Expanding Thurston maps and matings

Dzmitry Dudko

Georg-August-Universität Göttingen

Perspectives of Modern Complex Analysis Bedlewo, Poland July 22, 2014 $P_f := \bigcup_{n>0} f^n$ {critical points} is the post-critical set, assumption: $|P_f| < \infty$, i.e. *f* is post critically finite, PCF, motivation: PCF-rational maps z^2 , $z^2 - 1$, $\frac{1}{z^2-1}$, ...

Combinatorial (or Thurston) equivalence

conjugacy + isotopy rel postcritical set

 $f_0, f_1 : S^2 \to S^2$ are isotopic rel $P_{f_0} = P_{f_1}$ if there is a continuous deformation $f_t : S^2 \to S^2$ s.t. $P_{f_1} = P_{f_0} = P_{f_1}$

Thurston theorem

A non-Lattès f of degree > 1 is combinatorially equivalent to a rational map iff f admits no Thurston obstruction.

if $|P_f| > 4$, then *f* is non-Lattès

Obstructions

Thurston theorem

A non-Lattès f of degree> 1 is combinatorially equivalent to a rational map iff f admits no Thurston obstruction.

- A Levy obstruction is a simple closed curve $\ell \subset S^2 \setminus P_f$ that is
 - essential: both components of S² \ ℓ contain at least 2 points of P_f;
 - periodic: fⁿ: ℓ' → ℓ is a homeomorphism for ℓ' ⊂ S² \ P_f isotopic rel P_f to ℓ.

Expansion of PCF-rational maps

- $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ expands the hyperbolic metric of $\hat{\mathbb{C}} \setminus P_f$:
 - $f: \hat{\mathbb{C}} \setminus f^{-1}(P_f) \to \hat{\mathbb{C}} \setminus P_f$ is an isometry
 - $\hat{\mathbb{C}} \setminus f^{-1}(P_f) \hookrightarrow \hat{\mathbb{C}} \setminus P_f$ is a strict contraction

(we may take the orbifold $(\hat{\mathbb{C}}, P_f, \operatorname{orb}_f)$ instead of $\hat{\mathbb{C}} \setminus P_f$)

Obstructions

- A Levy obstruction is a closed curve $\ell \subset S^2 \setminus P_f$ that is
 - essential: both components of S² \ ℓ contain at least 2 points of P_f;
 - periodic: fⁿ: ℓ' → ℓ is a homeomorphism for ℓ' ⊂ S² \ P_f isotopic rel P_f to ℓ.

Expansion of PCF-rational maps

- $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ expands the hyperbolic metric of $\mathbb{C} \setminus P_f$:
 - $f : \mathbb{C} \setminus f^{-1}(P_f) \to \mathbb{C} \setminus P_f$ is an isometry
 - $f : \mathbb{C} \setminus f^{-1}(P_f) \hookrightarrow \mathbb{C} \setminus P_f$ is a strict contraction

If *f* has a Levy obstruction ℓ_0 , then *f* admits no expanding metric. (Otherwise, ℓ_0 would be isotopic to a very short curve via the pullback iteration $f^{-n} : \ell_n \to \ell_{n+1} \sim_{\text{isotopic}} \ell_0$.) If *f* is a polynomial or has degree 2, then every Thurston obstruction of *f* is a Levy obstruction.

Expanding maps

We say $f: S^2 \rightarrow S^2$ is expanding if

- there is a length metric μ on the orbifold (S², P_f, orb_f) s.t. f expands μ;
- Böttcher normalization: the first return map of *f* at every periodic critical point is locally conjugate to $z \rightarrow z^d$.

As for rational maps:

Rigidity

Two expanding maps are equivalent iff they are conjugate.

Characterization (j.w. Laurent Bartholdi)

A non-Lattès $f: S^2 \rightarrow S^2$ of degree> 1 is combinatorially equivalent to an expanding map iff *f* admits no Levy obstruction.

Applications

Iterated monodromy groups

IMGs of non-Lattès Levy-free maps are contracting

In particular, many symbolic algorithms are available.

Mating

 $f(z) = z^d + a_{d-1}z^{d-1} + \dots$ and $g(z) = z^d + b_{d-1}z^{d-1} + \dots$ are polynomials viewed as maps on \mathbb{C} Formal mating $f \sqcup g : S^2 \to S^2$ is the map s.t.

• \overline{f} acts on the northern hemisphere;

• g acts on the southern hemisphere.

Geometric mating $f \cup_{S^1} g : K_f \cup_{S^1} K_g \to K_f \cup_{S^1} K_g$ is the induced map on the space obtained by gluing filled-in Julia sets of *f* and *g*.

Fact

If $f \sqcup g$ is equivalent to a rational (or expanding) map $f \Box g$, then $f \cup_{S^1} g$: is conjugate to $f \Box g$.

This is how it is often established that $K_f \cup_{S^1} K_g$ is a sphere.

Matings

Mary Rees, Tan Lei

Briefly: two quadratic PCF-polynomials are "mateable" iff they are not in conjugate limbs of the Mandelbrot set.

in degree 2 the next theorem is a "part" the previous theorem because every expanding map is conjugate to a rational map

Higher degree (j.w. Laurent Bartholdi)

- f, g are PCF-hyperbolic polynomials. TFAE:
- (1) $f \sqcup g$ is equivalent to an expanding map $f \Box g$;
- (2) $K_f \cup_{S^1} K_g$ is a 2-sphere;
- (3) no finite set of periodic external rays of $f \sqcup g$ disconnect S^2 .

Tan Lei and Shishikura's example shows that the last theorem is not true for rational maps (if deg>2): there are more complicated than Levy obstructions