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Setting

Let X = (Xt)t≥0 be a E ⊆ R-valued standard process, de�ned on the

�ltered probability space (Ω,F , (Ft)t≥0,P), i.e.

t 7→ Xt is càdlàg P-a.s.

X has the strong Markov property

X is quasi-left continuous on [0, ζ)

where ζ = inf{t ≥ 0; Xt = ∆} is the lifetime of X and ∆ is the cemetery

point.

We assume that h /∈ E and is non-entrance whith h the right endpoint of E .

We write ∀x ∈ E ,Px(X0 = x) = 1. We denote by (Pt)t≥0 its semigroup,

i.e. for positive borelian function f with f (∆) = 0,

Pt f (x) = Ex

[
f (Xt)I{t<ζ}

]
= Ex [f (Xt)] .
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For a set A ⊆ E , we write

TA = inf{t > 0; Xt ∈ A},

and simply Ty = T{y}.

Moreover we assume :

A) P(Xt− ≥ Xt ,∀0 ≤ t < ζ) = 1 (no positive jumps).

B) ∀x , y ∈ E , Px(Ty < ζ) > 0 (visit points).

X is called a completely asymmetric Markov process (for short CAMP).

Spectrally negative Lévy processes, continuous state branching processes

with immigration and several generalizations of the classical

Ornstein-Uhlenbeck process are CAMP.

Remark : Our results extend to skip-free Markov chains.
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We want to study the following questions :

1 Can we characterize in terms of fundamental functions the law of
the �rst exit time of the interval (a, b), a, b ∈ E , i.e T(a,b)c , for
the CAMP?

2 Do CAMP admit a resolvent density ? Can we describe it in terms
of fundamental functions ?
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If X is a di�usion on E, then Feller (52,54) showed that, with q > 0,

Ex

[
e−qTy

]
=


H
↑
q (x)

H
↑
q (y)

, x ≤ y ,

H
↓
q (x)

H
↓
q (y)

, x ≥ y ,

where H↑q (resp. H↓q) is the fundamental increasing (resp. decreasing)

solution to the second order di�erential equation subject to appropriate

boundary conditions, associated to the in�nitesimal generator L of X ,

Lfq(x) := σ2(x)f ′′q (x) + µ(x)f ′q(x) = qfq(x) (1)

where σ, µ are smooth functions.

He also showed that

uq(x , y) = w−1q H↑q(x ∧ y)H↓q(x ∨ y)

where Uqf (x) =
∫
E
uq(x , y)f (y)m(dy) for some positive measure m and

wq is the Wronskian.

Pierre Patie CAMP 18.07.2013 5 / 18



If X is a di�usion on E, then Feller (52,54) showed that, with q > 0,

Ex

[
e−qTy

]
=


H
↑
q (x)

H
↑
q (y)

, x ≤ y ,

H
↓
q (x)

H
↓
q (y)

, x ≥ y ,

where H↑q (resp. H↓q) is the fundamental increasing (resp. decreasing)

solution to the second order di�erential equation subject to appropriate

boundary conditions, associated to the in�nitesimal generator L of X ,

Lfq(x) := σ2(x)f ′′q (x) + µ(x)f ′q(x) = qfq(x) (1)

where σ, µ are smooth functions.

He also showed that

uq(x , y) = w−1q H↑q(x ∧ y)H↓q(x ∨ y)

where Uqf (x) =
∫
E
uq(x , y)f (y)m(dy) for some positive measure m and

wq is the Wronskian.
Pierre Patie CAMP 18.07.2013 5 / 18



1 Around spectrally negative Lévy processes : Spitzer (57), Takàcs (66),

Emery (73), Suprun (76), Bertoin (97), Kyprianou and Palmowski

(05), Doney (08) . . .

2 Generalized spectrally negative Ornstein-Uhlenbeck processes : Hadjiev

(83), Novikov (04, 08), Jacobsen and Jensen (07).

3 Spectrally negative positive self-similar Markov and related processes :

P. (08).

Futher references on Markov processes and potential theory :

Blumenthal and Getoor (68), Dellacherie and Meyer (83), Sharpe

(88), Chung and Walsh (10) . . .

Doob (57), Kunita and Watanabe (65), Smythe and Walsh (73), Bally

and Stoica (92), Fitzsimmons and Getoor (06,09).

Pierre Patie CAMP 18.07.2013 6 / 18



Classi�cation of points

Let x ∈ E , we say that :

x is oscillating if Px -a.s. T(x ,∞) = 0 and T(−∞,x) = 0.

x is climbing if Px -a.s. T(x ,∞) = 0 and T(−∞,x) > 0.

Proposition

All points in int(E ) are either oscillating or climbing.

Let Sq, q > 0, be the set of q-excessive functions, i.e. f ≥ 0 Borelian s.t.

e−qtPt f (x) ≤ f (x), ∀x ∈ E

with limt↓0 e
−qtPt f (x) = f (x).

Corollary

If f ∈ Sq then f is continuous (resp. right-continuous) at oscillating (resp.

climbing) points.
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The q-fundamental excessive function Hq

Let o ∈ E be a reference point and q > 0.

We observe from the strong Markov property and the absence of positive

jumps that, for any x ∨ o < a < y , the mapping

y 7→
Ex

[
e−qTy

]
Eo

[
e−qTy

] =
Ex

[
e−qTa

]
Ea

[
e−qTy

]
Eo [e−qTa ]Ea

[
e−qTy

] =
Ex

[
e−qTa

]
Eo [e−qTa ]

is constant on (x ∨ o, h). Hence one may de�ne trivially the function

Hq(x) = lim
y→h

Ex

[
e−qTy

]
Eo

[
e−qTy

] .
Moreover, let x < y and choose y ∨ o < a, then as above

Hq(x) =
Ex

[
e−qTa

]
Eo [e−qTa ]

=
Ex

[
e−qTy

]
Ey

[
e−qTa

]
Eo [e−qTa ]

= Ex

[
e−qTy

]
Hq(y).
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Let o ∈ E be a reference point and q > 0.

Proposition

There exists a q-excessive function Hq which is positive, continuous and

increasing on E with Hq(o) = 1.

Moreover, we have the simple hitting time formula :

Ex

[
e−qTy

]
=

Hq(x)

Hq(y)
, x < y .

Hq is called the q-fundamental excessive function of X or P .

Pierre Patie CAMP 18.07.2013 9 / 18



Let PHq be the semigroup de�ned, for all t ≥ 0, by

P
Hq

t f (x) =
e−qt

Hq(x)
PtHqf (x), x ∈ E ,

that is the excessive Doob-Hq transform of the semigroup (e−qtPt)t≥0.
We write PHq for the law of its standard realization.

Proposition

1 Hq is the unique minimal excessive function such that

PHq
(
Xζ− = h

)
= 1 and Hq(o) = 1.

2 Hq is either q-invariant, i.e. ∀t ≥ 0, ∀x ∈ E ,

e−qtPtHq(x) = Hq(x)

or q-purely excessive, i.e. ∀x ∈ E ,

lim
t→∞

e−qtPtHq(x) = 0.

Pierre Patie CAMP 18.07.2013 10 / 18



The process killed at time T(−∞,b)

Let b ∈ E and Pb) be the subordinate semigroup de�ned, for all t ≥ 0, by

P
b)
t f (x) = Ex

[
f (Xt)I{t<T(−∞,b)}

]
.

Its realization is a CAMP.

Corollary

There exists a q-fundamental excessive function for Pb), denoted by H
b)
q ,

which is positive, continuous and increasing on (b,∞) with H
b)
q (b) = 0

(resp. > 0) if b is oscillating (resp. climbing) and H
b)
q = 0(−∞,b).

Moreover, we have

Ex

[
e−qTy I{Ty<T(−∞,b)}

]
=

H
b)
q (x)

H
b)
q (y)

, x < y .
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The general hitting time formula

Proposition

We have

K
b)
q (h) = lim

x→h

Hq(x)

H
b)
q (x)

∈ (0,∞).

Moreover, for any x ≥ b,

Ex

[
e−qTb

]
=

1

Hq(b)

(
Hq(x)− K

b)
q (h)H

b)
q (x)

)
.
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Since PHq
(
Xζ− = h

)
= 1, we have, for any b < x < a ∈ E ,

PHq
x

(
T(−∞,b) < Ta

)
+ PHq

x

(
Ta < T(−∞,b)

)
= 1 (2)

and
PHq
x

(
T(−∞,b) < Ta

)
= PHq

x (Tb < Ta) .

On the other hand, we have

PHq
x

(
Ta < T(−∞,b)

)
=

Hq(a)

Hq(x)
Ex

[
e−qTaI{Ta<T(−∞,b)}

]
=

Hq(a)

Hq(x)

H
b)
q (x)

H
b)
q (a)

,

PHq
x (Tb < Ta) =

Hq(b)

Hq(x)
Ex

[
e−qTbI{Tb<Ta}

]
.

Thus rearranging the terms in (2), we obtain

Ex

[
e−qTbI{Tb<Ta}

]
=

1

Hq(b)

(
Hq(x)− K

b)
q (a)H

b)
q (x)

)
.

To conclude we let a ↑ h.
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q-resolvent and �rst passage times

Proposition

1 There exists an excessive measure ξ, i.e. ξPt f ≤ ξf , such that, for all

q > 0, there exits a positive, locally bounded and jointly measurable

function uq such that

∀x ∈ E , Uq(x , dy) = uq(x , y)ξ(dy) (3)

where Uq is the kernel of the q-resolvent of P .

2 Moreover, we have the hitting-resolvent identity : for any x , y ∈ E ,

Ex

[
e−qTy

]
=


uq(x ,y)
uq(y ,y)

if y is oscillating,

uq(x ,y)
uq(y−,y)

otherwise,
(4)

where uq(y−, y) = limx↑y uq(x , y).
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We aim to make use of the identity (valid when P(T(−∞,b) < ζ) = 1)

Ex

[
e−qT(−∞,b)

]
= 1− q

∫ h

b

u
b)
q (x , y)ξ(dy), x ≥ b, (5)

where u
b)
q is the q-resolvent density associated to P

b)
t .

Since ξ is excessive, there exists a dual process X̂ , which is a

left-continuous moderate Markov process and its resolvent Ûq satis�es

〈Uqf , g〉ξ = 〈f , Ûqg〉ξ, q > 0.

Proposition

The process X̂ has no negative jumps and visits points below. Then, there

exists a co-excessive function Ĥq which is right-continuous, decreasing such

that Ĥq(o) = 1 and

Êy

[
e−qTx

]
=

Ĥq(y)

Ĥq(x)
=

uq(x , y)

uq(x , x+)
, y > x .
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Using the previous Proposition together with the identities (4), we can

describe the q-resolvent uq. Using a moderate version of the Hunt's

switching identity we get the representation of u
b)
q as follows.

Proposition

Let q > 0 and write Cq(o) = uq(o, o+). Then, for any x , y ∈ E ,

uq(x , y) = Cq(o)Ĥq(y)
(
Hq(x)− K

y)
q (h) H

y)
q (x)

)
. (6)

For any x , y > b,

u
b)
q (x , y) = Cq(o)Ĥq(y)

(
K
b)
q (h)H

b)
q (x)− K

y)
q (h) H

y)
q (x)

)
.

We can now use the last expression with the identity (5) to get a

representation of Ex

[
e−qT(−∞,b)

]
.
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Spectrally negative Lévy processes

Let X be a spectrally negative Lévy process. For any x ∈ R,

Pteλ(x) = eψ(λ)t+λx , λ ≥ 0,

where eλ(x) = eλx and ψ is the Lévy-Khintchine exponent of X .

1. Let φ : [0,∞)→ [φ(0),∞) such that ψ(φ(q)) = q. Then

e−qtPteφ(q)(x) = eφ(q)(x), q, t ≥ 0.

Hence, with o = 0, we have Hq(x) = eφ(q)x .

2. ξ(dy) = dy , X̂
d
= −X and Ĥq(y) = e−φ(q)y .

3. Next, observe, for any 0 < λ < φ(q), that∫
R
e−λxuq(x , 0)dx =

∫ ∞
0

e−qtPteλ(0)dt =
−1

ψ(λ)− q
.
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4. Thus, from (6), we deduce that∫ ∞
0

e−λxCq(0)
(
Hq(x)− K

0)
q (h)H

0)
q (x)

)
dx =

−1
ψ(λ)− q

− Cq(0)

φ(q)− λ
.

On the one hand, by a principle of analytical continuation, we obtain

Cq(0) = lim
λ→φ(q)

λ− φ(q)

ψ(λ)− q
=

1

ψ′(φ(q))
= φ′(q).

On the other hand, one may set K
0)
q (h) = 1

Cq(0)
to get, for any λ > 0,∫ ∞

0

e−λxH
0)
q (x)dx =

1

ψ(λ)− q
.

4. After some easy computations, using the identity (5), we deduce that

for any x ≥ 0,

Ex [e−qT(−∞,0) ] = 1 + q

∫ x

0

H
0)
q (y)dy − q

φ(q)
H

0)
q (x).
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