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@ M. Fekete (1886 - 1957), in a paper written by J. Pal in 1914
constructed U := >"7" a,x", a, € R, ROC = Osuch thatVg €
Cr[—1,1], g(0) = 0,3 a subsequence of partial sums s, of
Us.t. s, =2 gon [—1,1].

o George D. Birkhoff (1884 - 1944) showed (1929) existence of
an entire function f(z) whose translates f(z 4+ n),n € N can
approximate any entire function uniformly on compact subsets

of C.
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e G. R. Maclane (1952) constructed an entire function with
universal derivatives.

@ A. |. Seleznev ( 1952) constructed a power series

> anz", with ROC =0: VcompactK C C\ {0} :
C\ K is connected, Vg € A(K) 3sp, :=
> 1“anz", a subsequence of partial sums, s, =% gon K.

e Luh (1970), C. K. Chui and M. N. Parnes (1971) constructed
power series with a ROC r > 0 that has the above
approximation property on {|z| > r}.

@ V. Nestorides (1990) proved that universality holds on
{|z| > r}. He also showed that the set of universal power
series U is a dense Ggs subset of the space of all holomorphic
functions on the disk endowed with the topology of uniform
convergence on compact subsets.
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Theorem 1

The special case of Theorem 1 where the inequality |f(z)| < ¢(|z])
is required to hold on all of D is due to Melas (2000), who also
showed that condition (1) is close to being sharp.
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Costakis and Melas had previously proved that f assumes every
complex value, with at most one exception, infinitely often on D;
their argument shows that there is at least one point w € T with
the stated Picard-type property. The exceptional value can
actually arise: it was shown by Costakis and Melas (2000) that
there exist zero-free members of U. Further, any function f in U
must assume all but one complex value in any angle at “most” (set
of the 2d category) boundary points .




Boundary Behavior = “Misbehavior” of Universal Series

Picard’s Property: Quantitative Version




Boundary Behavior = “Misbehavior” of Universal Series

Picard’s Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves
Melas’ (2000) result as follows. Let f € U. Then, for any w € T,
r >0, k > 1, and all but at most one complex number a, the
distinct zeros (zj(a)) of f — a in D(w, r) N D satisfy

> (1= Iz(a))" = co. ()

v




Boundary Behavior = “Misbehavior” of Universal Series

Picard’s Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves
Melas’ (2000) result as follows. Let f € U. Then, for any w € T,
r >0, k > 1, and all but at most one complex number a, the
distinct zeros (zj(a)) of f — a in D(w, r) N D satisfy

> (1= Iz(a))" = co. ()

To prove this, suppose that the above series converges for two
distinct choices of a.

v




Boundary Behavior = “Misbehavior” of Universal Series

Picard’s Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves
Melas’ (2000) result as follows. Let f € U. Then, for any w € T,
r >0, k > 1, and all but at most one complex number a, the
distinct zeros (zj(a)) of f — a in D(w, r) N D satisfy

> (1= Iz(a))" = co. ()

To prove this, suppose that the above series converges for two
distinct choices of a. Then log |f(z)| < C(1 — |z|)™*"! on

D(w, r/2)ND. (This relies on Nevanlinna value distribution theory,
combined with a suitable conformal mapping from D(w, r) N D to
D.)

v




Boundary Behavior = “Misbehavior” of Universal Series

Picard’s Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves
Melas’ (2000) result as follows. Let f € U. Then, for any w € T,
r >0, k > 1, and all but at most one complex number a, the
distinct zeros (zj(a)) of f — a in D(w, r) N D satisfy

> (1= Iz(a))" = co. ()

To prove this, suppose that the above series converges for two
distinct choices of a. Then log |f(z)| < C(1 — |z|)™*"! on

D(w, r/2)ND. (This relies on Nevanlinna value distribution theory,
combined with a suitable conformal mapping from D(w, r) N D to
D.) Theorem 1 can now be invoked to obtain a contradiction.

v
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Membership of U is incompatible with any local Bergman-type
integrability condition.

Corollary 3

Let f € U. Then, for every w € T and r > 0, and every 8 > —1,

B
/ 08" [£(2)] (1~ 12P) dA(2) = oo.
D(w,r)ND

In particular, f does not belong to any Bergman or
Bergman-Nevanlinna class on D.

Subharmonicity of IogJr |f] yields that

og" Tf(z z S )
0" F(0)) < 73 \cn /D<<1 o2 94 < (7 s

C(p) is a positive constant depending only on 8. It now follows
again from Theorem 1 that f € U.
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To apply Theorem 4 for the proof of Theorem 1, we show that the
partial Taylor sums Sy(z) of f are controlled as follows :

ISn(2)] < Cw r¥(|2]) in D(w,r)ND. Then, by universality of f,
we can choose a subsequence Sy, converging to 0 uniformly
outside of D, and apply Theorem 4 to it, concluding that f =0, a
contradiction.
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Theorem 5
Let 1) :[0,1) — (0,00) be an increasing function such that

1
/ log™ 1(t)dt < oo. (4)
0

If h(x) is a harmonic function in the unit ball B(0,1) in RY and
|h(x)| < (|x|) on B(w,r)NB for some w € SY~t and r > 0, then
f¢Uy.

v

The reason why only one “log” appears in (4), in contrast to (3),
is that we apply Domar's result to subharmonic functions of the
form |h| rather than log |f].
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