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1. SDE with jumps on manifold

M.: Orientable, paracompact manifold of dimen-
sion d.

m
d&t = Vo(&p, t)dt + ) Vj(Eg,t) o dWI(1)
=1

lim | (ralE) — £ IN(dtd)
E(Z'O]C

e—0

where U¢(zp) is an e-neighborhood of zj.
Here,

e W(t) = (W (1), ..., W™ (1)) is a standard Brow-

nian motion.

e N(dtdz): Poisson random measue on M with
center zp € M and Lévy measure v.

e We assume that the Lévy measure has a weak
drift and satisfies an order condition of exponent
W< o< Z

Y Case M=RA : zp=0 - orig: m
M=G (Lie_qrop) zo=€: st



e Vi(t);j =0, ..., m: smooth vector fields on M.

e 01, : M — M: diffeomorphisms.
smooth with respect to z € M, btz =L

Solution is a jump-diffusion with generator
.l m
A =Vo(t)f +5 ) Vi(t)*f
=1
+ lim J " {f(Ppez(x))—f(x)}v(dz).
elzg)C

e—0
We assume Hormander condition for coefficients.

Object:

1. Transition probabilities P(s, x: t, E) have smooth

densities p(s, x;t,y) with respect to a volume
element dg.




. Short time estimate: ﬂ
a) Forany 0 < B <2 — (x/:ﬁﬁ}?.ﬂ/ N Lok %%
‘DLP(S,X;t,y]I < cj(t—s)"UTd)/B

holds for any x, .
b) Off diagonal estimate.

If $Y(UC) NV = o,
\DLp(s,x;t,yN < ¢5(t— )Y U+A)/B
forany x € US,y € V.

. It is smooth with respect to x and satisfies

(A(s)x + E)]3(5,,x;t,g] = (.

0s

It is a fundamental solution for the backward
Cauchy problem:
0

(A(s)x +a) u(s,x) =0,
S

li %) =T(x).
5113% wis,x) = 1f{x)



Method: Several steps.

1. Bounded jumps (Support of the Lévy measure
is compact)
Case of M = R9. 1,3 and 4 are known.
Malliavin calculus for Wiener-Poisson space.
Picard, Ishikawa-K, K.
2 is known for pure jump process.
Picard, Ishikawa.

2. Unbounded jumps (Support of the Lévy mea-
sure is non-compact)
Malliavin calculus is not used.
Use method of perturbation.

3. Localization.
Smooth densities for a killed process.
Let T be the leaving time from D ¢ RY:

Set ’CZ

a(s,x;t,y) =p(s,%t,y)—Ep(7, &xit,y) rct]
It is the density of the killed process at time T.



For y-smoothness, we use short time estimate.
For x-smoothness, we use the dual process.
Chuchy problem on bounded domain D with
Dirichlet boundary condition.

4. Patchwork for the smooth density on manifold.

Piece together smooth densities on local charts.

The dowsTly & ¢/ ] te P 19 where ¥ ﬂjgé_



2. A perturbation method

1. SDE truncating jumps bigger than :
Jump coefficents are

by, = btz i |2 <8,
= identity, if |z| > 0

Associated solution Ef.
pa[s,x;t,y): smooth density of the law of E,f.
2. We adjoin jumps bigger than & as a pertur-
bation.
Foru = ((t1,21),..., (tn,2zn)), where s < t; <
-+ th < t, we define

pu(sa x;t,y) —
5
JD (s, % t1,91)P°(t1, Dty 2 (Y1) t2, y2)
o p(tn, bt 2 (Un); t,u)dyg - - - dun



Set

where N° = Nliyi>s- A
Then p(s,x;t,y) is the density. Y/ $9. 2
Ap A
3. If
oy 2 (x)lv(dz)
Us(zo)°

is locally bounded for some & > 0, the density is
bounded continuous.

4. |f
J (1D (x)P + Do (x)P)v(dz)
Ug(zp)° ’

are locally bounded for all j and p > 1, the density
T

Further two short time estimtes are valid for
p(s,x;t,y).



Application: Lévy process on Lie group.

Generator is given by

d
Af(x) = Vof(x) + %Z V]-Zfbd
j=1

+ lim JU ( )C{f(d)z,(x]) — f(x)}v(dz).

€e—0

eV, ..., Vg are left invariant vector fields:
¢z(x) := xz is the right translation.

-\N/j,j = 1,...,d are also left invariant vector
fields.

e Hormander condition:

The Lie algebra generated by left invariant vec-
tor fields

0 . -
{VO T a}\ﬁ! "'}vd&v]} '.rvd}

coincides with G & {%}



e Ad: G — GL(¢G): Adjoint representation.
Ad(z): Differential at e of the inner automor-

phism x — zxz .

olf

|det Ad(z)|v(dz) < oo
Us(e)€

for some & > 0, the law has a continuous den-
sity with respect to the Haar measure.

o [f G is unimodular, |det Ad(z)| = 1. The law
has a continuous density.

Examples of unimodular Lie groups:
Abelian Lie groups,

compact Lie groups,

semisimple Lie groups,

connected nilpotent Lie groups.

o |f
J Ad(z)|Pv(dz) < oo
Ug(e)©

for some & > 0, the law has a C*-density.

10



3. Dual process
Integrals by volume element
dx: volume element of M.
(positive differential d-form of C*-class)

o ¢p*dx: pullback of dx by the diffeomorphism
¢.
3 positive or negative C®-function J& on M
such that ¢p*dx = Jpdx.

e Formula for change of variable:

J (focp‘)gdxzj f(g o &)Jdbldx
M M

e [y/dx; Lie derivative of dx. Then
LvdX = div Vdx
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Theorem 0.1 Let A(t)" be a dual (adjoint)
of A(t) with respect to dx.

1. It is written as

] m
A(t)*g = V§(t) EZ )%+ c*(x, t)g

s hmJ {g CI)_] Q}UCIJ \’V (dz),
0 LIE(ZQ

V5 (t)=—Vo(t)+) divVj(t) - V;(t),
j=1

c*(x,t) =—divVy(t)
+= 3 {div V;(t)2+V5(t) (div V(1))
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Dual process
Es.t(x): Solution of SDE starting from x at time

=
Est @ M — M: Diffeo.
Nt.s; M — M: Inverse map of &g +:
Backward jump-diffusion.
By change of variables,

J (EsalxDgxidx = Jf[x)g(nt,s(xJmm,s(x)mx

| M
1 Define Jt}(;,j:{:ﬂ?c"’”’
(

P; 9(x) = Eld(me,s(x)Tme,s(x)].

Then, is is the dual of Pg ¢:
| P glx)dx = | f0x) - Piso(x)ax
M M

2.{A(t)*} is the generator of {P{ .}.

3. [Jnt s(x)| is a composite of Girsanov transfor-
mation and Feynman-Kac transformation.

4. We can apply the Malliavin calculus to the dual
pI’OCESS T'It’s.
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4. Smooth densities
For zo € M, there exists a local chart

(U(zp),z = (2, ...,2%))

such that z(zp) = 0, z«(zg) =1,
where z, is the differential of z.
For ¢ > 0, we set

m
Ue(zg) ={zeM; ) 24 < el
i=1

We assume

1. Weak drift

3 lim z'v(dz)

e—0 JUE(Z()]CﬁUﬂZ(J]
foranyi=1,...,d.
2. Order condition: 4 0 < & < 2 such that

o(e J Z 2% )v(dz) > ce®.
Ul

EZO 1 ']
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For p > 0, set

Bp = cp(p)“(Ju ( }zizjv(dzn.
20

B: a symmetric matrix such that B < B, for
0 < p < pop.
(TY): symmetric square root of B.

Define

Vi(t) =) ot 0,i0tz(%) =7y F=1,...,m
1

Let
To = (Vj(t), Vj(t); j =1, ..., m)
Fork=1,2,..., set
0
i = {[Vo(t) + _a_t'v[t)]’
[V;(t), V(1)], [V;(t), V(1)];
j = 1,...,111,\/(12) & Zk—]}w
where [ , | denotes the Lie bracket.
3. Hormander Condition:

Upe_gZk spans the tangent space Ty (M) for all x
and t.




Theorem 0.2 The weithted laws

Pls. %t k)=
t

E[exp{j C(Es (%), W) AW (g £(x))]

S
have measurable densities.
In particular, if the support of the Lévy measure
is compact, these are (rapidly decreasing) C°-
densities.

Theorem 0.3 /f
Ty, (x)v(dz)
JUB[ZO]C A

is locally bounded, the densities are bounded con-
tinuous.

Y8
Dyt 2(x)[Pv(dz),
uUé[ZO)C

Dy 2 (x)Pv(dz)

o UE,(ZQ]C
are locally bounded for any 1, p, then the den-
sities are bounded C°.

i5



2.1t is also a bounded C®°-function of x for any
s<t,vy.

3. For any s, x,y, p(s,x;t,y) is
differentiable with respect to t € (s, T), and
satisfies Kolmogorov's forward equation

0

ap(s,x;t,y) = (A(t)ytc(y, t))p(s,x;t,y).

4. For any t,x,y, p(s,x;t,y) is
differentiable with respect to s € (0,t), and
satisfies Kolmogorov's backward equation

0

a—SD[S,X;t,U) — —(A.(S)x+C[X, S)J‘D(va;tiy]'




5. Short time asymptotics
Theorem 0.4 Let 3 be a positive number sat-
isfying p < 2 — «. Letj € N.
Then for any compact subset K of M, 3 ¢; >0
such that

sup IDLD(s, Xt y)l < ¢t — s)~U+d)/B,
x,yekK

Off diagonal estimate
For a subset U of M, we set

d_)(u) = UEbt,Z(u)a

where U is taken for all (t,z) € T x Supp(v). We
set

O™M(U) = (™ (U)).
Let U, V: relatively compact open subsets of M
such that V c U,
K: a compact subset.

Y: positive integer such that v > (j + d)/j.
Theorem 0.5 If $Y(US) NV = ¢,

sup IDLp(s,X;t,yN < cj’(t—SJ”’_(Hd)/B-
xelUucnk,yeVv



6. Cauchy problems and their funda-
mental solutions
Let 0 < Top < T. Consider the Cauchy problem:

(A(s)x +c(x,5) + g)ulx,s) =0, 0<s<T
limg_,T, u(x,s) = f(x).(term. cond)

1) If the jump-diffusion associated with the gen-
erator A(t) is conservative, i.e., Pg¢1(x) = 1
holds for any s, t,x, the Cauchy problem should
have a unique solution.

2) If the jump-diffusion is not conservative, we
need
stochastic Dirichlet boundary condition
For any s, X,

3 lim u(&g¢(x),t) =0, if >* < Ty, a.s.P.
TS ( s,t( ] ) 0




Theorem 0.6 1)(Conservative case)

1. For any bounded continuous function f on M.

the above Cauchy problem has a unique solu-
tion.

2. The density function p(s,x;t,y) is the funda-
mental solution of the Cauchy problem, i.e., the
solution u(x, s) of the Cauchy problem is writ-
ten as

u(x, 5) =J p(s, % To,u)f(y)dy.
M

3. Feynman-Kac formula.
To
ulx,s) = Elexp | * clEsulx), wdulf(g 1,00

S



2) (Non conservative case)

1. For any bounded continuous function f, solu-
tions of the Cauchy problem with the stochastic
Dirichlet boundary condition exist uniquely.

2. The density p(s,x;t,y) is its fundamental so-
lution.

3. Further, we have the Feynman-Kac formula.
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