Dimension and Lyapunov exponents in conformal non-hyperbolic dynamics

3. Lyapunov spectrum of expansive Markov interval maps

Katrin Gelfert (UFRJ), Michał Rams (IMPAN)

Będlewo, 2013

 $T: \Lambda \to \Lambda$ $C^{1+\varepsilon}$ expansive conformal Markov repeller, tempered distortion $C_1, \ldots, C_k \subset [0, 1]$ essentially disjoint intervals,

 $T\colon C_1\cup\ldots\cup C_k o [0,1]$ having Markov property, $T|_\Lambda$ semi-conj to $\sigma|_{\Sigma_A^+}$

Aim to study level sets of Lyapunov exponents

$$\mathscr{L}(\alpha) = \{ x \in \Lambda \colon \lambda(x) \stackrel{\text{def}}{=} \lim_{n \to \infty} \frac{1}{n} \log |(T^n)'(x)| = \alpha \}.$$

Topological pressure – geometric potential – Legendre-Fenchel transform

Given $\alpha \neq 0$ define Legendre-Fenchel transform of $q \mapsto P(-q \log |T'|)$

$$E(\alpha) \stackrel{\text{def}}{=} \inf_{q \in \mathbb{R}} (\alpha \, q + P(-q \log |T'|)),$$

as well as
$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha}$$
, $F(0) \stackrel{\text{def}}{=} \lim_{\alpha \to 0+} \frac{E(\alpha)}{\alpha}$

Topological pressure – geometric potential – Legendre-Fenchel transform

Given $\alpha \neq 0$ define Legendre-Fenchel transform of $q \mapsto P(-q \log |T'|)$

$$E(\alpha) \stackrel{\text{def}}{=} \inf_{q \in \mathbb{R}} (\alpha \, q + P(-q \log |T'|)),$$

$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha},$$

as well as
$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha}$$
, $F(0) \stackrel{\text{def}}{=} \lim_{\alpha \to 0+} \frac{E(\alpha)}{\alpha}$

- $q_{\infty} < \dim_{\mathrm{H}} \Lambda$ hyperbolic dimension
- for $\alpha = -\frac{d}{da}P'(-q\log|T'|)$

$$F(\alpha) = \frac{1}{\alpha}(\alpha q + P(q))$$

 $0 = P(a) - \alpha(F(\alpha) - q)$

•
$$F(0) = q_{\infty}$$

Topological pressure – geometric potential – Legendre-Fenchel transform

Given $\alpha \neq 0$ define Legendre-Fenchel transform of $q \mapsto P(-q \log |T'|)$

$$E(\alpha) \stackrel{\text{def}}{=} \inf_{q \in \mathbb{R}} (\alpha \, q + P(-q \log |T'|)),$$

as well as
$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha}$$
, $F(0) \stackrel{\text{def}}{=} \lim_{\alpha \to 0+} \frac{E(\alpha)}{\alpha}$

- $q_{\infty} \leq \dim_{\mathrm{H}} \Lambda$ hyperbolic dimension
- for $\alpha = -\frac{d}{da}P'(-q\log|T'|)$

$$F(\alpha) = \frac{1}{\alpha}(\alpha q + P(q))$$
$$0 = P(q) - \alpha(F(\alpha) - q)$$

• $F(0) = q_{\infty}$

Topological pressure – geometric potential – Legendre-Fenchel transform

Given $\alpha \neq 0$ define Legendre-Fenchel transform of $q \mapsto P(-q \log |T'|)$

$$E(\alpha) \stackrel{\text{def}}{=} \inf_{q \in \mathbb{R}} (\alpha \, q + P(-q \log |T'|)),$$

as well as
$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha}$$
, $F(0) \stackrel{\text{def}}{=} \lim_{\alpha \to 0+} \frac{E(\alpha)}{\alpha}$

- $q_{\infty} \leq \dim_{\mathrm{H}} \Lambda$ hyperbolic dimension
- for $\alpha = -\frac{d}{dq}P'(-q\log|T'|)$

$$F(\alpha) = \frac{1}{\alpha} (\alpha q + P(q))$$
$$0 = P(q) - \alpha (F(\alpha) - q)$$

 $\qquad \bullet \quad \mathsf{F}(0) = \mathsf{q}_{\infty}$

Topological pressure – geometric potential – Legendre-Fenchel transform

Given $\alpha \neq 0$ define Legendre-Fenchel transform of $q \mapsto P(-q \log |T'|)$

$$E(\alpha) \stackrel{\text{def}}{=} \inf_{q \in \mathbb{R}} (\alpha \, q + P(-q \log |T'|)),$$

as well as
$$F(\alpha) \stackrel{\text{def}}{=} \frac{E(\alpha)}{\alpha}$$
, $F(0) \stackrel{\text{def}}{=} \lim_{\alpha \to 0+} \frac{E(\alpha)}{\alpha}$

- $q_{\infty} \leq \dim_{\mathrm{H}} \Lambda$ hyperbolic dimension
- for $\alpha = -\frac{d}{dq}P'(-q\log|T'|)$

$$F(\alpha) = \frac{1}{\alpha} (\alpha q + P(q))$$
$$0 = P(q) - \alpha (F(\alpha) - q)$$

• $F(0) = q_{\infty}$

Conformal measures

[Patterson '76, Sullivan '83, Denker–Urbański '91, Walters '78, Yuri '99] Given $\psi \in C(\Lambda)$ consider the transfer operator $\mathcal{L}_{\psi} \colon C(\Lambda) \to C(\Lambda)$ defined by

$$(\mathcal{L}_{\phi}g)(x)\stackrel{\mathrm{def}}{=} \sum_{Ty=x} g(y)e^{\psi(y)}.$$

Let \mathcal{L}_{ψ}^{*} be the dual of \mathcal{L}_{ψ} . The map $\mu \mapsto \mathcal{L}_{\psi}^{*}\mu(\mathcal{L}_{\psi}^{*}\mu(1))^{-1}$ has a fixed point $\mu_{\psi} \in \mathcal{M}(\Lambda)$. Let $\lambda_{\psi} = \mathcal{L}_{\psi}^{*}\mu_{\psi}(1)$.

Conformal measures

[Patterson '76, Sullivan '83, Denker–Urbański '91, Walters '78, Yuri '99] Given $\psi \in C(\Lambda)$ consider the transfer operator $\mathcal{L}_{\psi} \colon C(\Lambda) \to C(\Lambda)$ defined by

$$(\mathcal{L}_{\phi}g)(x) \stackrel{\text{def}}{=} \sum_{Ty=x} g(y)e^{\psi(y)}.$$

Let \mathcal{L}_{ψ}^* be the dual of \mathcal{L}_{ψ} . The map $\mu \mapsto \mathcal{L}_{\psi}^* \mu(\mathcal{L}_{\psi}^* \mu(1))^{-1}$ has a fixed point $\mu_{\psi} \in \mathcal{M}(\Lambda)$. Let $\lambda_{\psi} = \mathcal{L}_{\psi}^* \mu_{\psi}(1)$.

The measure μ_{ψ} is $e^{P(\psi)-\psi}$ -conformal in the sense that for every special set A a.e.

$$\frac{d(\mu_{\psi}\circ T)|_{A}}{d\mu_{\psi}|_{A}}=\lambda_{\psi}e^{-\psi}\quad \text{ and } \lambda_{\psi}=e^{P(\psi)}.$$

Conformal measures

[Patterson '76, Sullivan '83, Denker–Urbański '91, Walters '78, Yuri '99] Given $\psi \in C(\Lambda)$ consider the transfer operator $\mathcal{L}_{\psi} \colon C(\Lambda) \to C(\Lambda)$ defined by

$$(\mathcal{L}_{\phi}g)(x) \stackrel{\text{def}}{=} \sum_{Ty=x} g(y)e^{\psi(y)}.$$

Let \mathcal{L}_{ψ}^* be the dual of \mathcal{L}_{ψ} . The map $\mu \mapsto \mathcal{L}_{\psi}^* \mu(\mathcal{L}_{\psi}^* \mu(1))^{-1}$ has a fixed point $\mu_{\psi} \in \mathcal{M}(\Lambda)$. Let $\lambda_{\psi} = \mathcal{L}_{\psi}^* \mu_{\psi}(1)$.

The measure μ_{ψ} is $e^{P(\psi)-\psi}$ -conformal in the sense that for every special set A a.e.

$$rac{d(\mu_{\psi}\circ T)|_{A}}{d\mu_{\psi}|_{A}}=\lambda_{\psi}e^{-\psi} \quad ext{ and } \lambda_{\psi}=e^{P(\psi)}.$$

Observe that for a T^n -special set

$$(\mu_{\psi}\circ T^n)(A)=\int_A e^{nP(\psi)-S_n\psi}\,d\mu_{\psi}.$$

↓□▶ ↓□▶ ↓ Ē▶ ↓ Ē▶ ☐ ♥ ♀♀

Conformal measures on cylinders

Given
$$q \leq q_{\infty}$$
 study $e^{P(-q\log|T'|)+q\log|T'|}$ -conformal measure μ_q

$$(\mu_q \circ T^n)(C_n(x)) = \int_{C_n(x)} e^{nP(-q\log|T'|)+q\log|(T^n)'|} d\mu_q.$$

Conformal measures on cylinders

Given $q \leq q_{\infty}$ study $e^{P(-q\log|T'|)+q\log|T'|}$ -conformal measure μ_q

$$(\mu_q \circ T^n)(C_n(x)) = \int_{C_n(x)} e^{n P(-q \log |T'|) + q \log |(T^n)'|} d\mu_q.$$

Lemma (Tempered distortion)

There exists
$$\rho_n \to 0$$
 such that $\max_{(\omega_1...\omega_n)} \max_{x,y \in C(\omega_1...\omega_n)} \log \frac{|(T^n)'(x)|}{|(T^n)'(y)|} \le n\rho_n$.

Proof.

$$\log \max_{(\omega_1...\omega_n)} \max_{x,y \in C(\omega_1...\omega_n)} \frac{|(T^n)'(x)|}{|(T^n)'(y)|} \le C^{\text{st}} \sum_{k=1}^n \max_x |C_k(x)|^{\varepsilon}$$

Hence, up to a subexponential factor, for all $x \in \Lambda$

$$\mu_q(C_n(x)) \approx e^{-nP(-q\log|T'|)} |(T^n)'(x)|^{-q}.$$

weak multifractal formalism – upper bound for dimension

Proposition

For every $\alpha > 0$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq F(\alpha).$$

Proof.

Let $x \in \Lambda$ with $\lambda(x) = \alpha$

weak multifractal formalism – upper bound for dimension

Proposition

For every $\alpha > 0$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq F(\alpha).$$

Proof.

Let
$$x \in \Lambda$$
 with $\lambda(x) = \alpha = \lim_{n \to \infty} \log |(T^n)'(x)|^{1/n}$

weak multifractal formalism - upper bound for dimension

Proposition

For every $\alpha > 0$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq F(\alpha).$$

Proof.

Let
$$x \in \Lambda$$
 with $\lambda(x) = \alpha$ = $\lim_{n \to \infty} \log |(T^n)'(x)|^{1/n} = \lim_{n \to \infty} \log |C_n(x)|^{-1/n}$.

weak multifractal formalism - upper bound for dimension

Proposition

For every $\alpha > 0$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq F(\alpha).$$

Proof.

Let
$$x \in \Lambda$$
 with $\lambda(x) = \alpha$ = $\lim_{n \to \infty} \log |(T^n)'(x)|^{1/n} = \lim_{n \to \infty} \log |C_n(x)|^{-1/n}$.

Recalling

$$\mu_q(C_n(x)) \simeq e^{-nP(-q\log|T'|)}|(T^n)'(x)|^{-q},$$

hence

$$\underline{\underline{d}_{\mu_{\mathbf{q}}}(x)} \sim \frac{\log \mu_{\mathbf{q}}(C_{\mathbf{n}}(x))}{\log |C_{\mathbf{n}}(x)|} \sim \frac{\alpha \, q + P(-q \log |T'|)}{\alpha}$$

weak multifractal formalism - upper bound for dimension

Proposition

For every $\alpha > 0$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq F(\alpha).$$

Proof.

Let
$$x \in \Lambda$$
 with $\lambda(x) = \alpha = \lim_{n \to \infty} \log |(T^n)'(x)|^{1/n} = \lim_{n \to \infty} \log |C_n(x)|^{-1/n}$.

Recalling

$$\mu_q(C_n(x)) \simeq e^{-nP(-q\log|T'|)}|(T^n)'(x)|^{-q},$$

hence

$$\underline{\underline{d}_{\mu_{\mathbf{q}}}(x)} \sim \frac{\log \mu_{\mathbf{q}}(C_{\mathbf{n}}(x))}{\log |C_{\mathbf{n}}(x)|} \sim \frac{\alpha \, q + P(-q \log |T'|)}{\alpha}$$

By the Mass Distribution Principle $\dim_{\mathrm{H}} \mathscr{L}(\alpha) \leq \frac{1}{\alpha} (\alpha \, q + P(-q \log |T'|))$.

weak multifractal formalism - approximation by mixing expanding repellers

Consider $\Lambda_1 \subset \ldots \subset \Lambda_m \subset \Lambda$ mixing expanding repeller, $\Lambda_m \to \Lambda$ in Hausdorff topology. Each Λ_m possesses q-conformal ν_q^m .

All Λ_m have tempered distortion with *very same* $(\rho_n)_n$, and each Λ_m has bounded distortion.

weak multifractal formalism – approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 1).

 $P_m(q)$ non-decreasing. Suppose $\delta \stackrel{\text{def}}{=} P(q) - \sup_m P_m(q) > 0$. For all n, up to a subexponential factor, we have

$$\mu_q(C_{\omega_1...\omega_n})e^{nP(q)} \simeq |(T^n)'(x)|^{-q} \simeq \mu_q^m(C_{\omega_1...\omega_n})e^{nP_m(q)}$$

For *n* large, $2\rho_n < \delta$. Then $\lim_{m \to \infty} \mu_q^m$ cannot be probability measure. $\Rightarrow \Leftarrow$

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 2).

 (P_m, E_m) Legendre-Fenchel pair, hence

$$E = \lim_{m \to \infty} E_m \quad \text{iff} \quad P = \lim_{m \to \infty} P_m$$

pointwise. Hence,
$$\lim_m F_m(\alpha) = \frac{1}{\alpha} \lim_m E_m(\alpha) = \frac{1}{\alpha} E(\alpha) = F(\alpha)$$
.

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 3).

Observe that $\sup_{m} \overline{\alpha}_{m} \leq \overline{\alpha}$. On the other hand,

$$\overline{\alpha} = \sup \lambda(\nu) = \lim_{q \to -\infty} \frac{-1}{q} \sup_{\nu} \left(h(\nu) - q \lambda(\nu) \right) = \lim_{q \to -\infty} \frac{-1}{q} P(-q \log |T'|) \,.$$

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 3).

Observe that $\sup_{m} \overline{\alpha}_{m} \leq \overline{\alpha}$. On the other hand,

$$\overline{\alpha} = \sup \lambda(\nu) = \lim_{q \to -\infty} \frac{-1}{q} \sup_{\nu} \left(h(\nu) - q \lambda(\nu) \right) = \lim_{q \to -\infty} \frac{-1}{q} P(-q \log |T'|) \,.$$

Further, if q < 0 then $P_m(q) + q \overline{\alpha}_m \le P_m(0) \le P(0)$ and hence

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 3).

Observe that $\sup_{m} \overline{\alpha}_{m} \leq \overline{\alpha}$. On the other hand,

$$\overline{\alpha} = \sup \lambda(\nu) = \lim_{q \to -\infty} \frac{-1}{q} \sup_{\nu} \left(h(\nu) - q\lambda(\nu) \right) = \lim_{q \to -\infty} \frac{-1}{q} P(-q \log |T'|).$$

Further, if q < 0 then $P_m(q) + q \overline{\alpha}_m \le P_m(0) \le P(0)$ and hence

$$P_m(q) \leq P(0) + |q| \overline{\alpha}_m$$

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 3).

Observe that $\sup_{m} \overline{\alpha}_{m} \leq \overline{\alpha}$. On the other hand,

$$\overline{\alpha} = \sup \lambda(\nu) = \lim_{q \to -\infty} \frac{-1}{q} \sup_{\nu} \left(h(\nu) - q \lambda(\nu) \right) = \lim_{q \to -\infty} \frac{-1}{q} P(-q \log |T'|) \,.$$

Further, if q < 0 then $P_m(q) + q \overline{\alpha}_m \le P_m(0) \le P(0)$ and hence

$$P(-q\log|T'|) \le P(0) + |q| \sup_{m} \overline{\alpha}_{m}$$

weak multifractal formalism - approximation by mixing expanding repellers

Lemma

- 1) $\lim_{m\to\infty} P_m = P$ pointwise
- 2) $\lim_{m\to\infty} F_m = F$ pointwise
- 3) $\lim_{m\to\infty} \underline{\alpha}_m = \underline{\alpha}$, $\lim_{m\to\infty} \overline{\alpha}_m = \overline{\alpha}$

Proof. 3).

Observe that $\sup_{m} \overline{\alpha}_{m} \leq \overline{\alpha}$. On the other hand,

$$\overline{\alpha} = \sup \lambda(\nu) = \lim_{q \to -\infty} \frac{-1}{q} \sup_{\nu} \left(h(\nu) - q \lambda(\nu) \right) = \lim_{q \to -\infty} \frac{-1}{q} P(-q \log |T'|) \,.$$

Further, if q < 0 then $P_m(q) + q \overline{\alpha}_m \le P_m(0) \le P(0)$ and hence

$$P(-q \log |T'|) \le P(0) + |q| \sup_{m} \overline{\alpha}_{m}$$

Hence, $\overline{\alpha} < \sup_{m} \overline{\alpha}_{m}$.

weak multifractal formalism - interior of spectrum

Proposition (Interior of spectrum)

For every $\alpha \in (\underline{\alpha}, \overline{\alpha})$

$$\dim_{\mathrm{H}}\mathscr{L}(\alpha)=F(\alpha).$$

weak multifractal formalism – interior of spectrum

Proposition (Interior of spectrum)

For every $\alpha \in (\underline{\alpha}, \overline{\alpha})$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) = F(\alpha).$$

Proof.

Remains to show \geq .

We have $\alpha \in (\underline{\alpha}_m, \overline{\alpha}_m)$ for $m \ge 1$ sufficiently large. By [Pesin-Weiss]

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \geq \dim_{\mathrm{H}} \mathscr{L}(\alpha) \cap \Lambda_m = F_m(\alpha).$$

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \geq F(\alpha)$$
 follows from $F(\alpha) = \lim_{m \to \infty} F_m(\alpha)$.

weak multifractal formalism - boundary of spectrum

To study the case $\alpha \in \{\underline{\alpha}, \overline{\alpha}\}$ we construct "bridging measures".

Similar ideas are contained in:

- [Besicovich '34] sum of digits of reals represented in dyadic system
- [Barreira, Schmeling '00] "non-typical" points have full entropy / dimension
- [Takens, Verbitsky '03] variational principle for the topological entropy of certain non-compact sets
- [Thompson '08] irregular sets and conditional variational principles in dynamical systems, PhD thesis

Plan: Construct Borel probability measure μ with $\mu(\mathscr{L}(\alpha)) > 0$,

weak multifractal formalism - boundary of spectrum

To study the case $\alpha \in \{\underline{\alpha},\overline{\alpha}\}$ we construct "bridging measures".

Similar ideas are contained in:

- [Besicovich '34] sum of digits of reals represented in dyadic system
- [Barreira, Schmeling '00] "non-typical" points have full entropy / dimension
- [Takens, Verbitsky '03] variational principle for the topological entropy of certain non-compact sets
- [Thompson '08] irregular sets and conditional variational principles in dynamical systems, PhD thesis

Plan: Construct Borel probability measure μ with $\mu(\mathcal{L}(\alpha)) > 0$, calculate its local dimension,

weak multifractal formalism - boundary of spectrum

To study the case $\alpha \in \{\underline{\alpha}, \overline{\alpha}\}$ we construct "bridging measures".

Similar ideas are contained in:

- [Besicovich '34] sum of digits of reals represented in dyadic system
- [Barreira, Schmeling '00] "non-typical" points have full entropy / dimension
- [Takens, Verbitsky '03] variational principle for the topological entropy of certain non-compact sets
- [Thompson '08] irregular sets and conditional variational principles in dynamical systems, PhD thesis

Plan: Construct Borel probability measure μ with $\mu(\mathcal{L}(\alpha)) > 0$, calculate its local dimension, apply Mass Distribution Principle.

Let $\Sigma_{A_1} \subset \Sigma_{A_2} \subset \ldots \subset \Sigma$ family of mixing SFT's μ_ℓ equilibrium states w.r.t. $\sigma|_{\Sigma_{A_\ell}}$ and potentials ϕ_ℓ with $P_\ell(\phi_\ell) = 0$

Let $\Sigma_{A_1} \subset \Sigma_{A_2} \subset \ldots \subset \Sigma$ family of mixing SFT's μ_ℓ equilibrium states w.r.t. $\sigma|_{\Sigma_{A_\ell}}$ and potentials ϕ_ℓ with $P_\ell(\phi_\ell) = 0$ (otherwise change ϕ_ℓ for $\phi_\ell - P_\ell(\phi_\ell)$).

Let $\Sigma_{A_1} \subset \Sigma_{A_2} \subset \ldots \subset \Sigma$ family of mixing SFT's

 μ_ℓ equilibrium states w.r.t. $\sigma|_{\Sigma_{A_\ell}}$ and potentials ϕ_ℓ with $P_\ell(\phi_\ell)=0$. Fix increasing sequence $m_\ell\to\infty$. On each $\omega_{m_1}\in\Sigma^{m_1}$ put

$$\mu([\omega_{m_1}]) = \mu_1([\omega_{m_1}])$$

For any $\ell \geq 2$ sub-distribute μ on $[\omega_{m_\ell}] = \bigcup_{\tau_{m_{\ell+1}-m_\ell}} [\omega_{m_\ell} \tau_{m_{\ell+1}-m_\ell}]$ as

$$\mu([\omega_{m_{\ell}}\tau_{m_{\ell+1}-m_{\ell}}]) = \mu([\omega_{m_{\ell}}]) \,\mu_{\ell+1}([\tau_{m_{\ell+1}-m_{\ell}}]) \cdot \mathsf{N}_{\ell+1}([\omega_{m_{\ell}}])$$

where $\mathit{N}_{\ell+1}([\omega_{\mathit{m}_{\ell}}])$ is the normalizing constant

Let $\Sigma_{A_1} \subset \Sigma_{A_2} \subset \ldots \subset \Sigma$ family of mixing SFT's

 μ_{ℓ} equilibrium states w.r.t. $\sigma|_{\Sigma_{A_{\ell}}}$ and potentials ϕ_{ℓ} with $P_{\ell}(\phi_{\ell}) = 0$. Fix increasing sequence $m_{\ell} \to \infty$. On each $\omega_{m_1} \in \Sigma^{m_1}$ put

$$\mu([\omega_{m_1}]) = \mu_1([\omega_{m_1}])$$

For any $\ell \geq 2$ sub-distribute μ on $[\omega_{m_\ell}] = \bigcup_{\tau_{m_{\ell+1}-m_\ell}} [\omega_{m_\ell} \tau_{m_{\ell+1}-m_\ell}]$ as

$$\mu([\omega_{m_{\ell}}\tau_{m_{\ell+1}-m_{\ell}}]) = \mu([\omega_{m_{\ell}}])\,\mu_{\ell+1}([\tau_{m_{\ell+1}-m_{\ell}}])\cdot N_{\ell+1}([\omega_{m_{\ell}}])$$

where $N_{\ell+1}([\omega_{m_\ell}])$ is the normalizing constant

For each ℓ probability on $\Sigma_{A_{\ell}}^{m_{\ell}}$ is well-defined on cylinders. Extend it to Σ .

Lemma

$$\mu([\omega \, \tau]) \asymp_{\ell} \mu([\omega]) \, \mu_{\ell+1}([\tau])$$
 whenever $\omega \, \tau = \omega_{m_{\ell}} \, \tau_{m_{\ell+1}-m_{\ell}}$.

4 D > 4 P > 4 B > 4 B > 9 Q C

Assume that the following sequences converge

$$h_\ell = h(\mu_\ell), \quad \lambda_\ell = \lambda(\mu_\ell), \quad d_\ell = rac{h_\ell}{\lambda_\ell} = \dim_{\mathrm{H}} \mu_\ell.$$

Assume that the following sequences converge

$$h_\ell = h(\mu_\ell), \quad \lambda_\ell = \lambda(\mu_\ell), \quad d_\ell = rac{h_\ell}{\lambda_\ell} = \dim_{\mathrm{H}} \mu_\ell.$$

Consider 'finite-level' entropy of μ and 'finite time' Lyapunov exponent

$$H_m^{\mu}(x) = -\frac{1}{m} \log \mu(C_m(x)), \quad L_m(x) = \frac{1}{m} \log |(T^m)'(x)|.$$

Assume that the following sequences converge

$$h_\ell = h(\mu_\ell), \quad \lambda_\ell = \lambda(\mu_\ell), \quad d_\ell = rac{h_\ell}{\lambda_\ell} = \dim_{\mathrm{H}} \mu_\ell.$$

Consider 'finite-level' entropy of μ and 'finite time' Lyapunov exponent

$$H_m^{\mu}(x) = -\frac{1}{m} \log \mu(C_m(x)), \quad L_m(x) = \frac{1}{m} \log |(T^m)'(x)|.$$

Proposition

If $(m_\ell)_\ell$ increases sufficiently fast, then for μ -almost every $x \in \Lambda$

$$\lim_{m\to\infty} H_m^{\mu}(x) = \lim_{\ell\to\infty} h_{\ell}, \quad \lim_{m\to\infty} L_m(x) = \lim_{\ell\to\infty} \lambda_{\ell}, \quad \underline{d}_{\mu}(x) \geq \lim_{\ell\to\infty} d_{\ell}.$$

Hence, for $\alpha = \lim_{\ell \to \infty} \lambda_{\ell}$ we have

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \geq \liminf_{\ell \to \infty} d_{\ell}.$$

Assume that the following sequences converge

$$h_\ell = h(\mu_\ell), \quad \lambda_\ell = \lambda(\mu_\ell), \quad d_\ell = rac{h_\ell}{\lambda_\ell} = \dim_{\mathrm{H}} \mu_\ell.$$

Consider 'finite-level' entropy of μ and 'finite time' Lyapunov exponent

$$H_m^{\mu}(x) = -\frac{1}{m} \log \mu(C_m(x)), \quad L_m(x) = \frac{1}{m} \log |(T^m)'(x)|.$$

Proposition

If $(m_\ell)_\ell$ increases sufficiently fast, then for μ -almost every $x \in \Lambda$

$$\lim_{m\to\infty} H_m^{\mu}(x) = \lim_{\ell\to\infty} h_{\ell}, \quad \lim_{m\to\infty} L_m(x) = \lim_{\ell\to\infty} \lambda_{\ell}, \quad \underline{d}_{\mu}(x) \geq \lim_{\ell\to\infty} d_{\ell}.$$

Hence, for $\alpha = \lim_{\ell \to \infty} \lambda_{\ell}$ we have

$$\dim_{\mathrm{H}} \mathscr{L}(\alpha) \geq \liminf_{\ell \to \infty} d_{\ell}.$$

Proof of Proposition

Lemma

For ε, δ there exists $M \ge 1$ such that for $m_{\ell} \ge M$ we have $\mu(B_{\ell}) \le \delta$, where

$$B_{\ell} = \Big\{ x \colon \Big| m \, \mathsf{L}_m(x) - \Big(m_{\ell} \mathsf{L}_{m_{\ell}}(x) + (m - m_{\ell}) \lambda_{\ell} \Big) \Big| > m \, \varepsilon \text{ for some } m_{\ell} < m \leq m_{\ell+1} \Big\}.$$

Proof.

 $m_{\ell}L_{m_{\ell}}(x)+(m-m_{\ell})L_{m-m_{\ell}}(T^{m_{\ell}}(x))=m\,L_{m}(x)\to m\,\lambda_{\ell}=m_{\ell}\,\lambda_{\ell}+(m-m_{\ell})\lambda_{\ell}$ uniformly on set of measure μ_{ℓ} at least $1-\delta$. For each cylinder $[\omega]=[\omega_{m_{\ell}}]$

$$\mu(B_{\ell} \cap [\omega]) \leq \sum_{\tau} \mu([\omega \, \tau_{m_{\ell+1}-m_{\ell}}]) \times \sum_{\tau} \mu([\omega]) \, \mu_{\ell}([\tau_{m_{\ell+1}-m_{\ell}}]) \leq \mu([\omega]) \, \delta$$

Hence, summing over all $\omega = \omega_{m_{\ell}}$ we obtain $\mu(B_{\ell}) \leq \delta$.

4 D > 4 A > 4 B > 4 B > B = 900

For $(\varepsilon_\ell)_\ell$ and for $(\delta_\ell)_\ell$ summable, Borel-Cantelli implies $\mu(\limsup_\ell B_\ell) = 0$.

Hence, for μ -almost every x for sufficiently large ℓ

$$\big| m \mathcal{L}_m(x) - \big(m_\ell \mathcal{L}_{m_\ell}(x) + (m - m_\ell) \lambda_\ell \big) \big| \leq m \, \varepsilon_\ell \quad \text{ for every } m = m_\ell + 1, \ldots, m_{\ell+1}$$

hence, choosing $(\varepsilon_\ell)_\ell$ appropriately, for every such m

$$L_m(x) \sim \frac{m_\ell \lambda_\ell + (m - m_\ell) \lambda_{\ell+1}}{m} \implies \lambda(x) = \lim_{\ell \to \infty} \lambda_\ell.$$

So μ -a.e. $x \in \mathcal{L}(\alpha)$. Similar, the 'finite-level' entropy for μ -a.e. x satisfies

$$H_m^{\mu}(x) \sim \frac{m_{\ell} h_{\ell} + (m-m_{\ell}) h_{\ell+1}}{m} \implies \lim_{m \to \infty} H_m^{\mu}(x) = \lim_{\ell \to \infty} h_{\ell}.$$

Thus, up to some constant (tempered distortion)

$$\underline{d}_{\mu}(x) \sim \frac{\log \mu(C_{m_{\ell}}(x))}{\log |C_{m_{\ell}}(x)|}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

For $(\varepsilon_\ell)_\ell$ and for $(\delta_\ell)_\ell$ summable, Borel-Cantelli implies $\mu(\limsup_\ell B_\ell) = 0$.

Hence, for μ -almost every x for sufficiently large ℓ

$$\big| m \mathcal{L}_m(x) - \big(m_\ell \mathcal{L}_{m_\ell}(x) + (m - m_\ell) \lambda_\ell \big) \big| \leq m \, \varepsilon_\ell \quad \text{ for every } m = m_\ell + 1, \ldots, m_{\ell+1}$$

hence, choosing $(\varepsilon_{\ell})_{\ell}$ appropriately, for every such m

$$L_m(x) \sim \frac{m_\ell \lambda_\ell + (m - m_\ell) \lambda_{\ell+1}}{m} \implies \lambda(x) = \lim_{\ell \to \infty} \lambda_\ell.$$

So μ -a.e. $x \in \mathcal{L}(\alpha)$. Similar, the 'finite-level' entropy for μ -a.e. x satisfies

$$H_m^{\mu}(x) \sim \frac{m_{\ell} h_{\ell} + (m-m_{\ell}) h_{\ell+1}}{m} \implies \lim_{m \to \infty} H_m^{\mu}(x) = \lim_{\ell \to \infty} h_{\ell}.$$

Thus, up to some constant (tempered distortion)

$$\underline{d}_{\mu}(x) \sim \frac{\log \mu(C_{m_{\ell}}(x))}{\log |C_{m_{\ell}}(x)|} = \frac{\log \mu(C_{m_{\ell}}(x)) m_{\ell}}{-m_{\ell} \log |(T^{m_{\ell}})'(x)|^{-1}}$$

For $(\varepsilon_\ell)_\ell$ and for $(\delta_\ell)_\ell$ summable, Borel-Cantelli implies $\mu(\limsup_\ell B_\ell) = 0$.

Hence, for μ -almost every x for sufficiently large ℓ

$$\big| m \mathcal{L}_m(x) - \big(m_\ell \mathcal{L}_{m_\ell}(x) + (m - m_\ell) \lambda_\ell \big) \big| \leq m \, \varepsilon_\ell \quad \text{ for every } m = m_\ell + 1, \ldots, m_{\ell+1}$$

hence, choosing $(\varepsilon_\ell)_\ell$ appropriately, for every such m

$$L_m(x) \sim \frac{m_\ell \lambda_\ell + (m - m_\ell) \lambda_{\ell+1}}{m} \implies \lambda(x) = \lim_{\ell \to \infty} \lambda_\ell.$$

So μ -a.e. $x \in \mathcal{L}(\alpha)$. Similar, the 'finite-level' entropy for μ -a.e. x satisfies

$$H_m^{\mu}(x) \sim \frac{m_{\ell} h_{\ell} + (m-m_{\ell}) h_{\ell+1}}{m} \implies \lim_{m \to \infty} H_m^{\mu}(x) = \lim_{\ell \to \infty} h_{\ell}.$$

Thus, up to some constant (tempered distortion)

$$\underline{d}_{\mu}(x) \sim \frac{\log \mu(C_{m_{\ell}}(x))}{\log |C_{m_{\ell}}(x)|} = \frac{\log \mu(C_{m_{\ell}}(x)) \, m_{\ell}}{-m_{\ell} \, \log |(T^{m_{\ell}})'(x)|^{-1}} = \frac{H^{\mu}_{m_{\ell}}(x)}{L_{m_{\ell}}(x)}$$

↓□▶ ↓□▶ ↓ Ē▶ ▼ Ē ▼ 9<</p>

For $(\varepsilon_\ell)_\ell$ and for $(\delta_\ell)_\ell$ summable, Borel-Cantelli implies $\mu(\limsup_\ell B_\ell) = 0$.

Hence, for μ -almost every x for sufficiently large ℓ

$$\big| m \mathcal{L}_m(x) - \big(m_\ell \mathcal{L}_{m_\ell}(x) + (m - m_\ell) \lambda_\ell \big) \big| \leq m \, \varepsilon_\ell \quad \text{ for every } m = m_\ell + 1, \ldots, m_{\ell+1}$$

hence, choosing $(\varepsilon_{\ell})_{\ell}$ appropriately, for every such m

$$L_m(x) \sim \frac{m_\ell \lambda_\ell + (m - m_\ell) \lambda_{\ell+1}}{m} \implies \lambda(x) = \lim_{\ell \to \infty} \lambda_\ell.$$

So μ -a.e. $x \in \mathcal{L}(\alpha)$. Similar, the 'finite-level' entropy for μ -a.e. x satisfies

$$H_m^{\mu}(x) \sim \frac{m_{\ell} h_{\ell} + (m-m_{\ell}) h_{\ell+1}}{m} \implies \lim_{m \to \infty} H_m^{\mu}(x) = \lim_{\ell \to \infty} h_{\ell}.$$

Thus, up to some constant (tempered distortion)

$$\underline{d}_{\mu}(x) \sim \frac{\log \mu(C_{m_{\ell}}(x))}{\log |C_{m_{\ell}}(x)|} = \frac{\log \mu(C_{m_{\ell}}(x)) \, m_{\ell}}{-m_{\ell} \log |(T^{m_{\ell}})'(x)|^{-1}} = \frac{H^{\mu}_{m_{\ell}}(x)}{L_{m_{\ell}}(x)} \sim \frac{h_{\ell}}{\lambda_{\ell}} \geq \liminf_{\ell \to \infty} d_{\ell}$$

4□ > 4□ > 4□ > 4□ > 4□ > 9<</p>

For $(\varepsilon_\ell)_\ell$ and for $(\delta_\ell)_\ell$ summable, Borel-Cantelli implies $\mu(\limsup_\ell B_\ell) = 0$.

Hence, for μ -almost every x for sufficiently large ℓ

$$\big| m \mathcal{L}_m(x) - \big(m_\ell \mathcal{L}_{m_\ell}(x) + (m - m_\ell) \lambda_\ell \big) \big| \le m \, \varepsilon_\ell \quad \text{ for every } m = m_\ell + 1, \dots, m_{\ell+1}$$

hence, choosing $(\varepsilon_\ell)_\ell$ appropriately, for every such m

$$L_m(x) \sim \frac{m_\ell \lambda_\ell + (m - m_\ell) \lambda_{\ell+1}}{m} \implies \lambda(x) = \lim_{\ell \to \infty} \lambda_\ell.$$

So μ -a.e. $x \in \mathcal{L}(\alpha)$. Similar, the 'finite-level' entropy for μ -a.e. x satisfies

$$H_m^{\mu}(x) \sim \frac{m_{\ell} h_{\ell} + (m-m_{\ell}) h_{\ell+1}}{m} \quad \Longrightarrow \quad \lim_{m \to \infty} H_m^{\mu}(x) = \lim_{\ell \to \infty} h_{\ell}.$$

Thus, up to some constant (tempered distortion)

$$\underline{d}_{\mu}(x) \sim \frac{\log \mu(C_{m_{\ell}}(x))}{\log |C_{m_{\ell}}(x)|} = \frac{\log \mu(C_{m_{\ell}}(x)) \, m_{\ell}}{-m_{\ell} \, \log |(T^{m_{\ell}})'(x)|^{-1}} = \frac{H^{\mu}_{m_{\ell}}(x)}{L_{m_{\ell}}(x)} \sim \frac{h_{\ell}}{\lambda_{\ell}} \geq \liminf_{\ell \to \infty} d_{\ell}$$

By the Mass Distribution Principle, $\dim_{\mathrm{H}}\mathscr{L}(\alpha) \geq \liminf_{\ell \in \mathbb{N}} d_{\ell_{0}}$ (**Proposition**)

 $T:\Lambda \to \Lambda$ $C^{1+\varepsilon}$ expansive conformal Markov repeller, tempered distortion Suppose there exist $\Lambda_1 \subset \ldots \subset \Lambda_m \subset \Lambda$ mixing expanding repeller, $\Lambda_m \to \Lambda$ in Hausdorff topology. All Λ_m have tempered distortion with very same $(\rho_n)_n$, and each Λ_m has bounded distortion.

Theorem (G-Rams '09)

Then for every $\alpha \in (\underline{\alpha}, \overline{\alpha})$ we have $\dim_{\mathrm{H}} \mathscr{L}(\alpha) = F(\alpha)$. If $\mathscr{L}(0) \neq \emptyset$ then $\dim_{\mathrm{H}} \mathscr{L}(0) = \dim_{\mathrm{H}} \Lambda \geq q_{\infty} = F(0)$.

