\beta/2} \ell(\lambda), \quad \lambda \to 0,$$

implies (H2). Assumption on the behavior of the subordinator (hence SBM) for large time, large space.

(H1) (resp. (H2)) is equivalent to ϕ is an O-regularly varying functions at ∞ (resp. at 0) with Matuszewska indices in $(0,1)$.
Properties of the potential and the Lévy density

There exists a constant $C = C(\phi) > 0$ such that

$$u(t) \leq Ct^{-1} \phi(t^{-1})^{-1}, \quad \mu(t) \leq Ct^{-1} \phi(t^{-1}), \quad \forall t \in (0, \infty).$$

(H1): $u(t) \geq C^{-1} t^{-1} \phi(t^{-1})^{-1}, \quad \mu(t) \geq C^{-1} t^{-1} \phi(t^{-1}), \quad \forall t \in (0, 1]$,

(H2): $u(t) \geq C^{-1} t^{-1} \phi(t^{-1})^{-1}, \quad \mu(t) \geq C^{-1} t^{-1} \phi(t^{-1}), \quad \forall t \in [1, \infty)$
Properties of the potential and the Lévy density

There exists a constant $C = C(\phi) > 0$ such that

$$u(t) \leq Ct^{-1}\phi(t^{-1})^{-1}, \quad \mu(t) \leq Ct^{-1}\phi(t^{-1}), \quad \forall t \in (0, \infty).$$

(H1): $u(t) \geq C^{-1}t^{-1}\phi(t^{-1})^{-1}, \quad \mu(t) \geq C^{-1}t^{-1}\phi(t^{-1}), \quad \forall t \in (0, 1],$

(H2): $u(t) \geq C^{-1}t^{-1}\phi(t^{-1})^{-1}, \quad \mu(t) \geq C^{-1}t^{-1}\phi(t^{-1}), \quad \forall t \in [1, \infty)$

We write

$$u(t) \asymp t^{-1}\phi(t^{-1})^{-1}, \quad \mu(t) \asymp t^{-1}\phi(t^{-1}), \quad t \in (0, \infty).$$
Subordinate Brownian motion

$W = (W_t, \mathbb{P}_x)$ d-dimensional Brownian motion, $S = (S_t)$ and independent subordinator with the Laplace exponent ϕ satisfying (H1), (H2) and CBF.
Subordinate Brownian motion

$W = (W_t, \mathbb{P}_x)$ d-dimensional Brownian motion, $S = (S_t)$ and independent subordinator with the Laplace exponent ϕ satisfying (H1), (H2) and CBF. The SBM is the process $X = (X_t)_{t \geq 0}$ defined as $X_t := W_{S_t}$.
Subordinate Brownian motion

$W = (W_t, \mathbb{P}_x)$ d-dimensional Brownian motion, $S = (S_t)$ and independent subordinator with the Laplace exponent ϕ satisfying (H1), (H2) and CBF. The SBM is the process $X = (X_t)_{t \geq 0}$ defined as $X_t := W_{S_t}$.

X is a Lévy process with characteristic exponent $\Phi(x) = \phi(|x|^2)$, infinitesimal generator $A = \phi(-\Delta)$, and Lévy measure with density $J(x) = j(|x|)$ where

$$j(r) = \int_0^{\infty} (4\pi t)^{-d/2} e^{-r^2/4t} \mu(t) \, dt, \quad r > 0.$$
Subordinate Brownian motion

\[W = (W_t, \mathbb{P}_x) \] is the \(d \)-dimensional Brownian motion, \(S = (S_t) \) and independent subordinator with the Laplace exponent \(\phi \) satisfying (H1), (H2) and CBF. The SBM is the process \(X = (X_t)_{t \geq 0} \) defined as \(X_t := W_{S_t} \).

\(X \) is a Lévy process with characteristic exponent \(\Phi(x) = \phi(|x|^2) \), infinitesimal generator \(A = \phi(-\Delta) \), and Lévy measure with density \(J(x) = j(|x|) \) where

\[
j(r) = \int_0^\infty (4\pi t)^{-d/2} e^{-r^2/4t} \mu(t) \, dt, \quad r > 0.
\]

Assume \(X \) is transient; then \(X \) has the Green function

\[
G(x, y) = G(x - y) = g(|x - y|) \quad \text{where}
\]

\[
g(r) = \int_0^\infty (4\pi t)^{-d/2} e^{-r^2/4t} u(t) \, dt, \quad r > 0.
\]
Theorem: Assume (H1) and (H2).

\[J(x) \approx |x| - d \phi(|x| - 2), \quad x \neq 0. \]

If \(d > 2(\delta^2 \lor \delta^4) \), then \(X \) is transient and
\[G(x) \approx |x| - d \phi(|x| - 2) - 1, \quad x \neq 0. \]
Theorem: Assume (H1) and (H2).
(a) Then
\[J(x) \asymp |x|^{-d} \phi(|x|^{-2}), \quad x \neq 0. \]
Theorem: Assume (H1) and (H2).
(a) Then
\[J(x) \asymp |x|^{-d} \phi(|x|^{-2}), \quad x \neq 0. \]
(b) If \(d > 2(\delta_2 \vee \delta_4) \), then \(X \) is transient and
\[G(x) \asymp |x|^{-d} \phi(|x|^{-2})^{-1}, \quad x \neq 0. \]
Theorem: Assume (H1) and (H2).

(a) Then

\[J(x) \asymp |x|^{-d} \phi(|x|^{-2}), \quad x \neq 0. \]

(b) If \(d > 2(\delta_2 \lor \delta_4) \), then \(X \) is transient and

\[G(x) \asymp |x|^{-d} \phi(|x|^{-2})^{-1}, \quad x \neq 0. \]

Corollary: (Doubling property) \(J(2x) \asymp J(x), \ G(2x) \asymp G(x), \ x \neq 0. \)
1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack principle

4 Boundary Harnack principle at infinity

5 Martin boundary of unbounded sets

6 Minimal thinness
Recall that $u : \mathbb{R}^d \to [0, \infty)$ is regular harmonic in open $D \subset \mathbb{R}^d$ with respect to X if

$$u(x) = \mathbb{E}_x [u(X_{\tau_D}) : \tau_D < \infty],$$

for all $x \in D$.

Theorem: There exists a constant $c = c(\phi, d) > 0$ such that for every $z_0 \in \mathbb{R}^d$, every open set $D \subset \mathbb{R}^d$, every $r > 0$ and for any nonnegative functions u, v in \mathbb{R}^d which are regular harmonic in $D \cap B(z_0, r)$ with respect to X and vanish in $D^c \cap B(z_0, r)$, we have

$$u(x) v(x) \leq c u(y) v(y)$$

for all $x, y \in D \cap B(z_0, r/2)$.

Zoran Vondraček (University of Zagreb)
Recall that \(u : \mathbb{R}^d \to [0, \infty) \) is regular harmonic in open \(D \subset \mathbb{R}^d \) with respect to \(X \) if

\[
u(x) = \mathbb{E}_x [u(X_{\tau_D}) : \tau_D < \infty], \quad \text{for all } x \in D.
\]

Theorem: There exists a constant \(c = c(\phi, d) > 0 \) such that for every \(z_0 \in \mathbb{R}^d \), every open set \(D \subset \mathbb{R}^d \), every \(r > 0 \) and for any nonnegative functions \(u, v \) in \(\mathbb{R}^d \) which are regular harmonic in \(D \cap B(z_0, r) \) with respect to \(X \) and vanish in \(D^c \cap B(z_0, r) \), we have

\[
\frac{u(x)}{v(x)} \leq c \frac{u(y)}{v(y)} \quad \text{for all } x, y \in D \cap B(z_0, r/2).
\]
Lemma: (Approximate factorization) For every $z_0 \in \mathbb{R}^d$, every open set $U \subset B(z_0, r)$ and for any nonnegative function u in \mathbb{R}^d which is regular harmonic in U with respect to X and vanishes a.e. in $U^c \cap B(z_0, r)$,

$$u(x) \asymp \mathbb{E}_x[\tau_U] \int_{B(z_0, r/2)^c} j(|z - z_0|)u(z)dz, \quad x \in U \cap B(z_0, r/2).$$
Lemma: (Approximate factorization) For every $z_0 \in \mathbb{R}^d$, every open set $U \subset B(z_0, r)$ and for any nonnegative function u in \mathbb{R}^d which is regular harmonic in U with respect to X and vanishes a.e. in $U^c \cap B(z_0, r)$,

$$u(x) \asymp \mathbb{E}_x[\tau_U] \int_{B(z_0, r/2)^c} j(|z - z_0|)u(z)dz, \quad x \in U \cap B(z_0, r/2).$$
Lemma: (Approximate factorization) For every \(z_0 \in \mathbb{R}^d \), every open set \(U \subset B(z_0, r) \) and for any nonnegative function \(u \) in \(\mathbb{R}^d \) which is regular harmonic in \(U \) with respect to \(X \) and vanishes a.e. in \(U^c \cap B(z_0, r) \),

\[
u(x) \asymp \mathbb{E}_x[\tau_U] \int_{B(z_0, r/2)^c} j(|z - z_0|)u(z)dz, \quad x \in U \cap B(z_0, r/2).
\]

For all \(r \in (0, 1] \) under (H1) (Kim, Song, V. (2011)), for all \(r \in (0, \infty) \) under (H1) and (H2) (Kim, Song, V (2012)).
Take $z_0 = 0$. Then the above reads:

$$u(x) \asymp \int_U G_U(x, y) \, dy \int_{B(0, r/2)^c} j(|y|) u(y) \, dy, \quad x \in U \cap B(0, r/2).$$
Theorem: Assume (H1) and (H2). There exists $c = c(\phi) > 0$ such that for every open set D satisfying the interior and exterior ball conditions with radius $R > 0$, every $r \in (0, R]$, every $Q \in \partial D$ and every nonnegative function u in \mathbb{R}^d which is harmonic in $D \cap B(Q, r)$ with respect to X and vanishes continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{(\phi(\delta_D(x)^{-2}))^{-1/2}} \leq c \frac{u(y)}{(\phi(\delta_D(y)^{-2}))^{-1/2}}$$

for all $x, y \in D \cap B(Q, \frac{r}{2})$.

Global: it holds for all $R > 0$ with the comparison constant not depending on D.

Uniform: it holds for all balls with radii $r \leq R$ and the comparison constant depends neither on D nor on r.

Zoran Vondraček (University of Zagreb)
Global and uniform BHP in smooth sets with explicit decay rate

Theorem: Assume (H1) and (H2). There exists $c = c(\phi) > 0$ such that for every open set D satisfying the interior and exterior ball conditions with radius $R > 0$, every $r \in (0, R]$, every $Q \in \partial D$ and every nonnegative function u in \mathbb{R}^d which is harmonic in $D \cap B(Q, r)$ with respect to X and vanishes continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{(\phi(\delta_D(x)^{-2}))^{-1/2}} \leq c \frac{u(y)}{(\phi(\delta_D(y)^{-2}))^{-1/2}}$$

for all $x, y \in D \cap B(Q, \frac{r}{2})$.

Global: it holds for all $R > 0$ with the comparison constant *not* depending on R.
Uniform: it holds for all balls with radii $r \leq R$ and the comparison constant depends neither on D nor on r.
1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack principle

4 Boundary Harnack principle at infinity

5 Martin boundary of unbounded sets

6 Minimal thinness
In case of rotationally invariant α-stable process, M. Kwaśnicki (2009) used the inversion through the sphere $B(0, \sqrt{r})$ to obtain a BHP at infinity.
In case of rotationally invariant α-stable process, M. Kwaśnicki (2009) used the inversion through the sphere $B(0, \sqrt{r})$ to obtain a BHP at infinity.

Recall that the Poisson kernel $K_U(x, z)$ is the exit density from an open set U: $\mathbb{P}_x(X_{\tau_U} \in B) = \int_B K_U(x, z) \, dy$, $B \subset \overline{U}^c$,

$$K_U(x, z) = \int_U G_U(x, y) j(|y - z|) \, dy, \quad x \in U, z \in \overline{U}^c.$$
In case of rotationally invariant α-stable process, M. Kwaśnicki (2009) used the inversion through the sphere $B(0, \sqrt{r})$ to obtain a BHP at infinity.

Recall that the Poisson kernel $K_U(x, z)$ is the exit density from an open set U: $P_x(X_{\tau_U} \in B) = \int_B K_U(x, z) \, dy$, $B \subset U^c$,

$$K_U(x, z) = \int_U G_U(x, y) j(|y - z|) \, dy$$

$x \in U, z \in U^c$.

If u regular harmonic in U, then $u(x) = \int_{U^c} K_U(x, z) u(z) \, dz$.

Zoran Vondraček (University of Zagreb)
Theorem: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that
Theorem: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$u(x) \approx \int_{U} G_U(x, y) j(|y|) \, dy \int_{B(0, 2r)} u(z) \, dz, \quad x \in U \cap B(0, 2r)^c.$$
Theorem: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$\frac{1}{C} \leq \frac{u(x)}{K_U(x, 0) \int_{B(0,2r)} u(z) \, dz} \leq C, \quad \text{for all } x \in U \cap \overline{B}(0, 2r)^c.$$
BHP at infinity – continuation

Theorem: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$\frac{1}{C} \leq \frac{u(x)}{K_U(x, 0) \int_{B(0, 2r)} u(z) \, dz} \leq C, \quad \text{for all } x \in U \cap \overline{B}(0, 2r)^c.$$

$$u(x) \preceq \int_U G_U(x, y) j(|y|) \, dy \int_{B(0, 2r)} u(z) \, dz, \quad x \in U \cap \overline{B}(0, 2r)^c.$$
Theorem: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$\frac{1}{C} \leq \frac{u(x)}{K_U(x, 0) \int_{B(0,2r)} u(z) \, dz} \leq C, \quad \text{for all } x \in U \cap \overline{B}(0, 2r)^c.$$

$$u(x) \asymp \int_U G_U(x, y) j(|y|) \, dy \int_{B(0,2r)} u(z) \, dz, \quad x \in U \cap \overline{B}(0, 2r)^c.$$

Zoran Vondraček (University of Zagreb)

Martin boundary for SBM

Wrocław, 15-19.7.2013. 26 / 42
Corollary: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u and v on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$C^{-1} \frac{u(y)}{v(y)} \leq \frac{u(x)}{v(x)} \leq C \frac{u(y)}{v(y)},$$

for all $x, y \in U \cap \overline{B}(0, 2r)^c$.

Not true if regular harmonic is replaced by harmonic: $w(x) := (x + \alpha/2)^{\alpha/2}$ is harmonic in the upper half-space $H \subset \mathbb{R}^{\alpha/2}$, vanishes on $\overline{B}(\tilde{0}, -1)^c \setminus H$, but $\lim_{x \rightarrow \infty} w(x) = \infty$.
Corollary: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u and v on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$C^{-1} \frac{u(y)}{v(y)} \leq \frac{u(x)}{v(x)} \leq C \frac{u(y)}{v(y)}, \quad \text{for all } x, y \in U \cap \overline{B}(0, 2r)^c.$$

Corollary: Let $r \geq 1$ and $U \subset \overline{B}(0, r)^c$. If u is a non-negative function on \mathbb{R}^d which is regular harmonic in U and vanishes on $\overline{B}(0, r)^c \setminus U$, then

$$\lim_{|x| \to \infty} u(x) = 0.$$
Corollaries

Corollary: There exists $C = C(\phi) > 1$ such that for all $r \geq 1$, for all open sets $U \subset \overline{B}(0, r)^c$ and all nonnegative functions u and v on \mathbb{R}^d that are regular harmonic in U and vanish on $\overline{B}(0, r)^c \setminus U$, it holds that

$$C^{-1} \frac{u(y)}{v(y)} \leq \frac{u(x)}{v(x)} \leq C \frac{u(y)}{v(y)}, \quad \text{for all } x, y \in U \cap \overline{B}(0, 2r)^c.$$

Corollary: Let $r \geq 1$ and $U \subset \overline{B}(0, r)^c$. If u is a non-negative function on \mathbb{R}^d which is regular harmonic in U and vanishes on $\overline{B}(0, r)^c \setminus U$, then

$$\lim_{|x| \to \infty} u(x) = 0.$$

Not true if regular harmonic is replaced by harmonic: $w(x) := (x_d^+)^{\alpha/2}$ is harmonic in the upper half-space $\mathbb{H} \subset B((\tilde{0}, -1), 1)^c$, vanishes on $\overline{B}((\tilde{0}, -1), 1)^c \setminus \mathbb{H}$, but $\lim_{x_d \to \infty} w(x) = \infty$.

Zoran Vondraček (University of Zagreb)
Upper bound on the Green function $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$ and $b > 0$. There exist a constant $C = C(\phi, p, q, b) > 0$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and all $y \in A(0, r, 2qr)$ such that $br < |x - y|$ it holds that

$$G_{\overline{B}(0,r)^c}(x, y) \leq c \frac{\phi(r^{-2})^{1/2}}{\phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{1/2}} g(r)$$
Ingredients of the proof

Upper bound on the Green function $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$ and $b > 0$. There exist a constant $C = C(\phi, p, q, b) > 0$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and all $y \in A(0, r, 2qr)$ such that $br < |x − y|$ it holds that

$$G_{\overline{B}(0,r)^c}(x, y) \leq c \frac{\phi(r^{-2})^{1/2}}{\phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{1/2} g(r)}$$
Ingredients of the proof

Upper bound on the Green function \(\overline{B}(0, r)^c \), \(r \geq 1 \): Let \(1 < p < q < 4 \) and \(b > 0 \). There exist a constant \(C = C(\phi, p, q, b) > 0 \) such that for all \(r \geq 1 \), all \(x \in A(0, pr, qr) \) and all \(y \in A(0, r, 2qr) \) such that \(br < |x - y| \) it holds that

\[
G_{\overline{B}(0,r)^c}(x, y) \leq c \frac{\phi(r^{-2})^{1/2}}{\phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{1/2}} g(r) \\
\leq C \phi(r^{-2})^{-1/2} \phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{-1/2} r^{-d}.
\]
Ingredients of the proof

Upper bound on the Green function $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$ and $b > 0$. There exist a constant $C = C(\phi, p, q, b) > 0$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and all $y \in A(0, r, 2qr)$ such that $br < |x - y|$ it holds that

$$G_{\overline{B}(0,r)^c}(x, y) \leq c \frac{\phi(r^{-2})^{1/2}}{\phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{1/2}} g(r)$$

$$\leq C \phi(r^{-2})^{-1/2} \phi(\delta_{\overline{B}(0,r)^c}(y)^{-2})^{-1/2} r^{-d}.$$

The proof uses the global, uniform BHP with explicit decay rate.
Upper bound for the Poisson kernel of $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$. There exists $C = C(\phi, p, q) > 1$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and $z \in B(0, r)$ it holds that

$$K_{\overline{B}(0, r)^c}(x, z) \leq Cr^{-d} \phi(r^{-2})^{-1/2} \phi((r - |z|)^{-2})^{1/2}.$$

This bound is crucial for the analysis of the boundary behavior of harmonic functions in the context of the Martin boundary for symmetric Hunt processes.
Ingredients of the proof – continuation

Upper bound for the Poisson kernel of $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$. There exists $C = C(\phi, p, q) > 1$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and $z \in B(0, r)$ it holds that

$$K_{\overline{B}(0, r)^c}(x, z) \leq Cr^{-d}\phi(r^{-2})^{-1/2}\phi((r - |z|)^{-2})^{1/2}.$$
Upper bound for the Poisson kernel of $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$. There exists $C = C(\phi, p, q) > 1$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and $z \in B(0, r)$ it holds that

$$K_{\overline{B}(0, r)^c}(x, z) \leq Cr^{-d} \phi(r^{-2})^{-1/2} \phi((r - |z|)^{-2})^{1/2}.$$

For α-stable process

$$K_{\overline{B}(0, r)^c}(x, z) = c(\alpha, d) \frac{(|x|^2 - r^2)^{\alpha/2}}{(r^2 - |z|^2)^{\alpha/2}} |x - z|^{-d}$$
Upper bound for the Poisson kernel of $\overline{B}(0, r)^c$, $r \geq 1$: Let $1 < p < q < 4$. There exists $C = C(\phi, p, q) > 1$ such that for all $r \geq 1$, all $x \in A(0, pr, qr)$ and $z \in B(0, r)$ it holds that

$$K_{\overline{B}(0,r)^c}(x, z) \leq Cr^{-d}\phi(r^{-2})^{-1/2}\phi((r - |z|)^{-2})^{1/2}.$$

For α-stable process

$$K_{\overline{B}(0,r)^c}(x, z) = c(\alpha, d)\frac{|x|^2 - r^2}{(r^2 - |z|^2)^{\alpha/2}} |x - z|^{-d} \lesssim r^{-d}\frac{r^{\alpha/2}}{(r - |z|)^{\alpha/2}}.$$
Exit probability estimate: For every $a \in (1, \infty)$, there exists a positive constant $C = C(\phi, a) > 0$ such that for any $r \in (0, \infty)$ and any open set $U \subset \overline{B}(0, r)^c$ we have

$$\mathbb{P}_x \left(X_{\tau_U} \in \overline{B}(0, r) \right) \leq Cr^d K_U(x, 0), \quad x \in U \cap \overline{B}(0, ar)^c.$$
Exit probability estimate: For every $a \in (1, \infty)$, there exists a positive constant $C = C(\phi, a) > 0$ such that for any $r \in (0, \infty)$ and any open set $U \subset \overline{B}(0, r)^c$ we have

$$\mathbb{P}_x \left(X_{\tau_U} \in B(0, r) \right) \leq Cr^d K_U(x, 0), \quad x \in U \cap \overline{B}(0, ar)^c.$$
Ingredients of the proof – continuation

Regularization of the Poisson kernel in the spirit of Bogdan, Kulczycki and Kwaśnicki (2008) leading to

\[K_U(x, z) \approx K_U(x, 0) \left(\int_{U \cap B(0, 2r)} K_U(y, z) \, dy + 1 \right). \]
1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack principle

4 Boundary Harnack principle at infinity

5 Martin boundary of unbounded sets

6 Minimal thinness
κ-fat sets

Let $\kappa \in (0, 1/2]$. An open set D is said to be κ-fat open at $Q \in \partial D$, if there exists $R > 0$ such that for each $r \in (0, R)$ there exists a point $A_r(Q)$ satisfying $B(A_r(Q), \kappa r) \subset D \cap B(Q, r)$.
Let $\kappa \in (0, 1/2]$. An open set D is said to be κ-fat open at $Q \in \partial D$, if there exists $R > 0$ such that for each $r \in (0, R)$ there exists a point $A_r(Q)$ satisfying $B(A_r(Q), \kappa r) \subset D \cap B(Q, r)$. If D is κ-fat at each boundary point $Q \in \partial D$ with the same $R > 0$, D is called κ-fat with characteristics (R, κ).

Zoran Vondraček (University of Zagreb)
κ-fat sets

Let $\kappa \in (0, 1/2]$. An open set D is said to be κ-fat open at $Q \in \partial D$, if there exists $R > 0$ such that for each $r \in (0, R)$ there exists a point $A_r(Q)$ satisfying $B(A_r(Q), \kappa r) \subset D \cap B(Q, r)$.

If D is κ-fat at each boundary point $Q \in \partial D$ with the same $R > 0$, D is called κ-fat with characteristics (R, κ).
\(\kappa \)-fat sets at infinity

An open set \(D \) in \(\mathbb{R}^d \) is \(\kappa \)-fat at infinity if there exists \(R > 0 \) such that for every \(r \in [R, \infty) \) there exists \(A_r \in \mathbb{R}^d \) such that \(B(A_r, \kappa r) \subset D \cap \overline{B}(0, r)^c \) and \(|A_r| < \kappa^{-1} r \). The pair \((R, \kappa) \) will be called the characteristics of the \(\kappa \)-fat open set \(D \) at infinity.
An open set \(D \) in \(\mathbb{R}^d \) is \(\kappa \)-fat at infinity if there exists \(R > 0 \) such that for every \(r \in [R, \infty) \) there exists \(A_r \in \mathbb{R}^d \) such that \(B(A_r, \kappa r) \subset D \cap \overline{B}(0, r)^c \) and \(|A_r| < \kappa^{-1} r \). The pair \((R, \kappa) \) will be called the characteristics of the \(\kappa \)-fat open set \(D \) at infinity.
κ-fat sets at infinity

An open set D in \mathbb{R}^d is κ-fat at infinity if there exists $R > 0$ such that for every $r \in [R, \infty)$ there exists $A_r \in \mathbb{R}^d$ such that $B(A_r, \kappa r) \subset D \cap \overline{B}(0, r)^c$ and $|A_r| < \kappa^{-1} r$. The pair (R, κ) will be called the characteristics of the κ-fat open set D at infinity.

All half-space-like open sets, all exterior open sets and all infinite cones are κ-fat at infinity.
Oscillation reduction

Lemma: Let $D \subset \mathbb{R}^d$ be an open set which is κ-fat at infinity with characteristics (R, κ). There exist $C = C(\phi, d) > 0$ and $\nu = \nu(d, \phi) > 0$ such that for all $r \geq 1$ and all non-negative functions u and v on \mathbb{R}^d which are regular harmonic in $D \cap \overline{B}(0, r/2)^c$, vanish in $D^c \cap \overline{B}(0, r/2)^c$ and satisfy $u(A_r) = v(A_r)$, there exists the limit

$$g = \lim_{|x| \to \infty, x \in D} \frac{u(x)}{v(x)},$$

and we have

$$\left| \frac{u(x)}{v(x)} - g \right| \leq C \left(\frac{|x|}{r} \right)^{-\nu}, \quad x \in D \cap \overline{B}(0, r)^c.$$
Fix $x_0 \in D \cap \overline{B}(0, R)^c$ and recall that

$$M_D(x, y) = \frac{G_D(x, y)}{G_D(x_0, y)}, \quad x, y \in D \cap \overline{B}(0, R)^c.$$

For $r > (2|x| \lor R)$, both functions $y \mapsto G_D(x, y)$ and $y \mapsto G_D(x_0, y)$ are regular harmonic in $D \cap \overline{B}(0, r/2)^c$ and vanish on $D^c \cap \overline{B}(0, r/2)^c$.

Theorem: (Kim, Song, V 2012) For each $x \in D$ there exists the limit

$$M_D(x, \infty) := \lim_{y \in D, |y| \to \infty} M_D(x, y).$$

This implies that every infinite Martin boundary point can be mapped to $\{\infty\}$. Since Martin kernels for different Martin boundary points are different, the infinite part of the Martin boundary is exactly $\{\infty\}$.

Zoran Vondraček (University of Zagreb)
Fix $x_0 \in D \cap \overline{B}(0, R)^c$ and recall that
\[
M_D(x, y) = \frac{G_D(x, y)}{G_D(x_0, y)}, \quad x, y \in D \cap \overline{B}(0, R)^c.
\]

For $r > (2|x| \vee R)$, both functions $y \mapsto G_D(x, y)$ and $y \mapsto G_D(x_0, y)$ are regular harmonic in $D \cap \overline{B}(0, r/2)^c$ and vanish on $D^c \cap \overline{B}(0, r/2)^c$.

Theorem: (Kim, Song, V 2012) For each $x \in D$ there exists the limit
\[
M_D(x, \infty) := \lim_{y \in D, \ |y| \to \infty} M_D(x, y).
\]
Fix $x_0 \in D \cap \overline{B}(0, R)^c$ and recall that

$$M_D(x, y) = \frac{G_D(x, y)}{G_D(x_0, y)}, \quad x, y \in D \cap \overline{B}(0, R)^c.$$

For $r > (2|x| \lor R)$, both functions $y \mapsto G_D(x, y)$ and $y \mapsto G_D(x_0, y)$ are regular harmonic in $D \cap \overline{B}(0, r/2)^c$ and vanish on $D^c \cap \overline{B}(0, r/2)^c$.

Theorem: (Kim, Song, V 2012) For each $x \in D$ there exists the limit

$$M_D(x, \infty) := \lim_{y \in D, |y| \to \infty} M_D(x, y).$$

This implies that every infinite Martin boundary point can be mapped to $\{\infty\}$. Since Martin kernels for different Martin boundary points are different, the infinite part of the Martin boundary is exactly $\{\infty\}$.

Zoran Vondraček (University of Zagreb)
Harmonicity and minimality

Lemma: For each $x \in D$ and $\rho \in (0, \frac{1}{3} \delta_D(x)]$,

$$M_D(x, \infty) = \mathbb{E}_x[M_D(X_{T_{B(x, \rho)}}, \infty)].$$
Harmonicity and minimality

Lemma: For each $x \in D$ and $\rho \in (0, \frac{1}{3} \delta_D(x)]$,\[M_D(x, \infty) = \mathbb{E}_x[M_D(X_{T_{B(x,\rho)}}, \infty)]. \]

Theorem: The function $M_D(\cdot, \infty)$ is minimal harmonic in D with respect to X.
Harmonicity and minimality

Lemma: For each $x \in D$ and $\rho \in (0, \frac{1}{3}\delta_D(x)]$,

$$M_D(x, \infty) = \mathbb{E}_x[M_D(X_{T_{B(x, \rho)}}, \infty)].$$

Theorem: The function $M_D(\cdot, \infty)$ is minimal harmonic in D with respect to X.

By use of the lemma above, one shows that $M_D(\cdot, \infty)$ is harmonic (exit time from a relatively compact $D_1 \subset D$ is an increasing limit of exit times from balls with radii comparable to the distance to the boundary).
Harmonicity and minimality

Lemma: For each \(x \in D \) and \(\rho \in (0, \frac{1}{3} \delta_D(x)] \),

\[
M_D(x, \infty) = \mathbb{E}_x[M_D(X_{TB(x, \rho)}, \infty)].
\]

Theorem: The function \(M_D(\cdot, \infty) \) is minimal harmonic in \(D \) with respect to \(X \).

By use of the lemma above, one shows that \(M_D(\cdot, \infty) \) is harmonic (exit time from a relatively compact \(D_1 \subset D \) is an increasing limit of exit times form balls with radii comparable to the distance to the boundary).

Minimality: \(h \) positive harmonic, \(h \leq M_D(\cdot, \infty) \). Write

\[
h(x) = \int_{\partial^f_M D} M_D(x, w) \mu(dw) + M_D(x, \partial_\infty)\mu(\{\partial_\infty\}),
\]

and show that \(\mu(\partial^f_M D) = 0 \).
Finite part of Martin boundary: If D is κ-fat open set, then the finite part of the Martin boundary can be identified with the Euclidean boundary.
Finite part of Martin boundary: If D is κ-fat open set, then the finite part of the Martin boundary can be identified with the Euclidean boundary.

Define $w(x) = w(\tilde{x}, x_d) := V(x_d)$ where V is the renewal functional of the last component of X.

Corollary: The Martin boundary and the minimal Martin boundary of the half space H with respect to X can be identified with $\partial H \cup \{\infty\}$ and $M_H(x, \infty) = w(x)/w(x_0)$ for $x \in H$.
Finite part of Martin boundary: If D is κ-fat open set, then the finite part of the Martin boundary can be identified with the Euclidean boundary.

Define $w(x) = w(\tilde{x}, x_d) := V(x_d)$ where V is the renewal functional of the last component of X.

Corollary: The Martin boundary and the minimal Martin boundary of the half space \mathbb{H} with respect to X can be identified with $\partial \mathbb{H} \cup \{\infty\}$ and $M_{\mathbb{H}}(x, \infty) = w(x)/w(x_0)$ for $x \in \mathbb{H}$.
1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack principle

4 Boundary Harnack principle at infinity

5 Martin boundary of unbounded sets

6 Minimal thinness
Minimal thinness

Let $A \subset D$, $T_A = \inf\{t > 0 : X^D_t \in A\}$ the hitting time to A, $P_A f(x) := \mathbb{E}_x[f(X^D_{T_A})]$ the hitting operator to A.
Let \(A \subset D, \ T_A = \inf\{ t > 0 : X_t^D \in A \} \) the hitting time to \(A \),
\[
P_A f(x) := \mathbb{E}_x[f(X_{T_A}^D)]
\]
the hitting operator to \(A \).
Analytically, \(P_A f = \hat{R}^A_f \) – the balayage of \(f \) onto \(A \).
Let $A \subset D$, $T_A = \inf\{t > 0 : X_t^D \in A\}$ the hitting time to A, $P_A f(x) := \mathbb{E}_x[f(X_{T_A}^D)]$ the hitting operator to A. Analytically, $P_A f = \hat{R}_f^A$ – the balayage of f onto A.

Let $z \in \partial_m D$. Then $A \subset D$ is minimally thin at z if $P_A M_D(\cdot, z) \neq M(\cdot, z)$.
Let $A \subset D$, $T_A = \inf\{t > 0 : X^D_t \in A\}$ the hitting time to A, $P_A f(x) := \mathbb{E}_x[f(X^D_{T_A})]$ the hitting operator to A. Analytically, $P_A f = \hat{R}_f^A$ – the balayage of f onto A.

Let $z \in \partial_m D$. Then $A \subset D$ is **minimally thin** at z if $P_A M_D(\cdot, z) \neq M(\cdot, z)$. Equivalently, there exists $x \in D$ such that the $M_D(\cdot, z)$-conditioned process X^D,z will not hit A with positive probability.
Minimal thinness in the halfspace

Theorem: Assume that X is SBM satisfying (H1) and $z \in \partial \mathbb{H}$. If $A \subset \mathbb{H}$ is minimally thin in \mathbb{H} at z, then

$$
\int_{A \cap B(z,1)} |x - z|^{-d} \, dx < \infty.
$$

Conversely, suppose that A is a union of Whitney cubes. If A is not minimally thin at z, then the above integral is infinite.
Minimal thinness in the halfspace

Theorem: Assume that X is SBM satisfying (H1) and $z \in \partial \mathbb{H}$. If $A \subset \mathbb{H}$ is minimally thin in \mathbb{H} at z, then

$$\int_{A \cap B(z,1)} |x - z|^{-d} \, dx < \infty.$$

Conversely, suppose that A is a union of Whitney cubes. If A is not minimally thin at z, then the above integral is infinite.

Theorem: Assume that X is SBM satisfying (H1) and (H2). If $A \subset \mathbb{H}$ is minimally thin in \mathbb{H} at ∞, then

$$\int_{A \cap B(0,1)^c} |x - z|^{-d} \, dx < \infty.$$

Conversely, suppose that A is a union of Whitney cubes. If A is not minimally thin at ∞, then the above integral is infinite.