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Philosophy: An object is called universal if, via a countable
number of steps it can approximate any object in some “universe”.

M. Fekete (1886 - 1957), in a paper written by J. Pal in 1914
constructed U :=

∑∞
1 anx

n, an ∈ R, ROC = 0 such that ∀g ∈
CR[−1, 1], g(0) = 0,∃ a subsequence of partial sums snk of
U s.t. snk ⇒ g on [−1, 1].

George D. Birkhoff (1884 - 1944) showed (1929) existence of
an entire function f (z) whose translates f (z + n), n ∈ N can
approximate any entire function uniformly on compact subsets
of C.
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G. R. MacLane (1952) constructed an entire function with
universal derivatives.

A. I. Seleznev ( 1952) constructed a power series∑
anz

n, with ROC = 0 : ∀ compactK ⊂ C \ {0} :
C \ K is connected, ∀g ∈ A(K )∃snk :=∑nk

1 anz
n, a subsequence of partial sums, snk ⇒ g onK .

Luh (1970), C. K. Chui and M. N. Parnes (1971) constructed
power series with a ROC r > 0 that has the above
approximation property on {|z | > r}.
V. Nestorides (1990) proved that universality holds on
{|z | ≥ r}. He also showed that the set of universal power
series U is a dense Gδ subset of the space of all holomorphic
functions on the disk endowed with the topology of uniform
convergence on compact subsets.
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The Main Result

Theorem 1

Let ψ : [0, 1)→ (0,∞) be an increasing function such that∫ 1

0
log+ log+ ψ(t)dt <∞. (1)

If f (z) =
∑

anz
n and |f (z)| ≤ ψ(|z |) on D(w , r) ∩ D for some

w ∈ T and r > 0, then f /∈ U .



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

The Main Result

Theorem 1

Let ψ : [0, 1)→ (0,∞) be an increasing function such that∫ 1

0
log+ log+ ψ(t)dt <∞. (1)

If f (z) =
∑

anz
n and |f (z)| ≤ ψ(|z |) on D(w , r) ∩ D for some

w ∈ T and r > 0, then f /∈ U .



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

The Main Result

Theorem 1

Let ψ : [0, 1)→ (0,∞) be an increasing function such that∫ 1

0
log+ log+ ψ(t)dt <∞. (1)

If f (z) =
∑

anz
n and |f (z)| ≤ ψ(|z |) on D(w , r) ∩ D for some

w ∈ T and r > 0, then f /∈ U .



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

The special case of Theorem 1 where the inequality |f (z)| ≤ ψ(|z |)
is required to hold on all of D is due to Melas (2000), who also
showed that condition (1) is close to being sharp.
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Consequences: Picard’s Property of Universal Series

Corollary 2

Let f ∈ U . Then, for every w ∈ T and r > 0, the function f
assumes every complex value, with at most one exception,
infinitely often on D(w , r) ∩ D.



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

Consequences: Picard’s Property of Universal Series

Corollary 2

Let f ∈ U . Then, for every w ∈ T and r > 0, the function f
assumes every complex value, with at most one exception,
infinitely often on D(w , r) ∩ D.



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

Consequences: Picard’s Property of Universal Series

Corollary 2

Let f ∈ U . Then, for every w ∈ T and r > 0, the function f
assumes every complex value, with at most one exception,
infinitely often on D(w , r) ∩ D.



Introduction: Universality, Examples Boundary Behavior = “Misbehavior” of Universal Series A Proof of the Main Result Universal Polynomial Expansions of Harmonic Functions

Costakis and Melas had previously proved that f assumes every
complex value, with at most one exception, infinitely often on D;
their argument shows that there is at least one point w ∈ T with
the stated Picard-type property.

The exceptional value can
actually arise: it was shown by Costakis and Melas (2000) that
there exist zero-free members of U . Further, any function f in U
must assume all but one complex value in any angle at “most” (set
of the 2d category) boundary points .
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Picard’s Property: Quantitative Version

Remark 1

We can give a quantitative version of Corollary 2, which improves
Melas’ (2000) result as follows. Let f ∈ U . Then, for any w ∈ T,
r > 0, κ ≥ 1, and all but at most one complex number a, the
distinct zeros (zj(a)) of f − a in D(w , r) ∩ D satisfy∑

(1− |zj(a)|)κ =∞. (2)

To prove this, suppose that the above series converges for two
distinct choices of a. Then log |f (z)| ≤ C (1− |z |)−κ−1 on
D(w , r/2)∩D. (This relies on Nevanlinna value distribution theory,
combined with a suitable conformal mapping from D(w , r) ∩ D to
D.) Theorem 1 can now be invoked to obtain a contradiction.
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Consequences: Growth of Universal Series

Membership of U is incompatible with any local Bergman-type
integrability condition.

Corollary 3

Let f ∈ U . Then, for every w ∈ T and r > 0, and every β > −1,∫
D(w ,r)∩D

log+ |f (z)|
(

1− |z |2
)β

dA(z) =∞.

In particular, f does not belong to any Bergman or
Bergman-Nevanlinna class on D.

Subharmonicity of log+ |f | yields that

log+ |f (ζ)| ≤ 4

π(1− |ζ|)2

∫
D(ζ,(1−|ζ|)/2)

log+ |f (z)| dA(z) ≤ C (β)

(1− |ζ|)β+2
(ζ ∈ D(w , r/2)∩D).

C (β) is a positive constant depending only on β. It now follows
again from Theorem 1 that f 6∈ U .
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Beurling - Domar - Levinson - Sjoberg Theorem, 1939
-1952

Theorem 4

Let ψ : [0, 1)→ (0,∞) be an increasing function such that∫ 1

0
log+ log+ ψ(t)dt <∞. (3)

If F := {f (z) analytic inD, such that |f (z)| ≤ ψ(|z |)} on D, then
F is a normal family.
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To apply Theorem 4 for the proof of Theorem 1, we show that the
partial Taylor sums SN(z) of f are controlled as follows :
|SN(z)| ≤ Cw ,rψ(|z |) inD(w , r) ∩ D.

Then, by universality of f ,
we can choose a subsequence SNk

converging to 0 uniformly
outside of D, and apply Theorem 4 to it, concluding that f ≡ 0, a
contradiction.
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Universal Homogeneous Harmonic Series

Theorem 5

Let ψ : [0, 1)→ (0,∞) be an increasing function such that∫ 1

0
log+ ψ(t)dt <∞. (4)

If h(x) is a harmonic function in the unit ball B(0, 1) in Rd and
|h(x)| ≤ ψ(|x |) on B(w , r)∩B for some w ∈ Sd−1 and r > 0, then
f /∈ UH .

The reason why only one “log” appears in (4), in contrast to (3),
is that we apply Domar’s result to subharmonic functions of the
form |h| rather than log |f |.
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THANK YOU!

Happy Birthday, Alex!
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