Computation of reduced forms of differential equations

Thomas Dreyfus ¹
Joint work with A. Aparicio-Monforte ²
and J.-A. Weil ³

¹University of Toulouse, France

²Dawson College, Montreal, Canada

³University of Limoges, France

Analytic, Algebraic and Geometric Aspects of Differential Equations 2015, Bedlewo.

Abstract

- In this talk we explain how to compute the Lie algebra of the differential Galois group of some convenient Y' = AY, using reduced forms.
- ► Then, we obtain an effective way to check the Morales-Ramis-Simó criterion.

Differential Galois theory

How to compute a reduced form?

Application: effective Morales-Ramis-Simó theorem

Let (\mathbf{k}, ∂) be a field equipped with a derivation.

ightarrow Take for example $\mathbf{k}:=\mathbb{C}(z)$ with classical derivation.

- ▶ Let $C := \{\alpha \in \mathbf{k} | \partial \alpha = 0\}$ and assume that C is algebraically closed.
- We consider

$$\partial Y = AY$$
, with $A \in \text{Mat}(\mathbf{k})$. (1)

Picard-Vessiot extension

$$\partial Y = AY \text{ with } A \in \text{Mat}(\mathbf{k}).$$
 (1)

A Picard-Vessiot extension for (1) is a diff. field extension $K|\mathbf{k}$ such that

- ▶ There exists $U \in GL(K)$ such that $\partial U = AU$.
- $ightharpoonup K | \mathbf{k}$ is generated by the entries of U.

Proposition

There exists an unique Picard-Vessiot extension for (1).

Differential Galois group

Definition

The differential Galois group G of (1) is the group of field automorphisms of K, commuting with the derivation and leaving all elements of \mathbf{k} invariant.

$$\rho_U: \quad \begin{matrix} G \\ \varphi \end{matrix} \longrightarrow \quad GL(C) \\ U^{-1}\varphi(U),$$

Theorem

The image $\rho_U(G)$ is a linear algebraic group.

Gauge transformation

Let
$$A \in Mat(\mathbf{k})$$
, $P \in GL(\mathbf{k})$. We have

$$\partial Y = AY \iff \partial [PY] = P[A]PY,$$

with

$$P[A] := PAP^{-1} + \partial(P)P^{-1}.$$

Lie algebra of a matrix

➤ A Wei-Norman decomposition of A is a finite sum of the form

$$A = \sum a_i M_i$$
,

where M_i has coefficients in C and the $a_i \in \mathbf{k}$ form a basis of the C-vector space spanned by the entries of A.

▶ Let Lie(A) be the Lie algebra generated by the M_i .

 \rightarrow Independent of the choice of the a_i .

▶ We define $Lie_{alg}(A) \subset Mat(C)$ as the smallest Lie algebra of a linear algebraic group which contains Lie(A).

Kolchin-Kovacic reduction theorem

Theorem (Kolchin-Kovacic reduction theorem)

Assume that \mathbf{k} is a \mathcal{C}^1 -field 1 and \mathbf{G} is connected. Let \mathfrak{g} be the Lie algebra of \mathbf{G} . Let $H \supset \mathbf{G}$ be a connected linear algebraic group with Lie algebra \mathfrak{h} such that $\mathrm{Lie}_{\mathrm{alg}}(A) \subset \mathfrak{h}$. Then, there exists a gauge transformation $P \in H(\mathbf{k})$ such that $\mathrm{Lie}_{\mathrm{alg}}(P[A]) \in \mathfrak{g}$.

Definition

If $Lie_{alg}(A) \in \mathfrak{g}$ we will say that (1) is in reduced form.

¹Remind that C(x) is a C^1 -field and any algebraic extension of a C^1 -field is a C^1 -field.

How to compute a reduced form?

Let us consider

$$\partial Y = \left(\begin{array}{c|c} A_1 & 0 \\ \hline A_s & A_2 \end{array}\right) Y = AY, A \in \text{Mat}(\mathbf{k}).$$
 (2)

Assume that $\partial Y = \begin{pmatrix} A_1 & 0 \\ \hline 0 & A_2 \end{pmatrix} Y = A_{\text{diag}} Y$ is in reduced form with an abelian Lie algebra. We want to put (2) in reduced form.

Shape of the gauge transformation

Let
$$A_{sub} := \left(egin{array}{c|c} 0 & 0 \\ \hline A_{s} & 0 \end{array} \right)$$
.

Proposition (A-M,D,W)

There exists a gauge transformation

$$P \in \left\{ \mathrm{Id} + B, B \in \mathrm{Lie}_{\mathrm{alg}}\left(A_{\mathrm{sub}}\right) \otimes \mathbf{k} \right\},$$

such that $\partial Y = P[A]Y$ is in reduced form.

Corollary

Let
$$P \in \left\{ \operatorname{Id} + B, B \in \operatorname{Lie}_{\operatorname{alg}}\left(A_{\operatorname{sub}}\right) \otimes \mathbf{k} \right\}$$
, and assume that for all $Q \in \left\{ \operatorname{Id} + B, B \in \operatorname{Lie}_{\operatorname{alg}}\left(A_{\operatorname{sub}}\right) \otimes \mathbf{k} \right\}$, $\operatorname{Lie}(Q[P[A]]) = \operatorname{Lie}(P[A])$. Then, $\partial Y = P[A]Y$ is in reduced form.

The adjoin action

Proposition (A-M,D,W)

If
$$P := \operatorname{Id} + \sum f_i B_i$$
, with $f_i \in \mathbf{k}$, $B_i \in \operatorname{Lie}_{\operatorname{alg}}(A_{\operatorname{sub}})$. Then

$$P[A] = A + \sum f_i[B_i, A_{\text{diag}}] - \sum \partial(f_i)B_i.$$

Remark

The fact that $\partial Y = A_{\mathrm{diag}} Y$ has an abelian Lie algebra implies that we may easily compute a Jordan normal form of $\Psi: X \mapsto [X, A_{\mathrm{diag}}]$. Furthermore the eigenvalues of Ψ belongs to \mathbf{k} .

Let λ_j be the eigenvalues of Ψ . We have the decomposition:

$$\operatorname{Lie}_{\operatorname{alg}}(A_{\operatorname{sub}}) = \bigoplus_{i,j} E_{\lambda_j}^{(i)} \bigcap \operatorname{Lie}_{\operatorname{alg}}(A_{\operatorname{sub}}),$$

where

$$\textit{\textbf{E}}_{\lambda_{j}}^{(i)} := \ker\left(\left(\Psi - \lambda_{j} \mathrm{Id}\right)^{i}\right) / \ker\left(\left(\Psi - \lambda_{j} \mathrm{Id}\right)^{i-1}\right).$$

We are going to perform the reduction on the $E_{\lambda_j}^{(l)}$ separately.

Reduction with one eigenvalue λ

- ▶ Fix $m \in \mathbb{N}$. Write $A_{\text{sub}} = \bar{A} + \sum_{i} b_{i}B_{i}$, where $b_{i} \in \mathbf{k}$, B_{i} form a basis of $E_{\lambda}^{(m)} \cap \text{Lie}_{\text{alg}}(A_{\text{sub}})$.
- ▶ Compute a basis $\left((g_j,\underline{c}_{(\bullet,j)})\right)$ of elements in $\mathbf{k} \times C$ such that $\partial y = \lambda y + \sum_i c_{i,j}b_i$ has a solution $y = g_j \in \mathbf{k}$.
- ► Construct a constant invertible matrix $\overline{Q} \in GL(C)$ whose first columns are the $\underline{c}_{(\bullet,j)}$. Let $(\gamma_{i,j}) = \overline{Q}^{-1}$.
- ▶ Let $f_i := \sum_j \gamma_{i,j} g_j$. Perform $P_{\lambda}^{(m)} := \operatorname{Id} + \sum_i f_i B_i$.

Reduction in general

Theorem (A-M,D,W)

Let $P := \prod_{i,j} P_{\lambda_i}^{(i)}$. Then, $\partial Y = P[A]Y$ is in reduced form.

General principle of the Morales-Ramis-Simó theorem

Hamiltonian complex system

↓ Linearization

Variational equations

↓

Differential Galois groups

General principle of the Morales-Ramis-Simó theorem

Integrable Hamiltonian complex system

↓ Linearization

Variational equations

↓

Differential Galois groups with abelian Lie algebra

Theorem (Morales-Ramis-Simó)

Let us consider an Hamiltonian system and let G_p be the differential Galois group of the variational equation of order p. If the Hamiltonian system is integrable, then for all p, the Lie algebra of G_p is abelian.

Shape of the variational equations

Let $\partial Y = A_p Y$ be the variational equation of order p. We have

$$A_p := \left(\begin{array}{c|c} \operatorname{sym}^p(A_1) & 0 \\ \hline S_p & A_{p-1} \end{array} \right) \in \operatorname{Mat}(\mathbb{C}(x)).$$

Reduction of $\partial Y = A_{p+1} Y$

- ▶ Let $p \in \mathbb{N}$. Assume that $\partial Y = A_p Y$ is in reduced form and G_p has an abelian Lie algebra.
- ▶ We use our previous work to put $\partial Y = A_{p+1} Y$ in reduced form.
- ▶ If G_{p+1} has an abelian Lie algebra, we may put $\partial Y = A_{p+2}Y$ in reduced form.