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Classical polylogarithm

The Dilogarithm function

Li2(t) :=
∑
n>0

tn

n2
, |t| < 1, (1)

has been defined and extensively studied by Euler (mainly, but not only,
in the article cited below).

More generally, the polylogarithmic series of order s is defined by

Lis(t) :=
∑
n>0

tn

ns
, |t| < 1. (2)

As re s > 1, function Lis is well defined on a closure D of the unit disc D
and we have Lis(1) = ζ(s), where ζ is the famous Riemann zeta function.

Euler, L., ”De summatione serierum in hac forma contentarum:
a/1+ a2/4+ a3/9+ a4/16+ a5/25+ a6/36+ etc.” Memoires de l’academie des
sciences de St.-Petersbourg 3, 1811, pp. 26 - 42.
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Classical polylogarithm. Differential equation

Let ∂t := ∂/∂t and θ = θt = t∂t - the Euler operator.

Operator θt
satisfies the eigen-equation (θt − λ)tλ = 0. A power series and a Mellin
transformation are spectral decompositions w. r. t. eigen-equation of θ.

It follows, that the polylogarithmic function satisfies differential equation

θsLis(t) =
t

1− t
, |t| < 1 (3)

or, equivalently,

(1− t)∂tθ
s−1
t Lis(t) = 1, |t| < 1. (4)

This differential equation, (3) or (4), can be engaged to analiticaly
continue Lis on C\{0, 1}, i.e. CP1\{0, 1,∞}.
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Classical polylogarithm. Integral

Define the operator T as follows. Let Tf (t) :=
∫ t

0 f (τ)/τdτ , on tC[t]. In
more general context, we understand T as a linear extension of the above
oerator.

Sometimes it will be convenient to look at T in the context of
formal series C[[tp]] in some power of the free variable.

We have θTf = f , so we can regard T as a (right) inverse of θ. This
leads to the integral representation

Lis(t) = T s t

1− t
. (5)

The domain of integration is the simplex in Rs . This is the simplest
Drinfeld-Kontsevich integral. It will be introduced explicitly in the latter
part of this talk.
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Classical polylogarithm - modern point of view

Equation (3) or (4) can be used to define Fuchsian connection ∇E ,
acting on the sections of a vector bundle E → CP1\{0, 1,∞} over a
3-pointed algebraic line.

Integral representation (5) is then a very usefull tool in the study of the
monodromy of ∇E and hence Lis (and associated, singular, solutions
of(3) or (4)). It is also the source of many identities between multiple
zeta-values. Currently, there are many results of this type (Bloch, Oi,
Ohno, Ueno, Zagier, Zhao, etc.), with various applications.

Oi, Ueno, ”Iterated integrals and relations of multiple polylogarithms.” RIMS
Kôkyűroku. 1689 (2010), 101 - 116.

Oi, ”Representation of the Gauss hypergeometric function by multiple polylogarithms
and relations of multiple zeta values.” Publ. RIMS, Kyoto Univ. 45 (2009), 981 - 1009.

Ohno, Zagier, ”Multiple zeta values of fixed weight, depth, and height.” Indagationes
mathematicae 12 (2001) 483-487
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Euler-Gauss hypergeometric function

The classical Euler-Gauss hypergeometric function is defined by the series

2F1

(
u, v
w

∣∣∣∣ t) =
∑
n­0

(u)n(v)n
(w)n

tn

n!
(6)

= 1 +
u · v
w

t +
u(u + 1) · v(v + 1)

w(w + 1)

t2

2!
+ O(t3),

where |t| < 1 and (x)n := x(x + 1)...(x + n − 1) is the Pochhammer
function.

It has been introduced by Euler and studied by the leading matematicians
of the XIX and the beginning of XX century, including Gauss, Riemann
(monodromy, P-function, Riemann surfaces), Kummer (bases of
solutions, special values), Shwarz (Shwarz list) and others.
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General classical hypergeometric function

One can easily generalize the classical Euler-Gauss hypergeometric
function, by the series (0 < p, q ∈ Z are parameters, such that p ¬ q + 1)

pFq

(
u1, u2, ..., up
w1,w2, ...,wq

∣∣∣∣ t) =
∑
n­0

(u1)n(u2)n... (up)n
(w1)n(w2)n... (wq)n

tn

n!
, (7)

where |t| < 1. This is the classical general hypergeometric function.

If p < q + 1, then function (7) is called confluent and if p = q + 1, then
it is called balanced.



General classical hypergeometric function

One can easily generalize the classical Euler-Gauss hypergeometric
function, by the series (0 < p, q ∈ Z are parameters, such that p ¬ q + 1)

pFq

(
u1, u2, ..., up
w1,w2, ...,wq

∣∣∣∣ t) =
∑
n­0

(u1)n(u2)n... (up)n
(w1)n(w2)n... (wq)n

tn

n!
, (7)

where |t| < 1. This is the classical general hypergeometric function.

If p < q + 1, then function (7) is called confluent and if p = q + 1, then
it is called balanced.



General classical hypergeometric function and Lis

For integer s > 0, we have

t s+1Fs

(
1, 1, ..., 1
2, 2, ..., 2

∣∣∣∣ t) = Lis(t) (8)

and

t sFs−1

(
2, 2, ..., 2
1, 1, ..., 1

∣∣∣∣ t) = Li−s(t). (9)

The above relations are quite trivial and they do not allow to produce
many interesting identities. However, there is a another bridge between
hypergeometric functions and general zeta- and L-functions. It is the
class of multivariable polylogarithms. Theese fnctions are responsible for
numerous algebraic relations between objects more general than values of
ζ(n) and L(χ, n), like vorious mltiple zeta-values. (Conjecturally, there
are no nontrivial algebraic relations between ζ(2n) and ζ(3), ζ(5), ... and
similar conjectures have been made about values of L-functions.)
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Hypergeometric differential equation

We introduce the following operators: the multiplication operator
f (t) 7→ tf (t), wich we simply denote by t, differential operator
∂t := d/dt and - allready previously mentioned - the Euler operator
θt = t∂t.

We have

(θt + u)(θt + v) 2F1

(
u, v
w

∣∣∣∣ t) = (θt + w)∂t 2F1

(
u + 1, v

w

∣∣∣∣ t) . (10)

Or in equivalent form:

{
t(t − 1)∂2t + ((u + v + 1)t − w)∂t + uv

}
2F1

(
u, v
w

∣∣∣∣ t) = 0. (11)
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General classical hypergeometric equation

The analog of the Euler-Gauss hypergeometric equation for general
classical hypergeometric function can be written as

t P(θt) pFq = Q(θt) pFq, (12)

where

P(x) = (x + u1)(x + u2)...(x + up)

Q(x) = (x + w1 − 1)(x + w2 − 1)...(x + wq − 1).

From the above differential equation, one can restore the classical
hypergeometric series, as a particular solution. Note that for particular
set of parameters, a = p − 1, ui = 1 and wj = 2, we get the operator
associated to polylogarithm.
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Integral representations

Hypergeometric functions can be represented by several types of
integrals.

One of them is the Euler representation:

Γ (v)Γ (w − v)

Γ (w)
2F1

(
u, v
w

∣∣∣∣ t) =

∫ 1
0

xv−1(1− x)w−v−1(1− tx)−u dx .
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Integral representations

The other useful formula is the Mellin-Barnes integral:

Γ (u)Γ (v)

Γ (w)
2F1

(
u, v
w

∣∣∣∣ t) (13)

=
1

2πi

∫
C

Γ (u + s)Γ (v + s)

Γ (w + s)
Γ (−s)(−t)s ds,

where the contour C is a line from −i∞+ s0 to −i∞+ s0, for some
s0 ∈ R, separating poles of Γ (−s) from the poles of the other Γ -factors.



Integral representations: particular example

The Euler integral formula can be used, by putting −u =: λ := v and
w = 1 = t, to deliver the following representation:

Γ (λ)Γ (1− λ)

Γ (1)
2F1

(
−λ, λ

1

∣∣∣∣ 1
)

=

∫ 1
0

xλ−1dx ,

equivalent to

2F1

(
−λ, λ

1

∣∣∣∣ 1
)

=
1

Γ (1 + λ)Γ (1− λ)
=

sinπλ
πλ

. (14)
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Motivation

In what follows, we will define certain multi-variable generalization of the
polylogarithm and estabilish its relation to multiple-zeta values, by
analogy of relation of classical polylogarithm to the Riemann-zeta
function.

Later on we will relate theese functions to general multi-variable
hypergeometric functions.
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Shintani zeta-function

Shintani zeta function (or Shintani L-function) is a generalization of the
Riemann zeta function. They were first studied by Takuro Shintani
(1976). They include Hurwitz zeta functions, Barnes zeta functions, and
Witten zeta functions as special cases.

The Shintani zeta function of s = (s1, ..., sr ) ∈ Ω ⊂ Cr is given by

ζS(s) :=
∑

n1,...,nm­0

1
l s11 · · · l

sr
r
, (15)

where each lj is an affine function of n = (n1, ..., nm) ∈ Nm. The special
case when r = 1 is the Barnes zeta function.
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Multiple ζ function

Definition

The multiple zeta function is defined by the series∑
np>...>n2>n1>0

n−s11 n−s22 ...n
−sp
p := ζ(s1, s2, ..., sp), (16)

whenever (16) converges. Number p is called depth, and
|s| := s1 + s2 + ...+ sp - weight of ζ(s1, s2, ..., sp). Multiple zeta values
(in short MZV), are values of multiple zeta function at integral points.

To simplify nontation, one writes ({s1, ..., sq}n), meaning
(s1, ..., sq, s1, ..., sq, ..., s1, ..., sq), where (s1, ..., sq) is repeated n times.
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Multiple ζ function and their generalisations

If p = 1, then multiple zeta function is simply the Riemann zeta function∑
n>0

n−s = ζ(s). (17)

Multiple zeta values apeared for the first time in Euler’s Meditationes
circa singulare serierum genus (1775), where he found the following
formula relating Multiple Zeta Values to ’single’ ones:∑

n>0

Hn

(n + 1)2
= ζ(2, 1) = ζ(3) =

∑
n>0

1
n3
, (18)

where Hm is the m-th harmonic number.
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Relations between multiple zeta values

MZV satisfy a lot of relations. For example

ζ(r)ζ(s) =
∑

m,n>0

m−rn−s

=

( ∑
m>n>0

+
∑

n>m>0

+
∑

m=n>0

)
m−rn−s

= ζ(r , s) + ζ(s, r) + ζ(r + s). (19)

Other nontrivial relations can be obtained from the Drinfeld-Kontsevich
integral.
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Drinfeld-Kontsevich integral

The Drinfeld-Kontsevich integral for (multiple) polylogarithm function is
obtained by applicaion of iterated formal inverse of differential operator
(1− t)/t θs , (multiplicatively) anihilating Lis .

More preciselly, we have

Lis1,...,sr (t) :=

∫
γ

ω, where γ = {0 < ts1+...sr < ... < t1 < t < 1}

(20)
is the standard simplex in Rs1+s2+...sr and where ω is the differential form
obtained by iteration of dt/t and dt/(1− t):

ω :=
dt1
t1
∧ ... ∧ dts1−1

ts1−1
∧ dts1

1− ts1
∧ ... ∧ dts1+...+sr−1

ts1...+sr−1
∧ dts1+...+sr

1− ts1+...+sr

. (21)
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Drinfeld-Kontsevich integral

To shorten the notation, we write

dt1
t1
∧ ... ∧ dtsi

tsi
:=

(
dt

t

)◦i
.

So, now,

ω =

(
dt

t

)◦s1
∧ dts1−1

1− ts1
...

(
dt

t

)◦sr−1
∧ dts1+...+sr

1− ts1+...+sr

.

Since
∫
γ
ω is obtained by application of the iterated inverse of differential

operators associated to polylogarithm function, it follows immidiatelly
that

1− t

t
θsr

1− t

t
θsr−1 ...

1− t

t
θs1Lis1,...,sr (t) = 1. (22)

Denote the above by Tsr ...Ts1 . Now, meaning that Tsr ...Ts1

∫
γ
ω = 1, we

write
∫
γ
ω = (Tsr ...Ts1)

−1 and that the operator is applied to the
constant function, equal everywhere to 1.



Drinfeld-Kontsevich integral

To shorten the notation, we write

dt1
t1
∧ ... ∧ dtsi

tsi
:=

(
dt

t

)◦i
.

So, now,

ω =

(
dt

t

)◦s1
∧ dts1−1

1− ts1
...

(
dt

t

)◦sr−1
∧ dts1+...+sr

1− ts1+...+sr

.

Since
∫
γ
ω is obtained by application of the iterated inverse of differential

operators associated to polylogarithm function, it follows immidiatelly
that

1− t

t
θsr

1− t

t
θsr−1 ...

1− t

t
θs1Lis1,...,sr (t) = 1. (22)

Denote the above by Tsr ...Ts1 . Now, meaning that Tsr ...Ts1

∫
γ
ω = 1, we

write
∫
γ
ω = (Tsr ...Ts1)

−1 and that the operator is applied to the
constant function, equal everywhere to 1.



Drinfeld-Kontsevich integral

To shorten the notation, we write

dt1
t1
∧ ... ∧ dtsi

tsi
:=

(
dt

t

)◦i
.

So, now,

ω =

(
dt

t

)◦s1
∧ dts1−1

1− ts1
...

(
dt

t

)◦sr−1
∧ dts1+...+sr

1− ts1+...+sr

.

Since
∫
γ
ω is obtained by application of the iterated inverse of differential

operators associated to polylogarithm function, it follows immidiatelly
that

1− t

t
θsr

1− t

t
θsr−1 ...

1− t

t
θs1Lis1,...,sr (t) = 1. (22)

Denote the above by Tsr ...Ts1 . Now, meaning that Tsr ...Ts1

∫
γ
ω = 1, we

write
∫
γ
ω = (Tsr ...Ts1)

−1 and that the operator is applied to the
constant function, equal everywhere to 1.



Drinfeld-Kontsevich integral

To shorten the notation, we write

dt1
t1
∧ ... ∧ dtsi

tsi
:=

(
dt

t

)◦i
.

So, now,

ω =

(
dt

t

)◦s1
∧ dts1−1

1− ts1
...

(
dt

t

)◦sr−1
∧ dts1+...+sr

1− ts1+...+sr

.

Since
∫
γ
ω is obtained by application of the iterated inverse of differential

operators associated to polylogarithm function, it follows immidiatelly
that

1− t

t
θsr

1− t

t
θsr−1 ...

1− t

t
θs1Lis1,...,sr (t) = 1. (22)

Denote the above by Tsr ...Ts1 . Now, meaning that Tsr ...Ts1

∫
γ
ω = 1, we

write
∫
γ
ω = (Tsr ...Ts1)

−1 and that the operator is applied to the
constant function, equal everywhere to 1.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+.

We
define

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (23)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function
(ζ(s, x) := Φ(s, x , 1)), the Lerch transcendent

Φ(s, x , t) :=
∑
n­0

tn

(n + x)s
, |t| < 1, re x > 0, (24)

multiple polylogarithm (we will describe it later) and various
multi-variable polylgarithms, including the polylogarithm of Goncharov.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+. We
define

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (23)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function
(ζ(s, x) := Φ(s, x , 1)), the Lerch transcendent

Φ(s, x , t) :=
∑
n­0

tn

(n + x)s
, |t| < 1, re x > 0, (24)

multiple polylogarithm (we will describe it later) and various
multi-variable polylgarithms, including the polylogarithm of Goncharov.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+. We
define

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (23)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function
(ζ(s, x) := Φ(s, x , 1)), the Lerch transcendent

Φ(s, x , t) :=
∑
n­0

tn

(n + x)s
, |t| < 1, re x > 0, (24)

multiple polylogarithm (we will describe it later) and various
multi-variable polylgarithms, including the polylogarithm of Goncharov.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+. We
define

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (23)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function
(ζ(s, x) := Φ(s, x , 1)), the Lerch transcendent

Φ(s, x , t) :=
∑
n­0

tn

(n + x)s
, |t| < 1, re x > 0, (24)

multiple polylogarithm (we will describe it later) and various
multi-variable polylgarithms, including the polylogarithm of Goncharov.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+. We
define

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (23)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function
(ζ(s, x) := Φ(s, x , 1)), the Lerch transcendent

Φ(s, x , t) :=
∑
n­0

tn

(n + x)s
, |t| < 1, re x > 0, (24)

multiple polylogarithm (we will describe it later) and various
multi-variable polylgarithms, including the polylogarithm of Goncharov.



Linear multi-variable polylogarithm

Let A denote matrix, corresponding to an affine map A : Rk → Rn, of
maximal rank. We denote the image A(Zk) by L and A(Nk) by L+.

LiL,s(t) :=
∑
l∈L+

t l l−s , |ti | < 1 for all i . (25)

It is clear, that for t = (1, 1, ..., 1), funcion LiL,s reduces to the Shintani
zeta function.

LiL,s generalizes all known polylogarithms, including (+/- in ascending
generality) classical polylogarithm, the Hurwitz zeta function, the Lerch
transcendent, multiple polylogarithm (we will describe it later) and
various multi-variable polylgarithms, including the polylogarithm of
Goncharov

Gon(s, t) :=
∑

0<n1<...<nr

tn11 ...t
nr
1

ns11 ...n
sr
r
, |ti | ¬ 1, s ∈ Nr > 1, s1 > 1.

(26)



Linear multi-variable polylogarithm of an integral latice

In all arithmetic aplications, matrix A is defined over Z.

Then L is
arithmetic and we call the associated polylogarithm LiL,s integral or
arithmetic.

In what follows, we associate with arithmetic LiL,s certain generalized
hypergeometric functions, the GKZ-functions. The non-arithmetic case
can be studied in a similar way, with use of generalized GKZ-functions,
the, so called, GG-functions.

Gelfand I., Graev M., GG Functions and their Relations to General Hypergeometric
Functions. Letters in Math. Phys. 50 no. 1 (1999), p. 1 - 28.
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Example: Mordell-Tornheim polylogarithm

Consider the following special case of Shintani zeta-function, the, so calld
Mordell-Tornheim polylogarithmic series:

LiMT,s1,s2,s3(t1, t2, t3) :=
∑

m,n>0

tm1 t
n
2 t

m+n
3

ms1ns2(m + n)s3
. (27)

For all ti = 1, we get the Mordell-Tornheim zeta-series:

ζMT(s1, s2, s3) :=
∑

m,n>0

1
ms1ns2(m + n)s3

. (28)

In particular, puting x = t1t2 and y = t2t3, we get

LiMT,1,1,1(t1, t2, t3) =
∑

m,n>0

xmyn

mn(m + n)
. (29)

and ζMT(1, 1, 1) = 2ζ(3).
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Prologue. The simplest two-variable hyp. series

If we multiply two hypergeometric series, 2F1(u, v ,w |x) and
2F1(u

′, v ′,w ′ |y), then we end up with the following series

2F1

(
u, v
w

∣∣∣∣ x)· 2F1(u, v1, v2
w

∣∣∣∣ x , y) =
∑

m,n­0

(u)m(v)m(u′)n(v ′)n
(w)m(w ′)n

xmyn

m!n!
.

Because of obvious reasons, we call the above series reducible. Identities
between binomial coefficients (and Pochhammer functions) led
matematicians to the irreducible hypergeometric series. Before we will
give several examples, note the analogy with the following reducible case
of Shintani zeta-function:

ζ(2)2 =
∑

m,n>0

m−2m−2 = ζ(4) +
∑

m,n>0

m−2(m + n)−2. (30)
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give several examples, note the analogy with the following reducible case
of Shintani zeta-function:

ζ(2)2 =
∑

m,n>0

m−2m−2 = ζ(4) +
∑

m,n>0

m−2(m + n)−2. (30)



Appell functions

In 1880 P. Appell defined the following list of hypergeometric functions of
two variables:

F1

(
u, v1, v2

w

∣∣∣∣ x , y) =
∑

n,m­0

(u)m+n(v1)m(v1)n
(w)m+n

xmyn

m!n!
, (31)

F2

(
u, v1, v2
w1,w2

∣∣∣∣ x , y) =
∑

n,m­0

(u)m+n(v1)m(v1)n
(w1)m(w2)n

xmyn

m!n!
, (32)

F3

(
u1, u2, v1, v2

w

∣∣∣∣ x , y) =
∑

n,m­0

(u1)m(u2)n(v1)m(v1)n
(w)m+n

xmyn

m!n!
,(33)

F4

(
u, v

w1,w2

∣∣∣∣ x , y) =
∑

n,m­0

(u)m+n(v)m+n

(w1)m(w2)n

xmyn

m!n!
. (34)



Appell and Horn functions

Series defining functions F1,F2,F3,F4 converge in open subsets of C2.

In addition to the list of four Appell functions, there are 10 other
balanced hypergeometric series and futher 20 confluent series, that have
been enumerated by Horn (1931) and corrected by Borngässer (1933), in
his dissertation, written in Darmstadt. In the end, the Horn’s list of 34
two-variable hypergeometric series has been shown to be wrong by
Carlson (see the reference below), in 1976. Lauricella (1893) generalized
the notion of Appell’s functions to n variables.

Carlson, The need for a new classification of double hypergeometric series. Proc.
Amer. Math. Soc. 56: 221-224., 1976.
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Mordell-Tornheim hypergeometric series

Recall, that t−1Li2(t) is a hypergeometric function.

We define the
third-order two-variable generalization of Appell series:

F

(
α, β1, β

′
1, β2, β

′
2

η, η′, γ

∣∣∣∣ x , y) :=∑
m,n­0

(α)m+n(β1)m(β′1)n(β2)m(β′2)n
(η)m(η′)n(γ)m+n m! n!

xmyn. (35)

If we put (α, β1, β
′
1, β2, β

′
2, η, η

′, γ) = (2, 1, 1, 1, 1, 2, 2, 3), then we obtain

xy F

(
2, 1, 1, 1, 1

2, 2, 3

∣∣∣∣ x , y) = 2
∞∑

m,n>0

xmyn

mn(m + n)
. (36)
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Mordell-Tornheim hypergeometric series

xy F

(
2, 1, 1, 1, 1

2, 2, 3

∣∣∣∣ x , y) = 2
∞∑

m,n>0

xmyn

mn(m + n)
. (37)

Taking x = 1 = y , we get the formula

F

(
2, 1, 1, 1, 1

2, 2, 3;

∣∣∣∣ x , y) = 2
∞∑

m,n>0

1
mn(m + n)

= 2ζMT(1, 1, 1). (38)

Thus, we found a hypergeometric function, thats specialization gives
LiMT,1,1,1, in analogy with t 3F2(1, 1, 1, 2, 2 | t) = Li2(t) and
3F2(1, 1, 1, 2, 2 | 1) = ζ(2).
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Mordell-Tornheim hypergeometric series
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Differential equations and integral representations

All Appell and Horn (as well as Luricella) functions satisfy meromorphic
differential equations. In addition they can be representad by integrals.

For example, the Euler-type integral for F2 is

Γ (v1)Γ (v2)Γ (w1 − v1)Γ (w2 − v2)

Γ (w1)Γ (w2)
F2

(
u, v1, v2
w1,w2

∣∣∣∣ x , y)
=

∫ 1
0

∫ 1
0

tv1−11 tv2−12 (1− t1)
w1−v1−1(1− t2)

w2−v2−1

× (1− t1x − t2y)−u dt1 dt2.
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MT hpergeometric series and its Differential system

If we write

F

(
α, β1, β

′
1, β2, β

′
2

η, η′, γ

∣∣∣∣ x , y) =
∞∑

m,n­0

cm,nx
myn, (39)

then the shift of the coefficients cm+1,n and cm,n+1 leads to

cm+1,n =
(α + m + n)(β1 + m)(β2 + m)

(η + m)(1 + m)(γ + m + n)
cm,n, (40)

and

cm,n+1 =
(α + m + n)(β′1 + n)(β′2 + n)

(η′ + n)(1 + n)(γ + m + n)
cm,n. (41)



MT hpergeometric series and its Differential system

Let θx := x∂/∂x and θy := y∂/∂y . From the above relations, replacing
multiplication by m and n by Euler operators θx and θy , respectively, we
get the following system of differential equations:

[x(θx + θy + α)(θx + β1)(θx + β2)−
θx(θx + η)(θx + θy + γ − 1)].F = 0 (42)

[y(θx + θy + α)(θy + β′1)(θy + β′2)−
θy (θy + η′)(θx + θy + γ − 1)].F = 0. (43)

In particular, for specialized parameters, we obtain the system associated
with LiMT,1,1,1(t). We denote operator associated to this system by
TMT,1,1,1.
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GKZ hypergeometric system

Let A denote d × n matrix of rank d with coefficients in Z.

Furthermore, assume, that

The column vectos of A span Zd over Z.

The row span of A contains the vector (1, 1, ..., 1).

Definition

Let u ∈ Cd . Define

IA = {∂α − ∂β : Aα = Aβ; α, β ∈ Nd}. (44)

The GKZ hypergeometric system is the left ideal H(A, u) in the Weyl
algebra generated by the union of IA and Aθ − u. Solutions of GKZ
systams are called A-hypergeometric functions.

GKZ stands for Gelfand, Kapranov and Zelevinsky, who first studied the
general multivariable hypergeometric systems associated to A, u.
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Euler-Gauss function as GKZ hypergeometric system

As it has been allready seen before, the multivariable Euler-Gauss
function satisfies GKZ system associated to the data

A =

1 0 0 1
0 1 0 1
0 0 −1 1

 (45)

and ū = (−u,−v , 1− w).



Appell function as GKZ hypergeometric system

Consider a GKZ system associated to the following data:

A =


1 0 0 1 0 1
0 1 0 1 0 0
0 0 0 0 1 1
0 0 1 −1 0 −1

 (46)

and ū = (−u,−v1,−v2, 1− w).

Theese data correspond to the function Φ associated with Appell F1.
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’Hypergeometric properties’ of GKZ system

Solutions of GKZ system have properties analogous to the classical
(including Euler-Gauss) hypergeometric functions. In ”Generalized Euler
integrals and A-hypergeometric functions (Adv. Math. 84, 255–271),
Gelfand, Kapranov and Zelevinsky proved the following

Theorem (GKZ)

Let f1, f2, ..., fn ∈ C[x1, x2, ..., xm], x , β ∈ Cn and α ∈ Cn. Then∫
C

f α11 f α22 ...f αn
n xβdx . (47)

where C is an m-dimensional real cycle, are A-hypergeometric functions
of the coefficients of the polynomials f1, f2, ..., fn.



The Γ -series and Mellin-Barnes integral

Solutions of GKZ system can be represented as Γ -series

∑
m

∏
j∈J

tmj

mj !

∏
i∈I

t(Am)i+ui

Γ ((Am)i + ui + 1)
. (48)

The numbers m = (m1,m2, ...,mn) are divided to I and J, such tahat
I ∩ J = ∅, w. r. t. relation defining IA.

There is also a Mellin-Barnes representation, which can be regarded as
continuous analog of the Γ -series.
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Mordell-Tornheim GKZ-system

The Mordell-Tornheim GKZ-system is associated to the Lie-theoretic
interpretation of the series∑

m,n­0

(α)m+n(β1)m(β′1)n(β2)m(β′2)n
(η)m(η′)n(γ)m+n m! n!

xmyn. (49)

We read the parameter vector
γ = (−α,−β1,−β′1,−β2,−β′2, η− 1, η′ − 1, γ − 1, 0, 0) and the B-matrix

B =

[
−1 −1 0 −1 0 1 0 1 1 0
−1 0 −1 0 −1 0 1 1 0 1

]
. (50)

The A-matrix is computed from the relation A = B⊥ and GKZ parameter
α = Aγ.
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Mordell-Tornheim GKZ-system. A-matrix and α

Explicitely, theese data are as follows:

A =



0 1 −1 −1 1 0 0 0 0 0
1 0 −1 −1 0 1 0 −1 0 1
1 0 −1 −1 0 0 1 −1 1 0
0 0 0 0 0 1 1 0 −1 −1
0 1 1 −1 −1 0 0 0 0 0
0 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0


(51)

and the parameter α is equal to Aγ:

α =



−1− α + γ
−1− β1 − β2 + η
−1− β′2 − β′1 + η′

−β1 + β2 + β′2 − β′1
−2 + η + η′

−β1 + β2 − β′2 + β′1
−α + β2 + β′1 − γ + η
−α + β2 + β′1 − γ + η′


. (52)
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Drinfeld-Kontsevich integral

Now we will deliver analogous formula for LiMT.

We have

θs11 θ
s2
2 θ

s3
3 LiMT,s1,s2,s3(t) =

∑
m,n>0

(t1t3)
m(t2t3)

n

=
t21 t2t3

(1− t1t3)(1− t2t3)
. (53)

Thus

LiMT,s1,s2,s3(t) =

∫
γ

dt1
t1

◦s1−1 dt2
t2

◦s2−1 dt3
t3

◦s3−1
◦ dt1 ∧ dt2 ∧ dt3

(1− t1t3)(1− t2t3)
.
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Generating function and associated differential equation

The Drinfeld-Kontsevich integral can be used to construct Fuchsian
differential equation associaded to generating function of the sequence
ζ({(s1, s2, ..., sp)}n).

First, note that the generating function F (λ, 1) of (multiple) zeta vealues
satisfies

F (λ, t) = 1− λsLis(t) + λ2sLis,s(t)− ...
= 1− λsT−1s .1 + λ2sT−2s 1− ...
= [1 + λsT−1s ]−1.1. (54)

It follows that
[Ts + λs ] .F (λ, t) = 0. (55)

Thus F (λ, t) is a solution of the eigen-equation of Ts .
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Generating function and associated differential equation

We define opertor T = Ts1,s2,...,sp as:

T := (1− t)∂t(t∂t)
s1−1...(1− t)∂t(t∂t)

sp−1. (56)

Holomorphic solution F (t, λ) of the eigenequation

(T + λ|s|)f = 0, (57)

such that F (1, 0) = 1, has the following expansion around t = 1:

F (1, λ) =
∑
n­0

(−1)nζ({s1, ..., sp}n)λ|s|n. (58)

In other words, function F (1, λ) is a generating function of the sequence
ζ({s1, ..., sp}n).



Generating function and associated differential equation

We define opertor T = Ts1,s2,...,sp as:

T := (1− t)∂t(t∂t)
s1−1...(1− t)∂t(t∂t)

sp−1. (56)

Holomorphic solution F (t, λ) of the eigenequation

(T + λ|s|)f = 0, (57)

such that F (1, 0) = 1, has the following expansion around t = 1:

F (1, λ) =
∑
n­0

(−1)nζ({s1, ..., sp}n)λ|s|n. (58)

In other words, function F (1, λ) is a generating function of the sequence
ζ({s1, ..., sp}n).



Generating function and associated differential equation

We define opertor T = Ts1,s2,...,sp as:

T := (1− t)∂t(t∂t)
s1−1...(1− t)∂t(t∂t)

sp−1. (56)

Holomorphic solution F (t, λ) of the eigenequation

(T + λ|s|)f = 0, (57)

such that F (1, 0) = 1, has the following expansion around t = 1:

F (1, λ) =
∑
n­0

(−1)nζ({s1, ..., sp}n)λ|s|n. (58)

In other words, function F (1, λ) is a generating function of the sequence
ζ({s1, ..., sp}n).



Particular solutions associated to ζ({s}n)

If the depth p is equal to one, then T has the form

T := (1− t)(t∂t)
s−1 (59)

and F (1, λ) is the generating function of ζ({s}n).

In that case F is a sum of the series

F (t, λ) =
∑
n­0

(µλ)n(µ2λ)n...(µ
sλ)n

(n!)s
(−t)n, (60)

obtained from differential equation. Here µ denotes the primitive s-th
degree root of unity.

We have

F (t, λ) = sFs−1

(
µλ, µ2λ, ..., µsλ

1, .., 1

∣∣∣∣ t) . (61)
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M.-T. generating function

In a similar way, as in the case of classical polylogarithm, knowing that
the PDE system TMT,s1,s2,s3 applied to the period integral associated to
ζMT,s1,s2,s3 gives 1, we get[

TMT,1,1,1 + λ3
]
.Φ = 0. (62)

Suitably choosen solution Φ(λ, t1, t2, t3) is the generating function of
Mordell-Tornheim polylogarithms (and multiple zeta-values, after putting
x = y = 1 = t1 = t2 = t3). It is a GKZ-hypergeometric function.As such,
it satisfies many hypergeometric properties and can be representatd as
Euler-type integrals.
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General case

In general, we have the following.

Problem

Is there a way to associate (generalized) hypergeometric function to
every (arithmetic) Shintani zeta-function?



THANK YOU!
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