Boundary Behavior of Universal Taylor Series Perspectives of Modern Complex Analysis Bedlewo, Poland, July 2014

> Stephen J. Gardiner and Dmitry Khavinson dkhavins@usf.edu http://shell.cas.usf.edu/ dkhavins/

University College Dublin, University of South Florida

July 24, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Introduction: Universality, Examples

2 Boundary Behavior = "Misbehavior" of Universal Series

1 Introduction: Universality, Examples

2 Boundary Behavior = "Misbehavior" of Universal Series

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3 A Proof of the Main Result

1 Introduction: Universality, Examples

- 2 Boundary Behavior = "Misbehavior" of Universal Series
- 3 A Proof of the Main Result
- Universal Polynomial Expansions of Harmonic Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Philosophy: An object is called *universal* if, via a countable number of steps it can approximate any object in some "universe".

Philosophy: An object is called *universal* if, via a countable number of steps it can approximate any object in some "universe".

• M. Fekete (1886 - 1957), in a paper written by J. Pal in 1914 constructed $U := \sum_{1}^{\infty} a_n x^n$, $a_n \in \mathbb{R}$, ROC = 0 such that $\forall g \in C_{\mathbb{R}}[-1,1]$, $g(0) = 0, \exists$ a subsequence of partial sums s_{n_k} of U s.t. $s_{n_k} \rightrightarrows g$ on [-1,1].

Philosophy: An object is called *universal* if, via a countable number of steps it can approximate any object in some "universe".

• M. Fekete (1886 - 1957), in a paper written by J. Pal in 1914 constructed $U := \sum_{1}^{\infty} a_n x^n$, $a_n \in \mathbb{R}$, ROC = 0 such that $\forall g \in C_{\mathbb{R}}[-1,1]$, $g(0) = 0, \exists$ a subsequence of partial sums s_{n_k} of U s.t. $s_{n_k} \rightrightarrows g$ on [-1,1].

• George D. Birkhoff (1884 - 1944) showed (1929) existence of an entire function f(z) whose translates $f(z + n), n \in \mathbb{N}$ can approximate any entire function uniformly on compact subsets of \mathbb{C} .

• G. R. MacLane (1952) constructed an entire function with universal derivatives.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- G. R. MacLane (1952) constructed an entire function with universal derivatives.
- A. I. Seleznev (1952) constructed a power series $\sum a_n z^n$, with ROC = 0 : \forall compact $K \subset \mathbb{C} \setminus \{0\}$: $\mathbb{C} \setminus K$ is connected, $\forall g \in A(K) \exists s_{n_k} :=$ $\sum_{1}^{n_k} a_n z^n$, a subsequence of partial sums, $s_{n_k} \rightrightarrows g$ on K.

- G. R. MacLane (1952) constructed an entire function with universal derivatives.
- A. I. Seleznev (1952) constructed a power series $\sum a_n z^n$, with ROC = 0 : \forall compact $K \subset \mathbb{C} \setminus \{0\}$: $\mathbb{C} \setminus K$ is connected, $\forall g \in A(K) \exists s_{n_k} :=$ $\sum_{1}^{n_k} a_n z^n$, a subsequence of partial sums, $s_{n_k} \rightrightarrows g$ on K.
- Luh (1970), C. K. Chui and M. N. Parnes (1971) constructed power series with a ROC r > 0 that has the above approximation property on {|z| > r}.

- G. R. MacLane (1952) constructed an entire function with universal derivatives.
- A. I. Seleznev (1952) constructed a power series $\sum a_n z^n$, with ROC = 0 : \forall compact $K \subset \mathbb{C} \setminus \{0\}$: $\mathbb{C} \setminus K$ is connected, $\forall g \in A(K) \exists s_{n_k} :=$ $\sum_{1}^{n_k} a_n z^n$, a subsequence of partial sums, $s_{n_k} \rightrightarrows g$ on K.
- Luh (1970), C. K. Chui and M. N. Parnes (1971) constructed power series with a ROC r > 0 that has the above approximation property on {|z| > r}.

 V. Nestorides (1990) proved that universality holds on {|z| ≥ r}.

- G. R. MacLane (1952) constructed an entire function with universal derivatives.
- A. I. Seleznev (1952) constructed a power series $\sum a_n z^n$, with ROC = 0 : \forall compact $K \subset \mathbb{C} \setminus \{0\}$: $\mathbb{C} \setminus K$ is connected, $\forall g \in A(K) \exists s_{n_k} :=$ $\sum_{1}^{n_k} a_n z^n$, a subsequence of partial sums, $s_{n_k} \rightrightarrows g$ on K.
- Luh (1970), C. K. Chui and M. N. Parnes (1971) constructed power series with a ROC r > 0 that has the above approximation property on {|z| > r}.
- V. Nestorides (1990) proved that universality holds on {|z| ≥ r}. He also showed that the set of universal power series U is a dense G_δ subset of the space of all holomorphic functions on the disk endowed with the topology of uniform convergence on compact subsets.

Place of Action

open disk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Place of Action

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Main Result

The Main Result

Theorem 1

Let $\psi:[0,1)\to(0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \log^+ \psi(t) dt < \infty. \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $f(z) = \sum a_n z^n$ and $|f(z)| \le \psi(|z|)$ on $D(w, r) \cap \mathbb{D}$ for some $w \in \mathbb{T}$ and r > 0, then $f \notin \mathcal{U}$.

The Main Result

Theorem 1

Let $\psi:[0,1)\to(0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \log^+ \psi(t) dt < \infty. \tag{1}$$

If $f(z) = \sum a_n z^n$ and $|f(z)| \le \psi(|z|)$ on $D(w, r) \cap \mathbb{D}$ for some $w \in \mathbb{T}$ and r > 0, then $f \notin \mathcal{U}$.

Theorem 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The special case of Theorem 1 where the inequality $|f(z)| \le \psi(|z|)$ is required to hold on all of \mathbb{D} is due to Melas (2000), who also showed that condition (1) is close to being sharp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consequences: Picard's Property of Universal Series

Consequences: Picard's Property of Universal Series

Corollary 2

Let $f \in U$. Then, for every $w \in \mathbb{T}$ and r > 0, the function f assumes every complex value, with at most one exception, infinitely often on $D(w, r) \cap \mathbb{D}$.

Consequences: Picard's Property of Universal Series

Corollary 2

Let $f \in U$. Then, for every $w \in \mathbb{T}$ and r > 0, the function f assumes every complex value, with at most one exception, infinitely often on $D(w, r) \cap \mathbb{D}$.

Costakis and Melas had previously proved that f assumes every complex value, with at most one exception, infinitely often on \mathbb{D} ; their argument shows that there is at least one point $w \in \mathbb{T}$ with the stated Picard-type property.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Costakis and Melas had previously proved that f assumes every complex value, with at most one exception, infinitely often on \mathbb{D} ; their argument shows that there is at least one point $w \in \mathbb{T}$ with the stated Picard-type property. The exceptional value can actually arise: it was shown by Costakis and Melas (2000) that there exist zero-free members of \mathcal{U} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Costakis and Melas had previously proved that f assumes every complex value, with at most one exception, infinitely often on \mathbb{D} ; their argument shows that there is at least one point $w \in \mathbb{T}$ with the stated Picard-type property. The exceptional value can actually arise: it was shown by Costakis and Melas (2000) that there exist zero-free members of \mathcal{U} . Further, any function f in \mathcal{U} must assume all but one complex value in any angle at "most" (set of the 2d category) boundary points .

- 日本 - 1 日本 - 日本 - 日本

Picard's Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves Melas' (2000) result as follows. Let $f \in U$. Then, for any $w \in \mathbb{T}$, r > 0, $\kappa \ge 1$, and all but at most one complex number a, the distinct zeros $(z_i(a))$ of f - a in $D(w, r) \cap \mathbb{D}$ satisfy

$$\sum (1 - |z_j(a)|)^{\kappa} = \infty.$$
⁽²⁾

Remark 1

We can give a quantitative version of Corollary 2, which improves Melas' (2000) result as follows. Let $f \in U$. Then, for any $w \in \mathbb{T}$, r > 0, $\kappa \ge 1$, and all but at most one complex number a, the distinct zeros $(z_i(a))$ of f - a in $D(w, r) \cap \mathbb{D}$ satisfy

$$\sum (1 - |z_j(a)|)^{\kappa} = \infty.$$
⁽²⁾

To prove this, suppose that the above series converges for two distinct choices of *a*.

Remark 1

We can give a quantitative version of Corollary 2, which improves Melas' (2000) result as follows. Let $f \in \mathcal{U}$. Then, for any $w \in \mathbb{T}$, r > 0, $\kappa \ge 1$, and all but at most one complex number a, the distinct zeros $(z_i(a))$ of f - a in $D(w, r) \cap \mathbb{D}$ satisfy

$$\sum (1-|z_j(a)|)^{\kappa} = \infty.$$
⁽²⁾

To prove this, suppose that the above series converges for two distinct choices of *a*. Then $\log |f(z)| \leq C(1-|z|)^{-\kappa-1}$ on $D(w, r/2) \cap \mathbb{D}$. (This relies on Nevanlinna value distribution theory, combined with a suitable conformal mapping from $D(w, r) \cap \mathbb{D}$ to \mathbb{D} .)

Remark 1

We can give a quantitative version of Corollary 2, which improves Melas' (2000) result as follows. Let $f \in \mathcal{U}$. Then, for any $w \in \mathbb{T}$, r > 0, $\kappa \ge 1$, and all but at most one complex number a, the distinct zeros $(z_i(a))$ of f - a in $D(w, r) \cap \mathbb{D}$ satisfy

$$\sum (1-|z_j(a)|)^{\kappa} = \infty.$$
⁽²⁾

To prove this, suppose that the above series converges for two distinct choices of *a*. Then $\log |f(z)| \leq C(1-|z|)^{-\kappa-1}$ on $D(w, r/2) \cap \mathbb{D}$. (This relies on Nevanlinna value distribution theory, combined with a suitable conformal mapping from $D(w, r) \cap \mathbb{D}$ to \mathbb{D} .) Theorem 1 can now be invoked to obtain a contradiction.

Consequences: Growth of Universal Series

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consequences: Growth of Universal Series

Membership of \mathcal{U} is incompatible with any local Bergman-type integrability condition.

Consequences: Growth of Universal Series

Membership of $\ensuremath{\mathcal{U}}$ is incompatible with any local Bergman-type integrability condition.

Corollary 3

Let $f \in \mathcal{U}$. Then, for every $w \in \mathbb{T}$ and r > 0, and every $\beta > -1$,

$$\int_{D(w,r)\cap\mathbb{D}}\log^+|f(z)|\left(1-|z|^2
ight)^eta\,dA(z)=\infty.$$

In particular, f does not belong to any Bergman or Bergman-Nevanlinna class on \mathbb{D} .

Consequences: Growth of Universal Series

Membership of $\ensuremath{\mathcal{U}}$ is incompatible with any local Bergman-type integrability condition.

Corollary 3

Let
$$f \in \mathcal{U}$$
. Then, for every $w \in \mathbb{T}$ and $r > 0$, and every $\beta > -1$,

$$\int_{D(w,r)\cap\mathbb{D}}\log^+|f(z)|\left(1-|z|^2
ight)^eta\,dA(z)=\infty.$$

In particular, f does not belong to any Bergman or Bergman-Nevanlinna class on \mathbb{D} .

Subharmonicity of $\log^+ |f|$ yields that

$$\begin{aligned} \log^+ |f(\zeta)| &\leq \frac{4}{\pi (1-|\zeta|)^2} \int_{D(\zeta, (1-|\zeta|)/2)} \log^+ |f(z)| \, dA(z) \leq \frac{C(\beta)}{(1-|\zeta|)^{\beta+2}} \\ C(\beta) \text{ is a positive constant depending only on } \beta. \end{aligned}$$

Consequences: Growth of Universal Series

Membership of $\ensuremath{\mathcal{U}}$ is incompatible with any local Bergman-type integrability condition.

Corollary 3

Let
$$f \in \mathcal{U}$$
. Then, for every $w \in \mathbb{T}$ and $r > 0$, and every $\beta > -1$,

$$\int_{D(w,r)\cap\mathbb{D}}\log^+|f(z)|\left(1-|z|^2
ight)^eta\,dA(z)=\infty.$$

In particular, f does not belong to any Bergman or Bergman-Nevanlinna class on \mathbb{D} .

Subharmonicity of $\log^+ |f|$ yields that

$$\log^+ |f(\zeta)| \leq \frac{4}{\pi(1-|\zeta|)^2} \int_{D(\zeta,(1-|\zeta|)/2)} \log^+ |f(z)| \, dA(z) \leq \frac{C(\beta)}{(1-|\zeta|)^{\beta+2}}$$

 $C(\beta)$ is a positive constant depending only on β . It now follows again from Theorem 1 that $f \notin \mathcal{U}$.

・ロト ・ 一 ト ・ モト ・ モト

₹.

Subharmonicity of $\log^+ |f|$ yields that

$$\log^+ |f(\zeta)| \leq rac{4}{\pi(1-|\zeta|)^2} \int_{D(\zeta,(1-|\zeta|)/2)} \log^+ |f(z)| \, d{\mathsf A}(z) \leq rac{{\mathcal C}(eta)}{(1-|\zeta|)^{eta+2}}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 $C(\beta)$ is a positive constant depending only on β .

Subharmonicity of $\log^+ |f|$ yields that

$$\log^+ |f(\zeta)| \leq rac{4}{\pi(1-|\zeta|)^2} \int_{D(\zeta,(1-|\zeta|)/2)} \log^+ |f(z)| \, d{\mathsf A}(z) \leq rac{{\mathcal C}(eta)}{(1-|\zeta|)^{eta+2}}$$

・ロト ・ 雪 ト ・ ヨ ト

э

 $C(\beta)$ is a positive constant depending only on β . It now follows again from Theorem 1 that $f \notin U$.

・ロト・日本・モト・モート ヨー うへで

Beurling - Domar - Levinson - Sjoberg Theorem, 1939 -1952

Beurling - Domar - Levinson - Sjoberg Theorem, 1939 -1952

Theorem 4

Let $\psi: [0,1)
ightarrow (0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \log^+ \psi(t) dt < \infty. \tag{3}$$

If $\mathfrak{F} := \{f(z) \text{ analytic in } \mathbb{D}, \text{ such that } |f(z)| \le \psi(|z|)\}$ on \mathbb{D} , then \mathfrak{F} is a normal family.

Beurling - Domar - Levinson - Sjoberg Theorem, 1939 -1952

Theorem 4

Let $\psi: [0,1)
ightarrow (0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \log^+ \psi(t) dt < \infty. \tag{3}$$

- ロト 4 母 ト 4 ヨ ト 4 ヨ ト - ヨ - のへで

If $\mathfrak{F} := \{f(z) \text{ analytic in } \mathbb{D}, \text{ such that } |f(z)| \le \psi(|z|)\} \text{ on } \mathbb{D}, \text{ then } \mathfrak{F} \text{ is a normal family.}$

To apply Theorem 4 for the proof of Theorem 1, we show that the partial Taylor sums $S_N(z)$ of f are controlled as follows : $|S_N(z)| \le C_{w,r}\psi(|z|)$ in $D(w,r) \cap \mathbb{D}$.

イロト 不得 トイヨト イヨト

э

To apply Theorem 4 for the proof of Theorem 1, we show that the partial Taylor sums $S_N(z)$ of f are controlled as follows : $|S_N(z)| \le C_{w,r}\psi(|z|)$ in $D(w,r) \cap \mathbb{D}$. Then, by universality of f, we can choose a subsequence S_{N_k} converging to 0 uniformly outside of \mathbb{D} , and apply Theorem 4 to it, concluding that $f \equiv 0$, a contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Universal Homogeneous Harmonic Series

Universal Homogeneous Harmonic Series

Theorem 5

Let $\psi : [0,1) \rightarrow (0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \psi(t) dt < \infty. \tag{4}$$

If h(x) is a harmonic function in the unit ball $\mathbb{B}(0,1)$ in \mathbb{R}^d and $|h(x)| \le \psi(|x|)$ on $B(w,r) \cap \mathbb{B}$ for some $w \in \mathbb{S}^{d-1}$ and r > 0, then $f \notin \mathcal{U}_H$.

Universal Homogeneous Harmonic Series

Theorem 5

Let $\psi : [0,1) \rightarrow (0,\infty)$ be an increasing function such that

$$\int_0^1 \log^+ \psi(t) dt < \infty. \tag{4}$$

If h(x) is a harmonic function in the unit ball $\mathbb{B}(0,1)$ in \mathbb{R}^d and $|h(x)| \le \psi(|x|)$ on $B(w,r) \cap \mathbb{B}$ for some $w \in \mathbb{S}^{d-1}$ and r > 0, then $f \notin \mathcal{U}_H$.

The reason why only one "log" appears in (4), in contrast to (3), is that we apply Domar's result to subharmonic functions of the form |h| rather than $\log |f|$.

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THANK YOU! Happy Birthday, Alex!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ