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1a Dynamics and Julia sets

Iteration of fc(z) = z2 + c . Filled Julia set Kc = {z ∈ C | fnc (z) 6→ ∞} .

Kc is invariant under fc(z) .

fnc (z) is asymptotically linear at repelling n-periodic points.



1b The Mandelbrot set

Parameter plane of quadratic polynomials

fc(z) = z2 + c .

Mandelbrot set M = {c ∈ C | c ∈ Kc} .

Two kinds of self-similarity:

• Convergence of rescaled subsets:

geometry is asymptotically linear.

• Homeomorphisms between subsets:

non-linear, maybe quasiconformal.



2. Asymptotic similarity 1 3 4

SubsetsM⊃Mn → {a} ⊂ ∂M with

asymptotic model: ϕn(Mn) → Y in

Hausdorff-Chabauty distance.

Or convergence of subsets of different

Julia sets: cn ∈ Mn , Kn ⊂ Kcn with

asymptotics ψn(Kn)→ Z.

Maybe Z = λY .
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2a Misiurewicz points

Misiurewicz point a with multiplier %a. Blowing up both planes with %na gives

λ(M− a) ≈ (Ka − a) asymptotically.

Classical result by Tan Lei. Error bound by Rivera-Letelier. Generalization to

non-hyperbolic semi-hyperbolic a. Proof by Kawahira with Zalcman Lemma.

-



2b Multiple scales (1)

Centers cn → a with cn ∼ a + K%−na and small Mandelbrot sets of diameter

� |%a|−2n. Their decorations have asymptotic models on intermediate scales:

%1na (M− cn)→ K0(Xa − ϕa(0))1

%
3
2n
a (M− cn)→ K1(Xa − ϕa(0))1/2

%
7
4n
a (M− cn)→ K2(Xa − ϕa(0))1/4

-



2b Multiple scales (2)

Consider decorations on the smallest scale %−2na .

Then we have the following non-hairiness properties:

• For a fixed dyadic internal angle and n → ∞, the decoration is close to

an analytic arc. This arc is a small dyadic ray for a ∈ R.

• The union of decorations gets dense. Area → 0? [Proved for a = −2.]



2c The Fibonacci parameter

A real parameter with fast recurrent critical point. According to Lyubich and

Wenstrom, suitable puzzle-pieces approximate the basilica.

2d Elephant and dragon

Rescaled limbs ofM seem to converge to a limit set. Partial proof by Lavaurs–

Douady based on parabolic implosion. Mandel demo 2.10

http://www.mndynamics.com/indexp.html


2e Siegel parameters (1)

The Siegel disk for the Golden Mean ro-

tation number. According to McMullen,

the filled Julia set is asymptotically lin-

early self-similar at the critical point.

It is a Lebesgue full density point of the

filled Julia set. According to Petersen,

there is a triangle at 0 within the Siegel

disk.



2e Siegel parameters (2)

The right image shows the self-similarity of the filled Julia set at the critical

value.

Is there an approximate self-similarity in the parameter plane as well, and a

similarity between both planes?



2f Feigenbaum doubling

The Feigenbaum parameter cF ≈ −1.40115519 is the limit of real period

doubling. Consider δnF (M− cF ) with δF ≈ 4.66920161.

Milnor had conjectured that the hairs converge in measure to a limit set, which

is sparse somewhere. Lyubich has shown that hairs become dense.

The Julia set was discussed by McMullen. Mandel demo 5.10

http://www.mndynamics.com/indexp.html


2g Local similarity

Similarity between the decorations of small Mandelbrot sets and of correspond-

ing small Julia sets. Composition of small Douady map and Boettcher maps;

approximately affine on a larger radius.

Observed by Peitgen 1988. Proof at Misiurewicz points using large modulus,

bounded geometry, and asymptotic models. Mandel demo 7.2

http://www.mndynamics.com/indexp.html


2h Embedded Julia sets

The boundary of a primitive small Mandelbrot set is accumulated by embed-

ded Julia sets. These Cantor subsets of M correspond to preimages of the

disconnected small Julia set.

Observed by Leavitt–Munafo. Discussed by Douady–alii at parabolic parame-

ters. Otherwise convergent.



3. Homeomorphisms 1 2 4

Quasiconformal surgery has many

applications to single maps. E.g.,

Shishikura constructed Herman rings

from Siegel disks.

Applied to families of maps, it can

yield a homeomorphism between pa-

rameter spaces:

• Using fc(z), construct a

quasiregular gc(z) piecewise.

• Conjugate gc(z) to an analytic

fĉ(z).

• Map parameters according to

c 7→ h(c) := ĉ .

3a Multiplier map

3b Simple renormalization

3c Crossed renormalization

3d Branner–Douady

3e Riedl

3f Branner–Fagella–Schleicher

3g Dudko–Schleicher

3h Homeomorphisms on edges

3i Homeomorphisms at endpoints



3a Multiplier map

For a hyperbolic component Ω ⊂M, the multiplier map % : Ω→ D is analytic.

To show that it is injective, a continuous %−1 is constructed by surgery.

-
%−1



3b Simple renormalization

A small Julia set Kn
c ⊂ Kc is obtained from a quadratic-like restriction gc(z)

of fnc (z). When Kn
c is connected, then c belongs to the small Mandelbrot set

Mn . Now χ : Mn → M is a homeomorphism. M\Mn and Kc \ Kn
c is a

countable family of decorations.



3c Crossed renormalization

Crossed renormalization was discovered by McMullen and described by Riedl–

Schleicher. The example shows a subset of the 1/6-limb, which is homeomor-

phic to the 1/3-limb.

-
χ



3d Branner–Douady

This homeomorphism provides an embedding of the 1/2-limb into the 1/3-

limb. The image of the real interval is the vein to a β-type Misiurewicz point.

The construction of Φ−1 is easier than that of Φ.

-
Φ−1



3e Riedl

Riedl has obtained all veins by applying

two kinds of homeomorphisms iteratively:

these are embedding sublimbs of a hyper-

bolic component, or interchanging subsets

of branches behind a Misiurewicz point.

@
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3f Branner-Fagella and Schleicher have constructed homeomorphisms between

full limbs of equal denominators.

-
h

3g Non-orientation-preserving: composition with complex conjugation.

Dudko-Schleicher have obtained homeomorphisms between limbs or sublimbs,

which are orientation-preserving except at α-type Misiurewicz points, e.g..

They are constructed combinatorially; continuity follows from the Yoccoz The-

orem and the Decoration Theorem.



3h Homeomorphisms on edges

These homeomorphisms are mapping the part between two vertices to itself.

There is a countable family of mutually homeomorphic subsets. No decorations

are excluded.
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3i Homeomorphisms at endpoints

The same construction where one vertex is an endpoint. At both Misiurewicz

points, fundamental domains are defined combinatorially, are mutually homeo-

morphic, and scale asymptotically linearly. Now h is Lipschitz at these vertices,

but not differentiable.

@
@R
h@

@R
h



4. Quasiconformal surgery 1 2 3

Combinatorial assumptions:

• Subsets EM ⊂M and corresponding Ec ⊂ Kc .

• By composition of iterates of f±1c (z), a dynamic homeomorphism ηc :

Ec → Ec is defined piecewise. The pieces are bounded by stable preperi-

odic rays.

Theorem: gc ∼ fc ◦ ηc is straightened to some fĉ and h(c) := ĉ defines a

homeomorphism h : EM → EM .

Corollary: The group of non-trivial orientation-preserving homeomorphisms

of M has the cardinality of NN ∼ R.



4a Piecewise dynamic homeomorphisms

In Example 3i, f 4c (Ec) is the largest branch at αc , which contains 0 and βc .

This branch is mapped to itself piecewise by f 1c and f−3c .

So ηc : Ec → Ec is defined piecewise by f−4c ◦ f 1c ◦ f 4c and f−4c ◦ f−3c ◦ f 4c .

Extend it by the identity and consider gc ∼ fc ◦ ηc .

�
f 3
c

-
f 1
c



4b Combinatorial surgery

The map fc ◦ ηc has shift discontinuities on four (or six) dynamic rays, but

the new dynamics on Kc is well-defined. In the postcritically finite case, ĉ is

obtained from c by determining its Hubbard tree or its external angles.

Or a Hölder homeomorphisms of angles is determined, conjugating some piece-

wise linear map to the angle doubling map. From the map of angles, h could be

defined on M without assuming local connectivity, by employing the Yoccoz

Theorem and the Decoration Theorem.



4c Straightening a quasi-quadratic map

fc ◦ ηc is modified in four (or six) sectors and restricted to a bounded domain

to obtain a quasi-regular quadratic-like map gc : U ′c → Uc .

Since the sectors are preperiodic, all iterates gnc have uniformly bounded di-

latation.

Adapting the proof of the Straightening Theorem, there is a hybrid equivalence

ψc conjugating gc to a quadratic polynomial fĉ .



4d The homeomorphism

Continuity of h(c) = ĉ is shown from:

• An explicit representation in the exterior and interior of M.

• Quasi-conformal rigidity at ∂M.

The techniques are similar to renormalization but easier in fact, since the holo-

morphic motion of Uc \ U ′c is given explicitly by the composition of Boettcher

conjugations. h−1 is constructed analogously.

Thank you.


