Special values of hypergeometric series

Akihito EBISU

Hokkaido University

conference

"Analytic, Algebraic and Geometric Aspects of Differential Equations" at Bedlewo, Poland 9/15/2015 15:30-15:55 Our Aim:

"to systematically find hypergeometric series(HGS) which can be expressed in terms of well-known functions".

But, before aiming for our goal,

we should answer the question "Why do we find such series?". For this, we start from observation of the binomial theorem.

Intro 1: the binomial theorem

Denote the Pochhammer symbol by

$$(a)_i := \frac{\Gamma(a+i)}{\Gamma(a)} = \begin{cases} a(a+1)\cdots(a+i-1) & \text{if } i = 1, 2, 3, \cdots \\ 1 & \text{if } i = 0. \end{cases}$$

Then, the binomial theorem is following:

$${}_{1}F_{0}(a;-;x) := \sum_{i=0}^{\infty} \frac{(a)_{i}}{i!} x^{i} = \sum_{i=0}^{\infty} {\binom{-a}{i}} (-x)^{i}$$
$$= (1-x)^{-a} \quad (|x| < 1).$$

Remark 1:

• Appropriate series (in this instance, $_1F_0$) can be expressed in terms of well-known functions. That is, we can get the value!

Intro 2: application of the binomial theorem 1

The binomial theorem has many application. By substituting a=1/2, x=1/50 into the binomial thereom,

$$_{1}F_{0}\left(\frac{1}{2};-;\frac{1}{50}\right) = \left(\frac{49}{50}\right)^{-\frac{1}{2}} = \frac{5\sqrt{2}}{7}.$$

Namely,

$$\sqrt{2} = \frac{7}{5} \left\{ 1 + \frac{1}{100} + \frac{1 \cdot 3}{2!} \left(\frac{1}{100}\right)^2 + \frac{1 \cdot 3 \cdot 5}{3!} \left(\frac{1}{100}\right)^3 + \dots \right\}$$

From this, we can perform calculation of $\sqrt{2}$. Remark 2:

• We can do numerical calculation of algebraic numbers.

Intro 3: application of the binomial theorem 2

Moreover,

if $n=0,1,2,\cdots$, then

$$_{1}F_{0}(-n;-;-1) = \sum_{i=0}^{n} \frac{(-n,i)}{i!} (-1)^{i} = \sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

Remark 3:

• we can get combinatorial identities from the binomial theorem.

Because ${}_{1}F_{0}$ can be expressed in terms of power functions, we can

- do numerical calculation of algebraic numbers.
- get combinatorial identities.

Analogically,

if HGS can be expressed in terms of well-known functions, then it is expected that those identities have many applications.

In this talk, we present a new systematic method for finding HGS which can be expressed in terms of well-known functions. Its method is called "the method of contiguity relations".

```
For finding our new method,
```

we continue to observe the binomial theorem.

Although general series can not be expressed in other functions, ${}_1F_0(a;-;x)$ was able to expressed using a power function. From this, ${}_1F_0(a;-;x)$ must have "good property".

We shall make this "good property" clear for finding our new method.

7 / 21

A proof of the binomial theorem 2

Remarking $x \frac{d}{dx} x^i = i x^i$, we get

$$\begin{aligned} x\frac{d}{dx} + a \bigg) \, {}_{1}F_{0}(a; -; x) &= \sum_{i=0}^{\infty} \frac{(a, i)}{i!} \left(x\frac{d}{dx} + a \right) x^{i} \\ &= \sum_{i=0}^{\infty} \frac{(a, i)}{i!} (a + i) x^{i} = a \sum_{i=0}^{\infty} \frac{(a + 1, i)}{i!} x^{i} \\ &= a_{1}F_{0}(a + 1; -; x). \\ \frac{d}{dx} \, {}_{1}F_{0}(a; -; x) &= \sum_{i=1}^{\infty} \frac{(a, i)}{i!} i x^{i-1} \\ &= \sum_{i=0}^{\infty} \frac{(a, i + 1)}{i!} x^{i} = a \sum_{i=0}^{\infty} \frac{(a + 1, i)}{i!} x^{i} \\ &= a_{1}F_{0}(a + 1; -; x). \end{aligned}$$

A proof of the binomial theorem 3

The above two formulas lead to

$$_{1}F_{0}(a;-;x) = (1-x)_{1}F_{0}(a+1;-;x).$$

Namely,

$$\frac{{}_{1}F_{0}(a+(n-1);-;x)}{{}_{1}F_{0}(a+n;-;x)} = (1-x) \quad (n \in \mathbb{N}).$$
(1)

From this, we find the following "good property":

• two $_1F_0$ with the same parameter a up to additive integers are linearly related.

(This linear relation can be regarded as the 1st order difference equation with respect to n).

The 1st order difference equation is expected to solve. \rightarrow Let us try!

We substitute $n = 1, 2, \dots, n$ into (1), multiply all of these:

$$\frac{{}_{1}F_{0}(a;-;x)}{{}_{1}F_{0}(a+n;-;x)} = (1-x)^{n}.$$

A proof of the binomial theorem 4

Substituting a = -n into above, we get

$$_{1}F_{0}(-n;-;x) = (1-x)^{n}.$$
 (2)

Although (2) holds for $n = 0, 1, 2, \cdots$, we find (2) holds for $n \in \mathbb{C}$ thanks to Carlson's theorem.

Here, Carlson's theorem is follows:

$$\begin{cases} f(n), g(n) \text{ are holomorphic for } \Re(n) \ge 0, \\ f(n), g(n) \text{ are } O(e^{k|n|}) \text{ for } \Re(n) \ge 0, \text{ where, } k < \pi, \\ f(n) = g(n) \ (n = 0, 1, 2, \cdots) \\ \Rightarrow f(n) = g(n) \ (\Re(n) \ge 0). \end{cases}$$

Thus, we were able to get the binomial theorem.

What was "good property"?

We summarize a proof of the binomial theorem. $_1F_0(a; -; x)$ had "good property":

• two $_1F_0$ with the same parameter a up to additive integers are linearly related:

$$\frac{{}_{1}F_{0}(a+(n-1);-;x)}{{}_{1}F_{0}(a+n;-;x)} = (1-x) \quad (n \in \mathbb{N}).$$
(1)

This can be regarded as the 1st order difference equation wrt n. Thanks to this good property, we were able to get the value of ${}_1F_0(a; -; x)$.

 \longrightarrow In much the same way as the above method, we can find HGS whose values can be obtained. \longrightarrow Let us try. The Gauss hypergeometric series(GHGS) is defined by

$$_{2}F_{1}(a,b;c;x) := \sum_{i=0}^{\infty} \frac{(a)_{i}(b)_{i}}{(c)_{i}i!} x^{i} \quad (|x| < 1).$$

We call

(a, b, c): parameters, x: independent variable. GHGS has the following property(contiguity relations):

For a given $(k,l,m)\in\mathbb{Z}^3,$ there exists a unique pair $(Q,R)\in(\mathbb{Q}(a,b,c,x))^2$ such that

$$_{2}F_{1}(a+k,b+l;c+m;x)$$

= $Q_{2}F_{1}(a+1,b+1;c+1;x) + R_{2}F_{1}(a,b;c;x).$ (3)

Important thing : for a given $(k,l,m)\in \mathbb{Z}^3$ coefficients Q,R can be exactly computed.

Now, we construct the method of contiguity relations.

The method of contiguity relations 1

$$\begin{split} &(k,l,m): \text{fix. We put} \\ &(a,b,c) \to (a+(n-1)k,b+(n-1)l,c+(n-1)m) \text{ in (3)}: \\ &_2F_1(a+nk,b+nl;c+nm;x) \\ &= Q^{(n)}{}_2F_1(a+(n-1)k+1,b+(n-1)l+1;c+(n-1)m+1;x) \\ &+ R^{(n)}{}_2F_1(a+(n-1)k,b+(n-1)l,c+(n-1)m;x), \end{split}$$

where

$$Q^{(n)} := Q|_{(a,b,c)\to(a+(n-1)k,b+(n-1)l,c+(n-1)m)},$$

$$R^{(n)} := R|_{(a,b,c)\to(a+(n-1)k,b+(n-1)l,c+(n-1)m)}.$$

Let (a, b, c, x) be a solution of the system

$$Q^{(n)} = 0$$
 for $n = 1, 2, 3, \dots$ (4)

Then, we get the 1st order difference equation wrt n:

$$\frac{{}_{2}F_{1}(a+(n-1)k,b+(n-1)l,c+(n-1)m;x)}{{}_{2}F_{1}(a+nk,b+nl;c+nm;x)}=\frac{1}{R^{(n)}}.$$

This is indeed "good property" stated before. The above leads to

$$\frac{{}_{2}F_{1}(a,b;c;x)}{{}_{2}F_{1}(a+nk,b+nl;c+nm;x)} = \frac{1}{\prod_{i=1}^{n}R^{(i)}}.$$

From this, we can get values of $_2F_1(a,b;c;x)$.

These are the method of contiguity relations.

Summarization of the mehod of contiguity relations

Step 1: Give $(k, l, m) \in \mathbb{Z}^3$. Step 2: Compute coefficients Q, R satisfying

$${}_{2}F_{1}(a+k,b+l;c+m;x) = Q_{2}F_{1}(a+1,b+1;c+1;x) + R_{2}F_{1}(a,b;c;x).$$

Step 3: Find (a, b, c, x) satisfying

$$Q^{(n)} = 0$$
 for $n = 1, 2, 3, ...$ (4)

For this, since (the numerator of $Q^{(n)}$) $\in \mathbb{Z}[a, b, c, x][n]$, we only have to find (a, b, c, x) such that eliminate all of the coefficients of this polynomial wrt n. Step 4: We get the 1st order difference equation wrt $n \in \mathbb{Z}$:

$$\frac{{}_{2}F_{1}(a+(n-1)k,b+(n-1)l,c+(n-1)m;x)}{{}_{2}F_{1}(a+nk,b+nl;c+nm;x)} = \frac{1}{R^{(n)}}$$

By solving this, we can get values of $_2F_1(a, b; c; x)$.

Ex (1): the case of (k, l, m) = (0, 1, 1)

 $_{2}F_{1}(a, b+1; c+1; x) = Q_{2}F_{1}(a+1, b+1; c+1; x) + R_{2}F_{1}(a, b; c; x),$ where

$$Q = \frac{a(1-x)}{a-c}, R = \frac{c}{c-a}.$$

Therefore, for satisfying (4),

$$Q^{(n)} = \frac{a(1-x)}{a-c-n+1}$$

must be 0 regardless $n. \rightarrow (a, b, c, x) = (a, b, c, 1)$. In this case, we have the 1st order difference equation

$$\frac{{}_{2}F_{1}(a,b+n-1;c+n-1;1)}{{}_{2}F_{1}(a,b+n;c+n;1)} = \frac{1}{R^{(n)}} = \frac{c-a+n-1}{c+n-1}.$$

We substitute $n = 1, 2, \dots, n$ into this, multiply all of these:

Ex (2): the case of (k, l, m) = (0, 1, 1)

$$\frac{{}_{2}F_{1}(a,b;c;1)}{{}_{2}F_{1}(a,b+n;c+n;1)} = \frac{(c-a)_{n}}{(c)_{n}}$$

Substituting $b=-n(n\in\mathbb{Z}_{\geq0})$ into the above, we obtain

(Chu-Vandermonde)
$$_2F_1(a, -n; c; 1) = \frac{(c-a)_n}{(c)_n}$$

The right hand side of the above is expressed as

$$\frac{(c-a)_n}{(c)_n} = \frac{\Gamma(c)\Gamma(c-a+n)}{\Gamma(c-a)\Gamma(c+n)}$$

By using Carlson's theorem, and replacing n with -b, we yield

(Gauss)
$$_2F_1(a,b;c;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}$$

 $(\Re(c-a-b) > 0).$

In the same manner, we can get many hypergeometric identities.

For exmaple... In the case of (k, l, m) = (-1, 0, 1), we obtain

(Kummer)
$$_{2}F_{1}(a,b;b+1-a;-1) = \frac{\Gamma(\frac{b}{2}+1)\Gamma(b+1-a)}{\Gamma(b+1)\Gamma(\frac{b}{2}+1-a)}$$

In the cse of (k, l, m) = (3, 2, 2), we get

$${}_{2}F_{1}\left(3a,2a;2a+\frac{1}{2};\frac{1}{4}\right) = \frac{2^{6a+\frac{1}{2}}\Gamma(a+\frac{1}{4})\Gamma(a+\frac{3}{4})}{3^{3a+\frac{1}{2}}\Gamma(a+\frac{1}{3})\Gamma(a+\frac{2}{3})}.$$

We found that

almost all known hypergeometric identities for $_2F_1$ can be obtained by applying the method of contiguity relations. Of course, we were able to find many new identities.

Those identities has been listed in Ebisu, A, *Special values of the hypergeometric series*, Mem. Amer. Math. Soc., (to appear). also available arXiv:1308.5588. We can also make use of our method to have hypergeometric identities for

- \bullet the generalized HGS $_{p+1}F_p$
- Appell HGS F_1, F_2, F_3, F_4
- Lauricella HGS F_A, F_B, F_C, F_D

because these series have contiguity relations.

In particular,

identities for Appell-Lauricella HGS have not been studied. Therefore, our method will become a potent tool for investigating identities for many kinds of HGS, especially Appell-Lauricella HGS.