On ordering the convolution of the difference of Bernoulli random variables

Abdulhamid Alzaid (alzaid@ksu.edu.sa, King Saud University) Maha A. Omair (maomair@ksu.edu.sa, King Saud University) Om Alsad Aodah (Prince Salman University)

Recently there is a growing interest on models based on discrete distributions defined on the set of integers Z . In this paper, we consider the ordering of probability distributions generated from the sum of the difference of Bernoulli random variables.

References

Alzaid, A. A. and Omair, M. A. (2010). On The Poisson Difference Distribution Inference and Applications. Bulletin of the Malaysian Mathematical Society, 8, (33), 17-45.

Boland PJ, Proschan F (1983) The reliability of k-out-of-n systems. Ann Probab11:760-764.

Inusah, S., Kozubowski, T.J. (2006). A discrete analogue of the Laplace distribution. Journal of Statistical Planning and Inference, 136, 1090-1102.

Boland PJ (2007) The probability distribution for the number of successes in independent trials. Comm Statist-Theor Meth 36:1327-1331.

Irwin, J. O. (1937). The frequency distribution of the difference between two independent variates following the same Poisson distribution, Journal of the Royal Statistical Society, Series A, 100, 415-415.

Kemp A.W. (1997). Characterization of a Discrete Normal Distribution. Journal of Statistical Planning and Inference, 63, 223-229.

Marshall, A. W., and Olkin, I. (1979). Inequalities: Theory of majorization and its application, New York: Academies Press.

Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders, Springer, New York. 99

Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656.

Skellam, J. G. (1946). The frequency distribution of the difference between two Poisson variates belonging to different populations, Journal of the Royal Statistical Society, Series A, 109, 296.