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Abstract

I In this talk we explain how to compute the Lie algebra of
the differential Galois group of some convenient Y ′ = AY ,
using reduced forms.

I Then, we obtain an effective way to check the
Morales-Ramis-Simó criterion.
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Differential Galois theory

How to compute a reduced form?

Application: effective Morales-Ramis-Simó theorem
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I Let (k, ∂) be a field equipped with a derivation.
→ Take for example k := C(z) with classical derivation.

I Let C := {α ∈ k|∂α = 0} and assume that C is
algebraically closed.

I We consider

∂Y = AY , with A ∈ Mat(k). (1)
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Picard-Vessiot extension

∂Y = AY with A ∈ Mat(k). (1)

A Picard-Vessiot extension for (1) is a diff. field extension K |k
such that

I There exists U ∈ GL(K ) such that ∂U = AU.
I K |k is generated by the entries of U.
I {α ∈ K |∂α = 0} = {α ∈ k|∂α = 0} = C.

Proposition
There exists an unique Picard-Vessiot extension for (1).
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Differential Galois group

Definition
The differential Galois group G of (1) is the group of field
automorphisms of K , commuting with the derivation and
leaving all elements of k invariant.

ρU : G −→ GL(C)
ϕ 7−→ U−1ϕ(U),

Theorem
The image ρU(G) is a linear algebraic group.
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Gauge transformation

Let A ∈ Mat(k), P ∈ GL(k). We have

∂Y = AY ⇐⇒ ∂ [PY ] = P [A] PY ,

with
P [A] := PAP−1 + ∂(P)P−1.
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Lie algebra of a matrix

I A Wei-Norman decomposition of A is a finite sum of the
form

A =
∑

aiMi ,

where Mi has coefficients in C and the ai ∈ k form a basis
of the C-vector space spanned by the entries of A.

I Let Lie(A) be the Lie algebra generated by the Mi .
→ Independent of the choice of the ai .

I We define Liealg(A) ⊂ Mat (C) as the smallest Lie algebra
of a linear algebraic group which contains Lie(A).

8/18



Kolchin-Kovacic reduction theorem

Theorem (Kolchin-Kovacic reduction theorem)
Assume that k is a C1-field 1 and G is connected. Let g be the
Lie algebra of G. Let H ⊃ G be a connected linear algebraic
group with Lie algebra h such that Liealg(A) ⊂ h. Then, there
exists a gauge transformation P ∈ H(k) such that
Liealg(P[A]) ∈ g.

Definition
If Liealg(A) ∈ g we will say that (1) is in reduced form.

1Remind that C(x) is a C1-field and any algebraic extension of a C1-field is
a C1-field. 9/18



How to compute a reduced form?

Let us consider

∂Y =

(
A1 0
As A2

)
Y = AY ,A ∈ Mat(k). (2)

Assume that ∂Y =

(
A1 0
0 A2

)
Y = AdiagY is in reduced form

with an abelian Lie algebra. We want to put (2) in reduced form.
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Shape of the gauge transformation

Let Asub :=

(
0 0
As 0

)
.

Proposition (A-M,D,W)
There exists a gauge transformation

P ∈
{

Id + B,B ∈ Liealg (Asub)⊗ k
}
,

such that ∂Y = P[A]Y is in reduced form.

Corollary
Let P ∈

{
Id + B,B ∈ Liealg (Asub)⊗ k

}
, and assume that for all

Q ∈
{

Id + B,B ∈ Liealg (Asub)⊗ k
}

, Lie(Q[P[A]]) = Lie(P[A]).
Then, ∂Y = P[A]Y is in reduced form.
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The adjoin action

Proposition (A-M,D,W)
If P := Id +

∑
fiBi , with fi ∈ k, Bi ∈ Liealg (Asub). Then

P[A] = A +
∑

fi [Bi ,Adiag]−
∑

∂(fi)Bi .

Remark
The fact that ∂Y = AdiagY has an abelian Lie algebra implies
that we may easily compute a Jordan normal form of
Ψ : X 7→ [X ,Adiag]. Furthermore the eigenvalues of Ψ belongs
to k.
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Let λj be the eigenvalues of Ψ. We have the decomposition:

Liealg (Asub) =
⊕
i,j

E (i)
λj

⋂
Liealg (Asub) ,

where

E (i)
λj

:= ker
((

Ψ− λj Id
)i)

/ ker
((

Ψ− λj Id
)i−1

)
.

We are going to perform the reduction on the E (i)
λj

separately.
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Reduction with one eigenvalue λ

I Fix m ∈ N. Write Asub = Ā +
∑

i

biBi , where bi ∈ k, Bi form

a basis of E (m)
λ

⋂
Liealg (Asub).

I Compute a basis
(

(gj , c(•,j))
)

of elements in k× C such

that ∂y = λy +
∑

i

ci,jbi has a solution y = gj ∈ k.

I Construct a constant invertible matrix Q ∈ GL (C) whose
first columns are the c(•,j). Let (γi,j) = Q

−1
.

I Let fi :=
∑

j

γi,jgj . Perform P(m)
λ := Id +

∑
i

fiBi .
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Reduction in general

Theorem (A-M,D,W)
Let P :=

∏
i,j P(i)

λj
. Then, ∂Y = P[A]Y is in reduced form.
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General principle of the Morales-Ramis-Simó theorem

Hamiltonian complex system
↓ Linearization

Variational equations
↓

Differential Galois groups
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General principle of the Morales-Ramis-Simó theorem

Integrable Hamiltonian complex system
↓ Linearization

Variational equations
↓

Differential Galois groups with abelian Lie algebra

Theorem (Morales-Ramis-Simó)
Let us consider an Hamiltonian system and let Gp be the
differential Galois group of the variational equation of order p. If
the Hamiltonian system is integrable, then for all p, the Lie
algebra of Gp is abelian.
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Shape of the variational equations

Let ∂Y = ApY be the variational equation of order p. We have

Ap :=

(
symp (A1) 0

Sp Ap−1

)
∈ Mat(C(x)).
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Reduction of ∂Y = Ap+1Y

I Let p ∈ N. Assume that ∂Y = ApY is in reduced form and
Gp has an abelian Lie algebra.

I We use our previous work to put ∂Y = Ap+1Y in reduced
form.

I If Gp+1 has an abelian Lie algebra, we may put
∂Y = Ap+2Y in reduced form.
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