Dimension and Lyapunov exponents
in conformal non-hyperbolic dynamics

3. Lyapunov spectrum of expansive Markov interval maps

Katrin Gelfert (UFRJ), Michat Rams (IMPAN)

Bedlewo, 2013

(Bedlewo, 2013) Dimension and Lyapunov exponents 1/15



Expansive Markov system

T: A= A C*¢ expansive conformal Markov repeller, tempered distortion
Ci,...,Ck C [0,1] essentially disjoint intervals,
T: G U...UC,— [0,1] having Markov property, T|p semi-conj to O"ZX

Aim to study level sets of Lyapunov exponents

L(a) = {x €A A(x) = lim % log |(T"Y (x)| = a}.

n
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Expansive Markov system:

Topological pressure — geometric potential — Legendre-Fenchel transform
Given « # 0 define Legendre-Fenchel transform of g — P(—qlog|T'|)
E(a) Y inf (aq+ P(—qlog|T'])),
(@) = inf (a g+ P(=qlog|T"]))

€ E € .
aswell as  F(a) ¥ El@) FOO)< lim ——~

a a—0+

P(—qlog|T'|)

X q

9o
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€ E e . E
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P(—qlog|T']) @ goo < dimygA
hyperbolic dimension
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1
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Conformal measures

[Patterson '76, Sullivan '83, Denker—Urbanski '91, Walters '78, Yuri '99]
Given ¢ € C(A) consider the transfer operator Ly : C(A) — C(A) defined by

(Log)(x) Z D gly)e’™).

Ty=x

Let L}, be the dual of £¢*. The map p — Lju(L£5,1(1))~" has a fixed point
iy € M(N). Let Ay = L2py(1).
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Conformal measures

[Patterson '76, Sullivan '83, Denker—Urbanski '91, Walters '78, Yuri '99]
Given ¢ € C(A) consider the transfer operator Ly : C(A) — C(A) defined by

(Log)(x) = ) gly)e?W.

Ty=x

Let L}, be the dual of £¢*. The map p — Lju(L£5,1(1))~" has a fixed point
iy € M(N). Let Ay = L2py(1).

The measure fiy, is eP(¥)=¥_conformal in the sense that for every special set A a.e.

d(py o T)la

=Mpe ¥ and Ay = ¥,
duyla v v

Observe that for a T"-special set

(100 T)A) = [ &5 d,
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Conformal measures on cylinders

Given g < oo study eP(=aloglT’D+alog|T’I_conformal measure Itq

(g o T")(Ca(x)) = / e P(=alog|T")+alog|(T")] ¢,
Cn(x)
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Conformal measures on cylinders

Given g < oo study eP(=aloglT’D+alog|T’I_conformal measure Itq

(g o T")(Ca(x)) = / e P(=alog|T")+alog|(T")] ¢,
Cn(x)

Lemma (Tempered distortion)

Tn !/
There exists p, — 0 such that max max log W < npy.
(w1...wn) x,y€C(w1... wn) |(T ) (y)\ |
Proof.
(T ) TS
log max max el O max | Ci(x)|° O]
(w1--wn) x,y€C(wr.wn) [(T") (¥)] 2¢1Clx)

k=1

Hence, up to a subexponential factor, for all x € A
— o—nP(—qlog|T’ ny/ —q
11q(Ca(x)) =< e P DTy ()79
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.
Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — upper bound for dimension

Proposition

For every o > 0
dimg Z(«a) < F(w).

Proof.
Let x € A with A\(x) = «
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — upper bound for dimension

Proposition

For every a > 0
dimg Z(«a) < F(o).

Proof.
Let x € Awith AM(x) =a = lim log (T (x) ¥ = lim log |Ca(x)| 7Y/
Recalling
1q(Ca(x)) = e P8I (T ()79,
hence

log 114(Cn(x)) g+ P(=qlog|T"])

d ~Y
%) Tlog 1G] a
By the Mass Distribution Principle dimy .2 (a) < L (o q + P(—qlog|T'])). O
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — approximation by mixing expanding repellers

Consider A; C ... C Ay C A mixing expanding repeller, A, — A in
Hausdorff topology. Each A, possesses g-conformal vg'.

All A, have tempered distortion with very same (pn)n, and each Ap, has
bounded distortion.

def

Pm(q) = Pria,.(—qlog|T'|)

o) = L i @0+ Pola) = LEnta)

Q

def . — def
, a, = inf Av am = sup Av
Prm(d) P(=qlog|T')) T e M(Am) @), m vEM(Am) )

T~
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — approximation by mixing expanding repellers

Lemma
1) limm—oo Pm = P pointwise
2) limm—oo Fm = F pointwise

3) limm 00 oy = Q, limp oo Om =@

Proof. 1).

P.(q) non-decreasing. Suppose § = P(q) — sup,, Pm(q) > 0. For all n, up to a
subexponential factor, we have

1a(Co.0)€™D =< (T ()] 79 = 2 (Cy. )€™

For n large, 2p, < §. Then limpy_, pg cannot be probability measure. =<« [

v
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — approximation by mixing expanding repellers

Lemma
1) limp—oo Pm = P pointwise
2) limm—oo Fm = F pointwise

3) limm— o0 o, =Q, limm o @m =@

Proof. 2).
(Pm, Em) Legendre-Fenchel pair, hence

E= lim E, iff P= lim P,

m— o0 m— o0
pointwise. Hence, limp, Fr(ar) = L limp, Em(a) = LE(a) = F(a). O
y
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — approximation by mixing expanding repellers

Lemma
1) limpm—oo Pm = P pointwise
2) limm—oo Fm = F pointwise

3) Ilmm—)oo oy = Q, I|mm—>oo am =«

Proof. 3).
Observe that sup,, @n < @. On the other hand,

—_— T -1 _ -1 /
a=supA(v) = lim - sup (h(v) = gA(v)) = _lTim _ - P(alog|T')).
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — approximation by mixing expanding repellers

Lemma
1) limpm—oo Pm = P pointwise
2) limm—oo Fm = F pointwise

3) limmoyoo oy =, limp s @@m =@

Proof. 3).
Observe that sup,, @, < @. On the other hand,

a=supA(v) = Erpm%lsgp(h(y)fq)\(u)): lim jP(—qlog|T’|).

q qg——0c0

Further, if ¢ < 0 then Pn,(q) + g@m < Pmn(0) < P(0) and hence
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — interior of spectrum

Proposition (Interior of spectrum)

For every o € (o, @)

dimpg Z(«a) = F(w).
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — interior of spectrum

Proposition (Interior of spectrum)

For every o € (o, @)

dimpg Z(«a) = F(w).

Proof.

Remains to show >.
We have «a € («,,, @m) for m > 1 sufficiently large. By [Pesin-Weiss|

dimg Z(«) > dimg Z(a) N Ay = F(a).

dimpg Z(«) > F(a) follows from F(a) = limpy—so0 Fm(a). O
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — boundary of spectrum

To study the case o € {a, @} we construct “bridging measures”.

Similar ideas are contained in:

[Besicovich '34] sum of digits of reals represented in dyadic system

[Barreira, Schmeling '00] “non-typical” points have full entropy / dimension

[Takens, Verbitsky '03] variational principle for the topological entropy of
certain non-compact sets

[Thompson '08] irregular sets and conditional variational principles in
dynamical systems, PhD thesis

Plan: Construct Borel probability measure p with (£ («)) > 0,
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Multifractal analysis — Lyapunov exponents:

weak multifractal formalism — boundary of spectrum

To study the case o € {a, @} we construct “bridging measures”.

Similar ideas are contained in:

[Besicovich '34] sum of digits of reals represented in dyadic system

[Barreira, Schmeling '00] “non-typical” points have full entropy / dimension

[Takens, Verbitsky '03] variational principle for the topological entropy of
certain non-compact sets

[Thompson '08] irregular sets and conditional variational principles in
dynamical systems, PhD thesis

Plan: Construct Borel probability measure p with (£ («)) > 0, calculate
its local dimension, apply Mass Distribution Principle.
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Bridging measure

Let X4, C X, C ... C X family of mixing SFT's
e equilibrium states w.r.t. a|):A€ and potentials ¢, with Py(¢¢) =0
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Bridging measure

Let 4, C X, C ... C X family of mixing SFT's

1te equilibrium states w.r.t. U|2Aé and potentials ¢, with Py(¢¢) =0
(otherwise change ¢y for ¢y — Py(py)).

(Bedlewo, 2013) Dimension and Lyapunov exponents 11 / 15



Bridging measure

Let 4, C X4, C ... C X family of mixing SFT's

e equilibrium states w.r.t. U|ZA@ and potentials ¢, with Py(¢¢) = 0.
Fix increasing sequence my — 0o. On each wy,, € ™ put

plwm]) = pa(fwm,])

For any ¢ > 2 sub-distribute x on [wm,] = U " Z[wmﬂmeﬂ_mé] as
m+ —m

plwm Tmg s —me]) = p(lwm,]) pesa([Tmg—mi]) - Neva ([wm,])

where Nyi1([wm,]) is the normalizing constant
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Bridging measure

Let 4, C X4, C ... C X family of mixing SFT's
e equilibrium states w.r.t. U|ZA@ and potentials ¢, with Py(¢¢) = 0.

Fix increasing sequence my — 0o. On each wy,, € ™ put
([wm]) = pa(lwm,])

For any ¢ > 2 sub-distribute x on [wm,] = U " Z[wmﬂmeﬂ_mé] as
m+ —m

plwm Tmg s —me]) = p(lwm,]) pesa([Tmg—mi]) - Neva ([wm,])

where Nyi1([wm,]) is the normalizing constant
For each £ probability on ZZ\Z is well-defined on cylinders. Extend it to X.

Lemma
([0 7)) =¢ u([)) pesa ([7]) whenever w7 = wim, Tomg, . J
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Bridging Measure - properties
Assume that the following sequences converge

h )
he = h(pe), e = Mue), de= )\*i = dimy piy.
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Bridging Measure - properties

Assume that the following sequences converge

h )
he = h(pe), e = Mue), de= )\*i = dimy piy.

Consider ‘finite-level” entropy of 1 and ‘finite time’ Lyapunov exponent

H(x) =~ log u(Cn(x)),  Ln(x) = — log [(T™)'(x).
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Bridging Measure - properties
Assume that the following sequences converge

h )
he = h(pe), e = Mue), de= )\*i = dimy piy.

Consider ‘finite-level” entropy of 1 and ‘finite time’ Lyapunov exponent
1 1 -
His(x) =~ log i(Cm(x)),  Lm(x) = log |(T™) ()]

Proposition

If (my) increases sufficiently fast, then for p-almost every x € \

rJian Hin(x) = ell?;o e, mlinoo Lm(x) = zli?;o A d,(x) 2 eli?;o -

Hence, for o = limy_,oo A¢ we have

dimpg Z () > liminf dj.

L—o0
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Bridging Measure - properties

Proof of Proposition
Lemma

For €,0 there exists M > 1 such that for my > M we have u(By) < §, where

By = {X: ’m Lm(x)f(mnge(x)qL(mfmg))\g)’ > me for some my < m < mg+1}.

v

Proof.
MyLm, (x) + (M = me)Lm—m,(T™(x)) = mLn(x) = mAe = mg A + (m — me) A,
uniformly on set of measure i, at least 1 — §. For each cylinder [w] = [wm,]

p(BeN[wl) <D e Tmpa—m]) = D l[w]) e([7imgss—me]) < pl[w]) 8

Hence, summing over all w = wp,, we obtain pu(By) < 4. O
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Bridging Measure - properties
For (¢)¢ and for (d¢)¢ summable, Borel-Cantelli implies u(lim sup By) = 0.
¢

Hence, for p-almost every x for sufficiently large £

|mLm(X) — (mnge(x) +(m-— mg))\g)| <me; forevery m=mp+1,...,mp1
hence, choosing (£¢)¢ appropriately, for every such m

A — A
L(x) ~ AT =) e

= A(x) = lim A

o £— 00

So p-a.e. x € Z(«). Similar, the ‘finite-level’ entropy for u-a.e. x satisfies

h - h
HE () ~ myg he + (mm my) hey — ,,,l'_r,"oo HE (x) = g"j‘; hy.

Thus, up to some constant (tempered distortion)

108 1( Co ()
9u) ™ g [ (0
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4 ()~ 198G () ToB(Cr () me_ H ()
" log [Crm, ()| —myg log [(T™ ) (x)| =+ Lm,(x)
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Thus, up to some constant (tempered distortion)

| m | m HE he .
QIL(X)N OgILL(C e(X)) — OgM(C [(X)l) m[ T — Z(X) ~ l Z ||m|nfd£
log [Com, ()| —my log [(TMe)(x)[7F Lm,(x)  Ae — #o00
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Bridging Measure - properties
For (¢)¢ and for (d¢)¢ summable, Borel-Cantelli implies M(Iim sup By) = 0.
¢

Hence, for p-almost every x for sufficiently large £

|mLm(X) — (mnge(x) +(m-— mg))\g)| <me; forevery m=mp+1,...,mp1
hence, choosing (£¢)¢ appropriately, for every such m

A — A
L(x) ~ AT =) e

= A(x) = lim A

o £— 00

So p-a.e. x € Z(«). Similar, the ‘finite-level’ entropy for u-a.e. x satisfies

h - h
HE () ~ myg he + (mm my) hey — ,,,l'_r,"oo HE (x) = g"j‘; hy.

Thus, up to some constant (tempered distortion)

0Eu(Cr () logp(Co (D me HB() b
9~ g G ()~ e Tog (T YC)E L)~ g i

YA — 00

By the Mass Distribution Principle, dimyg £ («) > liminf dj.

(Proposition).[J
Dimension and Lyapunov exponents
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Multifractal analysis — Lyapunov exponents

T: A= A C*¢ expansive conformal Markov repeller, tempered distortion
Suppose there exist Ay C ... C A, C A mixing expanding repeller,

Am — N in Hausdorff topology. All A, have tempered distortion with very
same (pn)n, and each A, has bounded distortion.

Theorem (G-Rams '09)
Then for every a € (a, @) we have dimy £ () = F(a). If £(0) # 0 then
dimpg Z(0) = dimg A > goo = F(0).

P(—qlog |T'|) F(a)
A

qoq

xq °0o > (Y

oo

(Bedlewo, 2013) Dimension and Lyapunov exponents

15 / 15



