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I. Equidistribution
A sequence (un) in [0, 1] is equidistributed if for all interval [a, b] ⊂ [0, 1],

lim
N→∞

Card{1 ≤ n ≤ N : un ∈ [a, b]}
N

= b− a.

Theorem (Weyl, 1916) :
A sequence (un) is equidistributed if and only if for every
complex-valued, 1-periodic continuous function f ,

lim
N→∞

1

N

N∑
n=1

f(un) =

∫ 1

0

f(x)dx,

and, if and only if for all integer h 6= 0,

lim
N→∞

1

N

N∑
n=1

e2iπhun = 0.
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II. (Equi)-Distribution of {xn}
Denote {·} the fractional part of a real number.

Weyl 1916 : Let x > 1 be a real number. Then for almost all real ξ, the
sequence {ξxn} is equidistributed.

Koksma 1935 : Let ξ 6= 0 be a real number. Then for almost all real
x > 1, the sequence {ξxn} is equidistributed.

Denote by ‖ · ‖ the distance to the nearest integer.

Thue 1910 (Hardy 1919) : Let ξ 6= 0 and x > 1 be two real numbers.
If there exist real numbers C > 0 and 0 < ρ < 1 such that ‖ξxn‖ < Cρn

for all n ≥ 1, then x is an algebraic number.

Pisot 1937 : Let ξ 6= 0 and x > 1 be two real numbers such that

∞∑
n=0

‖ξxn‖2 <∞.

Then ξ ∈ Q(x) and x is a Pisot-Vijayaraghavan number : an algebraic
integer > 1, whose Galois conjugates have module < 1.
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III. Sizes of exceptional sets

Pollington 1979 : Let x > 1 be a real number. The set of numbers ξ
such that {ξxn} is not dense (so not equidistributed), has Hausdorff
dimension 1.

Pollington 1980 : Let ξ 6= 0 be a real number. For all δ > 0, the set{
x > 1 : {ξxn} ∈ [0, δ] for all n ≥ 1

}
has Hausdorff dimension 1. Thus, the set of numbers x > 1 such that
{ξxn} is not dense (so not equidistributed), has Hausdorff dimension 1.

Remark : Vijayaraghavan 1948 proved that for all δ > 0, there are
uncountably many x > 1, such that ‖xn‖ ≤ δ for all n ≥ 1.
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IV. Sizes of exceptional sets - continued

Bugeaud–Moshchevitin 2012, Kahane 2014 : Let (bn) be an arbitrary
sequence in [0, 1], and δ > 0. The set{

x > 1 : ‖xn − bn‖ ≤ δ for all large n
}

has Hausdorff dimension 1.

Kahane’s question : for X > 1
2δ ,

dimH

{
1 < x < X : ‖xn − bn‖ ≤ δ for all large n

}
=?

Candidate : log(2δX)/ logX.

Bugeaud–L–Rams, in preparation : lower bound is OK.
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V. A Number Theory motivation
Mahler 1957 : For sufficiently large k

‖(3/2)k‖ > (3/4)k−1.

Then (Waring’s problem) the number

g(k) := min{s ∈ N : all a ∈ N can be written as nk1+· · ·+nks with nj ∈ N}

is
g(k) = 2k + b(3/2)kc − 2.

Open problem : Is the sequence {(3/2)k} dense in [0, 1] ?
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Some known results

in Diophantine approximation
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I. Dirichlet and Legendre
Denote by ‖ · ‖ the distance to the nearest integer.
Dirichlet Theorem, 1842 (uniform approximation) :
Let θ, Q be real numbers with Q ≥ 1. There exists an integer n with
1 ≤ n ≤ Q, such that

‖nθ‖ < Q−1.

In other words,{
θ : ∀Q ≥ 1, ‖nθ‖ < Q−1 has a solution 1 ≤ n ≤ Q

}
= R.

Corollary (asymptotic approximation) :
For any real θ, there exist infinitely many integers n such that

‖nθ‖ < n−1.

In other words,{
θ : ‖nθ‖ < n−1 for infinitely many n

}
= R.

Legendre 1808 ”Essai sur la théorie des nombres” : proved the
asymptotic approximation property by using continued fractions.
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II. Approximation with a higher speed

Jarńık 1929, Besicovith 1934 : For w > 1, the Hausdorff dimension

dimH(Lw) = dimH

{
θ : ‖nθ‖ < n−w i.o. n

}
= 2/(w + 1).

What is about the set

Uw :=
{
θ : ∀Q > 1, ‖nθ‖ < Q−w has a solution 1 ≤ n ≤ Q

}
?

Khintchine 1926 : For w > 1, Uw is empty.

Proof : Apply the continued fraction theory.
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III. Question on inhomogeneous terms -1

Bugeaud 2003, Troubetzkoy–Schmeling 2003 : for all θ ∈ R \Q,
w ≥ 1, set

Lw[θ] :={y : ||nθ − y|| < n−w for infinitely many n}.

Then
dimH(Lw[θ]) = 1/w.

Liao–Rams 2013 : Sharp estimations for general speed : n−w → φ(n).

Question of Bugeaud–Laurent 2005 : for a fixed irrational θ, what is
the size (Hausdorff dimension) of the set

Uw[θ] :=
{
y : ∀Q� 1, ‖nθ − y‖ < Q−w has a solution 1 ≤ n ≤ Q

}
.

Remark :
Uw[θ] \ {nθ : n ∈ N} ⊂ Lw[θ].
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IV. Question on inhomogeneous terms -2
For θ 6∈ Q, define w(θ) := sup{β > 0 : lim infj→∞ jβ‖jθ‖ = 0}≥ 1.
Let {qn} be the denominators of continued fractions convergents of θ.

Theorem (D.H. Kim–L, arXiv 2015)

Let θ be an irrational with w(θ). Then the Hausdorff dimension of Uw[θ]
is 0 if w > w(θ), is 1 if w < 1/w(θ), and equals to

lim
k→∞

log(
∏k−1
j=1 (n

1/w
j ‖njθ‖) · n1/w+1

k )

log(nk‖nkθ‖−1)
,

1

w(θ)
< w < 1,

lim
k→∞

− log(
∏k−1
j=1 nj‖njθ‖1/w)

log(nk‖nkθ‖−1)
, 1 < w < w(θ).

where nk is the (maximal) subsequence of (qk) such that{
n

1/w
k ‖nkθ‖ < 1, if 1/w(θ) < w < 1,

nk‖nkθ‖1/w < 2, if 1 < w < w(θ).
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V. Diophantine approximation of β-transformation -1

Let β > 1 be a real number and Tβ be the β-transformation defined by

for x ∈ [0, 1], Tβx = βx mod 1.

Let vβ(x) be the supremum of the real numbers v such that

Tnβ (x) < (βn)−v, i.o. n.

Shen–Wang 2013 :

dim{x ∈ [0, 1] : vβ(x) ≥ v} =
1

1 + v
.

Persson–Schmeling 2008 :

dim{β > 1 : vβ(1) ≥ v} =
1

1 + v
.
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VI. Diophantine approximation of β-transformation -2
Let v̂β(x) be the supremum of the real numbers v̂ such that

∀N � 1, Tnβ (x) < (βN )−v̂ has a solution 1 ≤ n ≤ N.

Theorem (Bugeaud–L, to appear)

Let θ and v̂ be positive real numbers with v̂ < 1 and θ ≥ 1/(1− v̂), then

dim({x : v̂β(x) = v̂} ∩ {x : vβ(x) = θv̂}) =
θ − 1− θv̂

(1 + θv̂)(θ − 1)
,

dim({β > 1 : v̂β(1) = v̂} ∩ {β > 1 : vβ(1) = θv̂}) =
θ − 1− θv̂

(1 + θv̂)(θ − 1)
,

dim{x : v̂β(x) ≥ v̂} = dim{x : v̂β(x) = v̂} =
(1− v̂

1 + v̂

)2

,

dim{β > 1 : v̂β(1) ≥ v̂} =
(1− v̂

1 + v̂

)2

.
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VII. Relation with the hitting time

Let (Tθ)θ∈Θ (Θ ⊂ R) be a family of systems on a metric space (X, d).

Define
τθr (x, y) = inf{n : Tnθ x ∈ B(y, r)}.

and define (for the zero entropy systems)

Rθ(x, y) := lim inf
r→0

log τθr (x, y)

− log r
, R

θ
(x, y) := lim sup

r→0

log τθr (x, y)

− log r
.

We have (fixing x, y ∈ X)

Lw = {θ : d(Tnθ x, y) < n−w i.o.} ≈ {θ : Rθ(x, y) ≤ 1/w},

Uw = {θ : ∀N � 1,∃ 1 ≤ n ≤ N, d(Tnθ x, y) < N−w} ≈ {θ : R
θ
(x, y) ≤ 1/w}.

Thus, Uw is almost less than Lw.

→ The same thing holds when fixing (θ, x) or (θ, y).
→ Positive entropy systems, sometimes : replace log τr(x, y) by τr(x, y).
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VIII. Level sets of hitting time
Shrinking target problem : Fix one dynamical system T , fix one point y,
one studies the size of the level set

{x ∈ X : R(x, y) = α}, for a given α.

Measure results : Boshernitzan, Chernov, Chazottes, Fayad,
Galatalo, Kleinbock, Kim...
Hausdorff dimension results : Hill–Velani 1995, 1999 ; Urbański 2002 ;
Fernández–Melián–Pestana 2007 ; Shen–Wang 2013 ;
Li–Wang–Wu–Xu 2014, Bugeaud–Wang 2014.

For sets of parameters : Persson-Schmeling 2008,
Li-Persson-Wang-Wu 2014, Aspenberg-Persson

Dynamical diophantine approximation problem : Fix one dynamical
system T , fix one point x, one studies the size of the level set

{y ∈ X : R(x, y) = α}, for a given α.

Fan–Schmeling-Troubetzkoy 2013 ; Liao–Seuret 2013 ;
Persson–Rams 2015.
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Diophantine approximation of {xn}
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I. Measure result - asymptotic approximation of {xn}
Koksma 1945 : Let (εn) be a real sequence with 0 ≤ εn ≤ 1/2 for all
n ≥ 1. If

∑
εn <∞, then for almost all x > 1,

‖xn‖ ≤ εn only for finitely many n.

If (εn) is non-increasing and
∑
εn =∞, then for almost allx > 1

‖xn‖ ≤ εn for infinitely many n.

Mahler–Szekeres 1967 : for almost x > 1,

lim
n→∞

‖xn‖1/n = 1.
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II. Dimension result -asymptotic approximation of {xn}
For x > 1, put P (x) := lim infn→∞ ‖xn‖1/n.
Mahler–Szekeres 1967 : “P (x) = 0”⇒ x is transcendental.

Remark that for b > 1,{
x > 1 : P (x) < 1/b

}
=
{
x > 1 : ‖xn‖ < b−n for infinitely many n

}
.

Question : What is the size of
{
x > 1 : P (x) < 1/b

}
?

Bugeaud–Dubickas 2008 : For all real number X > 1, and b > 1,

dimH

{
1 < x < X : P (x) < 1/b

}
=

logX

log(bX)
.

Moreover, dimH

{
x > 1 : P (x) < 1/b

}
= 1.

Proof : Mass transference principle (Beresnevich–Velani 2006) :

Leb(lim supB(xn, rn)) = 1⇒ Hs(lim supB(xn, r
1/s
n )) =∞.
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III. Dimension result - asymptotic case (continued)

Bugeaud–L–Rams, in preparation : a constructive proof for the result
of Bugeaud–Dubickas. In general, for an arbitrary real sequence (yn),

dimH

{
1 < x < X : ‖xn− yn‖ < b−n for infinitely many n

}
=

logX

log(bX)
.

Thus for a sequence (zk),

dimH

∞⋂
k=1

{
1 < x < X : ‖xn−zk‖ < b−n for infinitely many n

}
=

logX

log(bX)
.

Hence, we also have

dimH

∞⋂
k=1

{
x > 1 : ‖xn − zk‖ < b−n for infinitely many n

}
= 1.
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IV. Uniform approximation question

For y ∈ R, we are interested in the following uniform approximation

E(y, τ) =
{
x > 1 : ∀N � 1, ‖xn − y‖ ≤ τ−N has a solution 1 ≤ n ≤ N

}
.

Furthermore, we also study

E(y, τ, b) := {x > 1 : ‖zn − y‖ < b−n for infinitely many n

and ∀N � 1, ||zn − y|| < τ−N has a solution 1 ≤ n ≤ N}.

Question : Hausdorff dimensions of E(y, τ) and E(y, τ, b) ?
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V. Results on uniform approximation of {xn}
Theorem (Bugeaud–L–Rams, in preparation)

Suppose b = τθ with θ > 1. Then for all y ∈ R,

dimH

(
E(y, τ, b)∩]1, X[

)
≥

logX − θ
θ−1 log τ

logX + θ log τ
.

Maximizing with respect to θ (θ = 2 logX/(logX − log τ)), we have

dimH

(
E(y, τ)∩]1, X[

)
≥
(

logX − log τ

logX + log τ

)2

.

Corollary (Bugeaud–L–Rams, in preparation)

For all y ∈ R, and all b ≥ τ > 1,

dimH E(y, τ, b) = dimH E(y, τ) = 1.
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Proofs on the uniform

Diophantine approximation of {xn}
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I. Construction of a subset
We will construct a subset F of the set

E(X, y, τ, b) := {1 < x < X : ‖zn − y‖ < b−n for infinitely many n

and ∀N � 1, ||zn − y|| < τ−N has a solution 1 ≤ n ≤ N}.

Suppose b = τθ with θ > 1. Take nk = bθkc. Consider the points
1 < z < X such that

||znk − y|| < b−nk ⇔ ∃m, z ∈
[(
m+ y − 1

bnk

) 1
nk ,
(
m+ y +

1

bnk

) 1
nk

]
.

Then z ∈ E(X, y, β, b) = E(X, y, β, τθ).

Level 1 : In1
(m, y, b) := [(m+ y − b−n1)1/n1 , (m+ y + b−n1)1/n1 ],

where m ∈]1, Xn1 [ is an integer.

Level 2 : for an interval [c, d] at level 1, its son-intervals are
In2(m, y, b) := [(m+ y − b−n2)1/n2 , (m+ y + b−n2)1/n2 ] with
m ∈ [cn2 , dn2 ].
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II. Computer the numbers and the lengths
By construction, for the fundamental intervals containing z ∈ F , we have

each interval [ck, dk] at level k contains at least

mk(z) ≈ dnk+1

k − cnk+1

k ≥ nk+1c
nk+1−1
k · 2

nkbnkdnk−1
k

≈
(
zθ−1

b

)θk
son-intervals at level k + 1.

the distance between intervals at level k + 1 contained in the
interval [ck, dk] at level k is at least

εk(z) =
1− 2/bnk+1

nk+1d
nk+1−1
k

≈ 1

zθk+1 .
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III. Local dimension
The local dimension of z ∈ F is bounded from below by

log(m1(z) · · ·mk−1(z))

− logmk(z)εk(z)
≈
(
(θ − 1) log z − log b

)∑k−1
j=1 θ

k

− log θk log bz

=
(θ − 1) log z − log b

(θ − 1) log bz
· θ

k − 1

θk

≥ (θ − 1) log z − log b

(θ − 1) log bz
− ε′(k)

with ε′(k)→ 0 when k →∞. Using the relation b = τθ, we have a lower
bound of the dimension of E(X, y, τ, b) :

(θ − 1) logX − log b

(θ − 1) log bX
=

logX − θ
θ−1 log τ

logX + θ log τ
.
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