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@ Intersection of the Brownian images and thermal ca-
pacity

e Hausdorff dimension of W(E) N F

@ Open problems
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1. Intersection of the Brownian images and

thermal capacity

Let W := {W(t) };>0 denote standard d-dimensional Brow-
nian motion where d > 1, and let E and F be compact
subsets of (0, 00) and R, respectively.

The following problems are of interest:
Q@ WhenisP(W(E)NF # @) > 07
© What is dim,(W(E)NF)?

Note that

{WE)NF #0} ={(t,W(t)) € E x F for some ¢ > 0}.

Problem 1 is an interesting problem in probabilistic poten-
tial theory.

isan and Yimin Xiao (Utah an  Brownian Motion an



Conditions for PW(E)NF # ©) > 0

Necessary and sufficient condition in terms of “thermal ca-
pacity” for P(W(E) N F # ) > 0 were proved by Waston
(1978) and Doob (1984). See Waston (2012) for more in-
formation.

Waston and Taylor (1985) provided a simple-to-use condi-
tion:

>0, ifdim,(E x F;0) >d,
P(W(EWF#@){ —0, ifdim,(E x F;0) < d.

In the above, dim,(E X F; o) is the Hausdorff dimension
of E x F using the metric

1/2

0((s,x)3(r,y)) = max(|r —s|'/%, [lx — y[]).
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Recall that the Hausdorff dimension of the compact set E X
F in the metric p is defined by

dim,(E X F;0) =inf< s >0

lim inf{ > |diam, (E; x FJ-)|S} < ooy,

e—0
J=1

where the infimum is taken over all closed covers {E; x
Fj}2) of E x F with diam,(E; x Fj) < ¢, and “diam,(A)”
denotes the diameter of the space-time set A, as measured
by the metric p.
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As a by-product of our main result, we obtain an improved
version of the result of Waston (1978) and Doob (1984).

Theorem 1.1

Suppose F C R? is compact and has Lebesgue measure 0.
Then

P{WE)NF #0} >0 <
dpu € Py(E x F) suchthat E(u) < oo,

where P;(E x F) is the collection of all probability mea-
sures 1 on E X F such that u({t} x F) = Oforallz > 0
and the energy &y(u) is defined by

e~ =1/ (2lt=s|)
// s|d/2 p(ds dx) p(dt dy).
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2. Hausdorff dimension of dim (W(E) N F)

e If F = R, then dim,W(E) = min{d, 2dim E} a.s.
o If E =R, then

dim, F if d=1;
2+dimF —d ifd>2.

@ For compact sets E C (0,00) and F C R (d = 1),
Kaufman (1972) obtained ||dim, (W~ (F) N E)||1p
where || - ||,~(p) denotes the L>(P)-norm. However,
this does not pr0V1de information on dim,(W(E)NF).

@ Hawkes (1978) considered the problem for an «-stable
Lévy process in R with 0 < o < 1.

@ We solve this problem completely for Brownian mo-
tion (and Lévy stable processes).

dim, (W(R,) N F) = {
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The co-dimension argument

Recall that the two common ways to compute the Haus-
dorff dimension of a set are

@ Use a covering argument for obtaining an upper bound
and a capacity argument for lower bound;

@ The co-dimension argument.
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The “co-dimension argument” was initiated by S.J. Taylor
(1966) for computing the Hausdorff dimension of the mul-
tiple points of a stable Lévy process in R?. His method was
based on potential theory of Lévy processes.

Let Z, = {Z.(¢),t € R, } be a (symmetric) stable Lévy
process in RY of index o € (0,2] and let F C R be a
Borel set. Then

P(Zo((0,00)) N F # @) > 0 <= Cap,_ (F) > 0,

where Cap,_, is the Riesz-Bessel capacity of order d — a.
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The co-dimension argument

The above result and Frostman’s theorem lead to the stochas-
tic co-dimension argument: If dim ' > d — 2, then
dim,F = sup{d — a : Z,((0,00)) N F # &}
=d— inf{oz > (0 : F isnot polar forZa}.
[The restriction dim,F > d — 2 is caused by the fact that
Z,((0,00))NF =0 ifdim,F < d —2.]

This method determines dim,F by intersecting F using a
family of testing random sets.

Hawkes (1971) applied the co-dimension method for com-
puting dim, X! (F) of a stable Lévy process.
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The co-dimension argument

Families of testing random sets:
@ ranges of symmetric stable Lévy processes;

e fractal percolation sets [Peres (1996, 1999)];

@ ranges of additive Lévy processes [Khoshnevisan and
X. (2003, 2005, 2009), Khoshnevisan, Shieh and X.
(2008)].
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Main results

To compute [|dim, (W(E) N F)||,~ ), we distinguish two
cases: |F| > 0 and |F| = 0, where | - | denotes the
Lebesgue measure.

Theorem 2.1 [Khoshnevisan and X. (2012)]

If F C RY(d > 1) is compact and |F| > 0, then
|dim,, (W(E) N F)||py = min{d, 2dim,E}. (1)

If dim,E > 1 and d = 1, then P{|W(E) N F| > 0} > 0.

v
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Proof of Theorem 2.1

@ Thanks to the uniform Holder continuity of W(¢) on
bounded sets, we have

dim, (W(E) N F) < min{d ,2dim,E}, as.

This implies the upper bound in (1).
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Proof of Theorem 2.1

@ Thanks to the uniform Holder continuity of W(¢) on
bounded sets, we have

dim, (W(E) N F) < min{d ,2dim,E}, as.

This implies the upper bound in (1).

© For proving the lower bound in (1), we construct a
random measure on W(E) N F and use the capacity
argument.
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Proof of Theorem 2.1

@ Thanks to the uniform Holder continuity of W(¢) on
bounded sets, we have

dim, (W(E) N F) < min{d ,2dim,E}, as.

This implies the upper bound in (1).

© For proving the lower bound in (1), we construct a
random measure on W(E) N F and use the capacity
argument.

@ The last part is proved by showing that the constructed
random measure on W(E) N F has a density function
almost surely.
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Theorem 2.2 [Khoshnevisan and X. (2012)]

If F C RY(d > 1) is compact and |F| = 0, then

|dim,, (W(E) N F) HMP)

= >0: inf & },
sup{y>0: inf £ () < o0

()

Davar Khoshnevisan and Yimin Xiao ( Utah an  Brownian Motion and Thermal Capacity



Theorem 2.2 [Khoshnevisan and X. (2012)]

If F C RY(d > 1) is compact and |F| = 0, then

|dim,, (W(E) N F) HMP)

= >0: inf & },
sup{y>0: inf £ () < o0

()

where P, (E x F) is the collection of all probability mea-
sures 4 on E X F such that p({t} x F) = 0 for all ¢t > 0,
and

oIyl /2le—s)
0= [ Sy s ). @

isan and Yimin Xiao (Utah an  Brownian Motion and Thermal Capaci



Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not W(E)N
F intersects the range of an additive Lévy stable process.

Davar Khoshnevisan and Yimin Xiao ( Utah an  Brownian Motion and Thermal Capacity



Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not W(E)N
F intersects the range of an additive Lévy stable process.

LetX(D, ... X be N isotropic stable processes with com-
mon stability index o € (0,2]. We assume that the X\)’s
are independent from one another, as well as from the pro-
cess W, and all take their values in R?.
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Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not W(E)N
F intersects the range of an additive Lévy stable process.

LetX(D, ... X be N isotropic stable processes with com-
mon stability index o € (0,2]. We assume that the X\)’s
are independent from one another, as well as from the pro-
cess W, and all take their values in R?.

We assume also that XV, ..., X®™) have right-continuous
sample paths with left-limits and

E [ei<g,x<k><1>>} e N
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Define the corresponding additive stable process X, :=
{X,(t), t € R} as

Khoshnevisan, X. and Zhong (2003) showed that for any
Borel set G C R¢,

P(X,(RY) NG # O)
=0 if dim,G < d — aN, (5)
>0 if dim,G >d — aN.
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The key ingredient for proving Theorem 2.2

Theorem 2.3

If d > aN and F C R has Lebesgue measure 0, then

P{W(E)NX,(RY)NF#0} >0
< Cyon(EXF)>0.

Here C, is the capacity corresponding to the energy form
(3): for all compact sets U C R, x R? and v > 0,

C,(U) ::[ inf 8”(”)}_1' (6)4

,LLEPd(U)
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Proof of Theorem 2.2

Lower bound: Denote

A= >0: inf & < : 7
w1200, B0 <) O

If A > 0 and we choose a € (0,2]and N € Z; 0 <
d —aN < A. Then Cy_on(E x F) > 0. It follows from
Theorem 2.3 and (5) that

P{dim, (W(E)NF)>d—aN} > 0. (8)
Because d — aN € (0, A) is arbitrary, we have

[dim, (W(E) N F) [ @) = A.
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Upper bound: Similarly, Theorem 2.3 and (5) imply that
d—aN > A = dim, (WE)NF)<d—aN a.s. (9)

Hence ||dim, (W(E) N F)||p~@) < A whenever A > 0.
This proves Theorem 2.2.
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Proof of Theorem 2.3

To prove the sufficiency
Cd—aN(E X F) >0 =
P{W(E)NX.(RY)NF # 0} >0,

we define, for every u € Pd(E x F) and ¢ > 0, the occu-
pation measure Z_(

/12 d“/w (ds dx) p<(W(5)—x) @< (Xo () =),

1
Pe(y) = QIB(O,E) (v)-

The proof is based on computing E[Z.(y1)] and E[Z. (11)?].

where
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Proof of Theorem 2.3

For proving the necessity, we assume
P{W(E)NX.RY)NF #0} >0,

and construct a probability measure p € Py(E x F) such
that £;_ (1) < 0.

If W(E) N X, (RY) is replaced by the range of a Lévy pro-
cess, then we can use a stoping time argument and the
strong Markov property.

The current random field case is much harder. We omit the
details.
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An explicit formula

Theorem 2.4 [Khoshnevisan and X. (2012)]

If d > 2 and dim,, (E x F; ) > d, then

|dim,, (W(E) 0 F) | g) = dim, (E x F30) —d. (10)

Remarks
@ Eq (10) does not always hold for d = 1: For E :=
[0,1] and F = {0}, we have dim,(W(E)NF) =0
a.s., whereas dim (E x F;p) —d = 1.
@ When F C R? satisfies |F| > 0, it can be shown that

dim, (E x F ;o) = 2dim,E + d.
Hence (1) commdes with (10) when d > 2.
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Proof of Theorem 2.4

The proof replies on the following “uniform dimension re-

sult” of Kaufman (1968): If {W(z),7 € R, } is a Brownian
motion in R? with d > 2, then

P{dim, W(G) = 2dim,G, V Borel sets G C R, } = 1.

It is sufficient to show that for all compact sets E C (0, o)
and F C R?,

_ dim, (Ex F;0)—d

|dim, (ENW™(F)) HLOO(IP) =

(11)
When d = 1, the lower bound of (11) was found first by
Kaufman (1972).
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3. Further research and open problems

@ As a consequence of Theorems 2.2 and 2.4, we have
ford > 2,

>0: inf & }
sup{v__ Mgggﬂwrxu)<cm

= dim, (E x F: ) —d.

Is there a “geometric” proof of this identity?
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Open problems

e If we replace W(E) by the set of fast points of Brow-
nian motion

G\ = {t € [0,1] : lim sup WU A Z WD) o /\},

h—0 \/2h|log h|

then dim,, (G(\) N E) is unknown, except the follow-
ing inequalities proved in Khoshnevisan, Peres and
X. (2000): For any A € (0,1) and E C [0, 1] with
dim,E > )\?,

dim,E — \* < dim, (G(\) NE) < dim,E — X,  a.s.

In the above, dim,E is the packing dimension of E.
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Thank you
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