
Brownian Motion and Thermal
Capacity

Davar Khoshnevisan and Yimin Xiao

Utah and MSU

7th Lévy Conference, July 15– 19, 2013

Davar Khoshnevisan and Yimin Xiao ( Utah and MSU )Brownian Motion and Thermal Capacity 1 / 26



Outline
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pacity

Hausdorff dimension of W(E) ∩ F

Open problems
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1. Intersection of the Brownian images and
thermal capacity
Let W := {W(t)}t≥0 denote standard d-dimensional Brow-
nian motion where d ≥ 1, and let E and F be compact
subsets of (0 ,∞) and Rd, respectively.
The following problems are of interest:

1 When is P(W(E) ∩ F 6= Ø) > 0?
2 What is dimH(W(E) ∩ F)?

Note that

{W(E) ∩ F 6= Ø} = {(t,W(t)) ∈ E× F for some t > 0}.

Problem 1 is an interesting problem in probabilistic poten-
tial theory.
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Conditions for P(W(E) ∩ F 6= Ø) > 0

Necessary and sufficient condition in terms of “thermal ca-
pacity” for P(W(E)∩F 6= Ø) > 0 were proved by Waston
(1978) and Doob (1984). See Waston (2012) for more in-
formation.
Waston and Taylor (1985) provided a simple-to-use condi-
tion:

P(W(E) ∩ F 6= Ø)

{
> 0, if dimH(E × F ; %) > d,
= 0, if dimH(E × F ; %) < d.

In the above, dimH(E × F ; %) is the Hausdorff dimension
of E × F using the metric

% ((s , x) ; (t , y)) := max
(
|t − s|1/2, ‖x− y‖

)
.
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Recall that the Hausdorff dimension of the compact set E×
F in the metric % is defined by

dimH(E × F ; %) = inf

{
s ≥ 0 :

lim
ε→0

inf
{ ∞∑

j=1

|diam%(Ej × Fj)|s
}
<∞

}
,

where the infimum is taken over all closed covers {Ej ×
Fj}∞j=1 of E × F with diam%(Ej × Fj) < ε, and “diam%(Λ)”
denotes the diameter of the space-time set Λ, as measured
by the metric %.
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As a by-product of our main result, we obtain an improved
version of the result of Waston (1978) and Doob (1984).
Theorem 1.1
Suppose F ⊂ Rd is compact and has Lebesgue measure 0.
Then

P{W(E) ∩ F 6= ∅} > 0 ⇐⇒
∃ µ ∈ Pd(E × F) such that E0(µ) <∞,

where Pd(E × F) is the collection of all probability mea-
sures µ on E × F such that µ({t} × F) = 0 for all t > 0
and the energy E0(µ) is defined by

E0(µ) :=

∫∫
e−‖x−y‖2/(2|t−s|)

|t − s|d/2 µ(ds dx)µ(dt dy).
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2. Hausdorff dimension of dimH(W(E) ∩ F)

If F = Rd, then dimHW(E) = min{d, 2dimHE} a.s.
If E = R+, then

dimH(W(R+) ∩ F) =

{
dimHF if d = 1;
2 + dimHF − d if d ≥ 2.

For compact sets E ⊂ (0,∞) and F ⊂ R (d = 1),
Kaufman (1972) obtained ‖dimH(W−1(F)∩E)‖L∞(P),
where ‖ · ‖L∞(P) denotes the L∞(P)-norm. However,
this does not provide information on dimH(W(E)∩F).
Hawkes (1978) considered the problem for an α-stable
Lévy process in R with 0 < α < 1.
We solve this problem completely for Brownian mo-
tion (and Lévy stable processes).
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The co-dimension argument

Recall that the two common ways to compute the Haus-
dorff dimension of a set are

Use a covering argument for obtaining an upper bound
and a capacity argument for lower bound;

The co-dimension argument.
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The “co-dimension argument” was initiated by S.J. Taylor
(1966) for computing the Hausdorff dimension of the mul-
tiple points of a stable Lévy process in Rd. His method was
based on potential theory of Lévy processes.

Let Zα = {Zα(t), t ∈ R+} be a (symmetric) stable Lévy
process in Rd of index α ∈ (0, 2] and let F ⊂ Rd be a
Borel set. Then

P(Zα((0,∞)) ∩ F 6= ∅) > 0⇐⇒ Capd−α(F) > 0,

where Capd−α is the Riesz-Bessel capacity of order d− α.
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The co-dimension argument

The above result and Frostman’s theorem lead to the stochas-
tic co-dimension argument: If dimHF ≥ d − 2, then

dimHF = sup{d − α : Zα((0,∞)) ∩ F 6= ∅}
= d − inf

{
α > 0 : F is not polar for Zα

}
.

[The restriction dimHF ≥ d − 2 is caused by the fact that
Zα((0,∞)) ∩ F = Ø if dimHF < d − 2.]

This method determines dimHF by intersecting F using a
family of testing random sets.

Hawkes (1971) applied the co-dimension method for com-
puting dimHX−1(F) of a stable Lévy process.
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The co-dimension argument

Families of testing random sets:
ranges of symmetric stable Lévy processes;

fractal percolation sets [Peres (1996, 1999)];

ranges of additive Lévy processes [Khoshnevisan and
X. (2003, 2005, 2009), Khoshnevisan, Shieh and X.
(2008)].
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Main results

To compute ‖dimH (W(E) ∩ F)‖L∞(P), we distinguish two
cases: |F| > 0 and |F| = 0, where | · | denotes the
Lebesgue measure.

Theorem 2.1 [Khoshnevisan and X. (2012)]
If F ⊂ Rd (d ≥ 1) is compact and |F| > 0, then

‖dimH (W(E) ∩ F)‖L∞(P) = min{d , 2dimHE}. (1)

If dimHE > 1
2 and d = 1, then P{|W(E) ∩ F| > 0} > 0.
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Proof of Theorem 2.1

1 Thanks to the uniform Hölder continuity of W(t) on
bounded sets, we have

dimH (W(E) ∩ F) ≤ min{d , 2dimHE}, a.s.

This implies the upper bound in (1).
2 For proving the lower bound in (1), we construct a

random measure on W(E) ∩ F and use the capacity
argument.

3 The last part is proved by showing that the constructed
random measure on W(E) ∩ F has a density function
almost surely.
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Theorem 2.2 [Khoshnevisan and X. (2012)]
If F ⊂ Rd (d ≥ 1) is compact and |F| = 0, then∥∥dimH (W(E) ∩ F)

∥∥
L∞(P)

= sup
{
γ ≥ 0 : inf

µ∈Pd(E×F)
Eγ(µ) <∞

}
,

(2)

where Pd(E × F) is the collection of all probability mea-
sures µ on E × F such that µ({t} × F) = 0 for all t > 0,
and

Eγ(µ) :=

∫∫
e−‖x−y‖2/(2|t−s|)

|t − s|d/2 · ‖y− x‖γ
µ(ds dx)µ(dt dy). (3)
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Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not W(E)∩
F intersects the range of an additive Lévy stable process.

Let X(1), . . . ,X(N) be N isotropic stable processes with com-
mon stability index α ∈ (0 , 2]. We assume that the X(j)’s
are independent from one another, as well as from the pro-
cess W, and all take their values in Rd.

We assume also that X(1), . . . ,X(N) have right-continuous
sample paths with left-limits and

E
[
ei〈ξ,X(k)(1)〉

]
= e−‖ξ‖

α/2, ∀ ξ ∈ Rd.
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Define the corresponding additive stable process Xα :=
{Xα(t), t ∈ RN

+} as

Xα(t) :=
N∑

k=1

X(k)(tk), ∀ t = (t1, . . . , tN) ∈ RN
+. (4)

Khoshnevisan, X. and Zhong (2003) showed that for any
Borel set G ⊂ Rd,

P
(
Xα(RN

+) ∩ G 6= Ø
){

= 0 if dimHG < d − αN,
> 0 if dimHG > d − αN.

(5)
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The key ingredient for proving Theorem 2.2

Theorem 2.3
If d > αN and F ⊂ Rd has Lebesgue measure 0, then

P
{

W(E) ∩ Xα(RN
+) ∩ F 6= Ø

}
> 0

⇐⇒ Cd−αN(E × F) > 0.

Here Cγ is the capacity corresponding to the energy form
(3): for all compact sets U ⊂ R+ × Rd and γ ≥ 0,

Cγ(U) :=

[
inf

µ∈Pd(U)
Eγ(µ)

]−1

. (6)
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Proof of Theorem 2.2
Lower bound: Denote

∆ := sup
{
γ ≥ 0 : inf

µ∈Pd(E×F)
Eγ(µ) <∞

}
. (7)

If ∆ > 0 and we choose α ∈ (0 , 2] and N ∈ Z+ 0 <
d − αN < ∆. Then Cd−αN(E × F) > 0. It follows from
Theorem 2.3 and (5) that

P {dimH (W(E) ∩ F) ≥ d − αN} > 0. (8)

Because d − αN ∈ (0 ,∆) is arbitrary, we have

‖dimH(W(E) ∩ F)‖L∞(P) ≥ ∆.
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Upper bound: Similarly, Theorem 2.3 and (5) imply that

d−αN > ∆ ⇒ dimH (W(E) ∩ F) ≤ d−αN a. s. (9)

Hence ‖dimH(W(E) ∩ F)‖L∞(P) ≤ ∆ whenever ∆ ≥ 0.
This proves Theorem 2.2.
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Proof of Theorem 2.3
To prove the sufficiency

Cd−αN(E × F) > 0 =⇒
P
{

W(E) ∩ Xα(RN
+) ∩ F 6= Ø

}
> 0,

we define, for every µ ∈ Pd(E × F) and ε > 0, the occu-
pation measure Zε(µ) by

Zε(µ) =

∫
[1,2]N

du
∫

E×F
µ(ds dx) φε(W(s)−x)φε(Xα(u)−x),

where
φε(y) =

1
εdIB(0,ε)(y).

The proof is based on computing E[Zε(µ)] and E[Zε(µ)2].
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Proof of Theorem 2.3

For proving the necessity, we assume

P
{

W(E) ∩ Xα(RN
+) ∩ F 6= Ø

}
> 0,

and construct a probability measure µ ∈ Pd(E × F) such
that Ed−αN(µ) <∞.

If W(E) ∩ Xα(RN
+) is replaced by the range of a Lévy pro-

cess, then we can use a stoping time argument and the
strong Markov property.

The current random field case is much harder. We omit the
details.
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An explicit formula

Theorem 2.4 [Khoshnevisan and X. (2012)]
If d ≥ 2 and dimH (E × F ; %) ≥ d, then

‖dimH (W(E) ∩ F)‖L∞(P) = dimH (E × F ; %)− d. (10)

Remarks
Eq (10) does not always hold for d = 1: For E :=
[0 , 1] and F = {0}, we have dimH(W(E) ∩ F) = 0
a.s., whereas dimH(E × F ; %)− d = 1.
When F ⊂ Rd satisfies |F| > 0, it can be shown that

dimH (E × F ; %) = 2dimHE + d.

Hence (1) coincides with (10) when d ≥ 2.
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Proof of Theorem 2.4

The proof replies on the following “uniform dimension re-
sult” of Kaufman (1968): If {W(t), t ∈ R+} is a Brownian
motion in Rd with d ≥ 2, then

P
{

dimHW(G) = 2dimHG, ∀ Borel sets G ⊂ R+} = 1.

It is sufficient to show that for all compact sets E ⊂ (0,∞)
and F ⊂ Rd,∥∥dimH

(
E ∩W−1(F)

)∥∥
L∞(P) =

dimH (E × F ; %)− d
2

.

(11)
When d = 1, the lower bound of (11) was found first by
Kaufman (1972).
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3. Further research and open problems

As a consequence of Theorems 2.2 and 2.4, we have
for d ≥ 2,

sup
{
γ ≥ 0 : inf

µ∈Pd(E×F)
Eγ(µ) <∞

}
= dimH (E × F ; %)− d.

Is there a “geometric” proof of this identity?
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Open problems

If we replace W(E) by the set of fast points of Brow-
nian motion

G(λ) =

{
t ∈ [0, 1] : lim sup

h→0

|W(t + h)−W(t)√
2h| log h|

≥ λ

}
,

then dimH

(
G(λ) ∩ E

)
is unknown, except the follow-

ing inequalities proved in Khoshnevisan, Peres and
X. (2000): For any λ ∈ (0, 1) and E ⊂ [0, 1] with
dimPE ≥ λ2,

dimHE − λ2 ≤ dimH

(
G(λ) ∩ E

)
≤ dimPE − λ2, a.s.

In the above, dimPE is the packing dimension of E.
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Thank you
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