Diophantine approximation of fractional parts of powers of real numbers

Lingmin LIAO
(joint work with Yann Bugeaud, and Michał Rams)
Université Paris-Est
Fractal Geometry and Dynamics
Bedlewo, October 13th 2015

Outline

(1) Distribution of fractional parts of powers of real numbers
(2) Some known results in Diophantine approximation
(3) Diophantine approximation of $\left\{x^{n}\right\}$
(4) Proofs on the uniform Diophantine approximation of $\left\{x^{n}\right\}$

I. Equidistribution

A sequence $\left(u_{n}\right)$ in $[0,1]$ is equidistributed if for all interval $[a, b] \subset[0,1]$,

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Card}\left\{1 \leq n \leq N: u_{n} \in[a, b]\right\}}{N}=b-a
$$

Theorem (Weyl, 1916) :
A sequence $\left(u_{n}\right)$ is equidistributed if and only if for every complex-valued, 1-periodic continuous function f,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(u_{n}\right)=\int_{0}^{1} f(x) d x
$$

and, if and only if for all integer $h \neq 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 i \pi h u_{n}}=0
$$

II. (Equi)-Distribution of $\left\{x^{n}\right\}$

Denote $\{\cdot\}$ the fractional part of a real number.
Weyl 1916 : Let $x>1$ be a real number. Then for almost all real ξ, the sequence $\left\{\xi x^{n}\right\}$ is equidistributed.

Koksma 1935 : Let $\xi \neq 0$ be a real number. Then for almost all real $x>1$, the sequence $\left\{\xi x^{n}\right\}$ is equidistributed.
Denote by $\|\cdot\|$ the distance to the nearest integer.
Thue 1910 (Hardy 1919) : Let $\xi \neq 0$ and $x>1$ be two real numbers. If there exist real numbers $C>0$ and $0<\rho<1$ such that $\left\|\xi x^{n}\right\|<C \rho^{n}$ for all $n \geq 1$, then x is an algebraic number.
Pisot 1937 : Let $\xi \neq 0$ and $x>1$ be two real numbers such that

$$
\sum_{n=0}^{\infty}\left\|\xi x^{n}\right\|^{2}<\infty
$$

Then $\xi \in \mathbb{Q}(x)$ and x is a Pisot-Vijayaraghavan number : an algebraic integer >1, whose Galois conjugates have module <1.

III. Sizes of exceptional sets

Pollington 1979 : Let $x>1$ be a real number. The set of numbers ξ such that $\left\{\xi x^{n}\right\}$ is not dense (so not equidistributed), has Hausdorff dimension 1.
Pollington 1980 : Let $\xi \neq 0$ be a real number. For all $\delta>0$, the set

$$
\left\{x>1:\left\{\xi x^{n}\right\} \in[0, \delta] \text { for all } n \geq 1\right\}
$$

has Hausdorff dimension 1 . Thus, the set of numbers $x>1$ such that $\left\{\xi x^{n}\right\}$ is not dense (so not equidistributed), has Hausdorff dimension 1.

Remark: Vijayaraghavan 1948 proved that for all $\delta>0$, there are uncountably many $x>1$, such that $\left\|x^{n}\right\| \leq \delta$ for all $n \geq 1$.

IV. Sizes of exceptional sets - continued

Bugeaud-Moshchevitin 2012, Kahane 2014 : Let $\left(b_{n}\right)$ be an arbitrary sequence in $[0,1]$, and $\delta>0$. The set

$$
\left\{x>1:\left\|x^{n}-b_{n}\right\| \leq \delta \text { for all large } n\right\}
$$

has Hausdorff dimension 1.
Kahane's question : for $X>\frac{1}{2 \delta}$,

$$
\operatorname{dim}_{H}\left\{1<x<X:\left\|x^{n}-b_{n}\right\| \leq \delta \text { for all large } n\right\}=?
$$

Candidate $: \log (2 \delta X) / \log X$.
Bugeaud-L-Rams, in preparation : lower bound is OK.

V. A Number Theory motivation

Mahler 1957 : For sufficiently large k

$$
\left\|(3 / 2)^{k}\right\|>(3 / 4)^{k-1}
$$

Then (Waring's problem) the number
$g(k):=\min \left\{s \in \mathbb{N}:\right.$ all $a \in \mathbb{N}$ can be written as $n_{1}^{k}+\cdots+n_{s}^{k}$ with $\left.n_{j} \in \mathbb{N}\right\}$
is

$$
g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2 .
$$

Open problem : Is the sequence $\left\{(3 / 2)^{k}\right\}$ dense in $[0,1]$?

Some known results

in Diophantine approximation

I. Dirichlet and Legendre

Denote by $\|\cdot\|$ the distance to the nearest integer.
Dirichlet Theorem, 1842 (uniform approximation) :
Let θ, Q be real numbers with $Q \geq 1$. There exists an integer n with $1 \leq n \leq Q$, such that

$$
\|n \theta\|<Q^{-1}
$$

In other words,

$$
\left\{\theta: \forall Q \geq 1,\|n \theta\|<Q^{-1} \text { has a solution } 1 \leq n \leq Q\right\}=\mathbb{R}
$$

Corollary (asymptotic approximation) :
For any real θ, there exist infinitely many integers n such that

$$
\|n \theta\|<n^{-1}
$$

In other words,

$$
\left\{\theta:\|n \theta\|<n^{-1} \text { for infinitely many } n\right\}=\mathbb{R}
$$

Legendre 1808 "Essai sur la théorie des nombres" : proved the asymptotic approximation property by using continued fractions.

II. Approximation with a higher speed

Jarník 1929, Besicovith 1934 : For $w>1$, the Hausdorff dimension

$$
\operatorname{dim}_{H}\left(\mathcal{L}_{w}\right)=\operatorname{dim}_{H}\left\{\theta:\|n \theta\|<n^{-w} \text { i.o. } n\right\}=2 /(w+1) .
$$

What is about the set

$$
\mathcal{U}_{w}:=\left\{\theta: \forall Q>1,\|n \theta\|<Q^{-w} \text { has a solution } 1 \leq n \leq Q\right\} ?
$$

Khintchine 1926 : For $w>1, \mathcal{U}_{w}$ is empty.
Proof : Apply the continued fraction theory.

III. Question on inhomogeneous terms -1

Bugeaud 2003, Troubetzkoy-Schmeling 2003 : for all $\theta \in \mathbb{R} \backslash \mathbb{Q}$, $w \geq 1$, set

$$
\mathcal{L}_{w}[\theta]:=\left\{y:\|n \theta-y\|<n^{-w} \text { for infinitely many } n\right\} .
$$

Then

$$
\operatorname{dim}_{H}\left(\mathcal{L}_{w}[\theta]\right)=1 / w
$$

Liao-Rams 2013 : Sharp estimations for general speed : $n^{-w} \rightarrow \phi(n)$.
Question of Bugeaud-Laurent 2005: for a fixed irrational θ, what is the size (Hausdorff dimension) of the set

$$
\mathcal{U}_{w}[\theta]:=\left\{y: \forall Q \gg 1, \quad\|n \theta-y\|<Q^{-w} \text { has a solution } 1 \leq n \leq Q\right\} .
$$

Remark :

$$
\mathcal{U}_{w}[\theta] \backslash\{n \theta: n \in \mathbb{N}\} \subset \mathcal{L}_{w}[\theta] .
$$

IV. Question on inhomogeneous terms -2

For $\theta \notin \mathbb{Q}$, define $w(\theta):=\sup \left\{\beta>0: \liminf _{j \rightarrow \infty} j^{\beta}\|j \theta\|=0\right\} \geq 1$. Let $\left\{q_{n}\right\}$ be the denominators of continued fractions convergents of θ.

Theorem (D.H. Kim-L, arXiv 2015)

Let θ be an irrational with $w(\theta)$. Then the Hausdorff dimension of $\mathcal{U}_{w}[\theta]$ is 0 if $w>w(\theta)$, is 1 if $w<1 / w(\theta)$, and equals to

$$
\begin{cases}\varliminf_{k \rightarrow \infty}^{\lim } \frac{\log \left(\prod_{j=1}^{k-1}\left(n_{j}^{1 / w}\left\|n_{j} \theta\right\|\right) \cdot n_{k}^{1 / w+1}\right)}{\log \left(n_{k}\left\|n_{k} \theta\right\|^{-1}\right)}, & \frac{1}{w(\theta)}<w<1 \\ \varliminf_{k \rightarrow \infty}^{\lim } \frac{-\log \left(\prod_{j=1}^{k-1} n_{j}\left\|n_{j} \theta\right\|^{1 / w}\right)}{\log \left(n_{k}\left\|n_{k} \theta\right\|^{-1}\right)}, & 1<w<w(\theta)\end{cases}
$$

where n_{k} is the (maximal) subsequence of $\left(q_{k}\right)$ such that

$$
\begin{cases}n_{k}^{1 / w}\left\|n_{k} \theta\right\|<1, & \text { if } 1 / w(\theta)<w<1 \\ n_{k}\left\|n_{k} \theta\right\|^{1 / w}<2, & \text { if } 1<w<w(\theta)\end{cases}
$$

V. Diophantine approximation of β-transformation -1

Let $\beta>1$ be a real number and T_{β} be the β-transformation defined by

$$
\text { for } x \in[0,1], \quad T_{\beta} x=\beta x \bmod 1 .
$$

Let $v_{\beta}(x)$ be the supremum of the real numbers v such that

$$
T_{\beta}^{n}(x)<\left(\beta^{n}\right)^{-v}, \text { i.o. } n .
$$

Shen-Wang 2013 :

$$
\operatorname{dim}\left\{x \in[0,1]: v_{\beta}(x) \geq v\right\}=\frac{1}{1+v}
$$

Persson-Schmeling 2008 :

$$
\operatorname{dim}\left\{\beta>1: v_{\beta}(1) \geq v\right\}=\frac{1}{1+v}
$$

VI. Diophantine approximation of β-transformation -2

Let $\hat{v}_{\beta}(x)$ be the supremum of the real numbers \hat{v} such that

$$
\forall N \gg 1, T_{\beta}^{n}(x)<\left(\beta^{N}\right)^{-\hat{v}} \text { has a solution } 1 \leq n \leq N
$$

Theorem (Bugeaud-L, to appear)

Let θ and \hat{v} be positive real numbers with $\hat{v}<1$ and $\theta \geq 1 /(1-\hat{v})$, then

$$
\begin{gathered}
\operatorname{dim}\left(\left\{x: \hat{v}_{\beta}(x)=\hat{v}\right\} \cap\left\{x: v_{\beta}(x)=\theta \hat{v}\right\}\right)=\frac{\theta-1-\theta \hat{v}}{(1+\theta \hat{v})(\theta-1)} \\
\operatorname{dim}\left(\left\{\beta>1: \hat{v}_{\beta}(1)=\hat{v}\right\} \cap\left\{\beta>1: v_{\beta}(1)=\theta \hat{v}\right\}\right)=\frac{\theta-1-\theta \hat{v}}{(1+\theta \hat{v})(\theta-1)} \\
\operatorname{dim}\left\{x: \hat{v}_{\beta}(x) \geq \hat{v}\right\}=\operatorname{dim}\left\{x: \hat{v}_{\beta}(x)=\hat{v}\right\}=\left(\frac{1-\hat{v}}{1+\hat{v}}\right)^{2} \\
\operatorname{dim}\left\{\beta>1: \hat{v}_{\beta}(1) \geq \hat{v}\right\}=\left(\frac{1-\hat{v}}{1+\hat{v}}\right)^{2}
\end{gathered}
$$

VII. Relation with the hitting time

Let $\left(T_{\theta}\right)_{\theta \in \Theta}(\Theta \subset \mathbb{R})$ be a family of systems on a metric space (X, d).
Define

$$
\tau_{r}^{\theta}(x, y)=\inf \left\{n: T_{\theta}^{n} x \in B(y, r)\right\}
$$

and define (for the zero entropy systems)

$$
\underline{R}^{\theta}(x, y):=\liminf _{r \rightarrow 0} \frac{\log \tau_{r}^{\theta}(x, y)}{-\log r}, \quad \bar{R}^{\theta}(x, y):=\limsup _{r \rightarrow 0} \frac{\log \tau_{r}^{\theta}(x, y)}{-\log r}
$$

We have (fixing $x, y \in X$)
$\mathcal{L}_{w}=\left\{\theta: d\left(T_{\theta}^{n} x, y\right)<n^{-w} \quad\right.$ i.o. $\} \approx\left\{\theta: \underline{R}^{\theta}(x, y) \leq 1 / w\right\}$,
$\mathcal{U}_{w}=\left\{\theta: \forall N \gg 1, \exists 1 \leq n \leq N, d\left(T_{\theta}^{n} x, y\right)<N^{-w}\right\} \approx\left\{\theta: \bar{R}^{\theta}(x, y) \leq 1 / w\right\}$.
Thus, \mathcal{U}_{w} is almost less than \mathcal{L}_{w}.
\rightarrow The same thing holds when fixing (θ, x) or (θ, y).
\rightarrow Positive entropy systems, sometimes : replace $\log \tau_{r}(x, y)$ by $\tau_{r}(x, y)$.

VIII. Level sets of hitting time

Shrinking target problem : Fix one dynamical system T, fix one point y, one studies the size of the level set

$$
\{x \in X: \underline{R}(x, y)=\alpha\}, \quad \text { for a given } \alpha
$$

Measure results: Boshernitzan, Chernov, Chazottes, Fayad, Galatalo, Kleinbock, Kim...
Hausdorff dimension results : Hill-Velani 1995, 1999 ; Urbański 2002 ;
Fernández-Melián-Pestana 2007 ; Shen-Wang 2013 ;
Li-Wang-Wu-Xu 2014, Bugeaud-Wang 2014.
For sets of parameters: Persson-Schmeling 2008, Li-Persson-Wang-Wu 2014, Aspenberg-Persson
Dynamical diophantine approximation problem : Fix one dynamical system T, fix one point x, one studies the size of the level set

$$
\{y \in X: \underline{R}(x, y)=\alpha\}, \quad \text { for a given } \alpha
$$

Fan-Schmeling-Troubetzkoy 2013; Liao-Seuret 2013 ; Persson-Rams 2015.

Diophantine approximation of $\left\{x^{n}\right\}$

I. Measure result - asymptotic approximation of $\left\{x^{n}\right\}$

Koksma 1945 : Let $\left(\epsilon_{n}\right)$ be a real sequence with $0 \leq \epsilon_{n} \leq 1 / 2$ for all $n \geq 1$. If $\sum \epsilon_{n}<\infty$, then for almost all $x>1$,

$$
\left\|x^{n}\right\| \leq \epsilon_{n} \quad \text { only for finitely many } n
$$

If $\left(\epsilon_{n}\right)$ is non-increasing and $\sum \epsilon_{n}=\infty$, then for almost all $x>1$

$$
\left\|x^{n}\right\| \leq \epsilon_{n} \quad \text { for infinitely many } n .
$$

Mahler-Szekeres 1967 : for almost $x>1$,

$$
\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{1 / n}=1
$$

II. Dimension result -asymptotic approximation of $\left\{x^{n}\right\}$

For $x>1$, put $P(x):=\liminf _{n \rightarrow \infty}\left\|x^{n}\right\|^{1 / n}$.
Mahler-Szekeres 1967: " $P(x)=0 " \Rightarrow x$ is transcendental.
Remark that for $b>1$,

$$
\{x>1: P(x)<1 / b\}=\left\{x>1:\left\|x^{n}\right\|<b^{-n} \text { for infinitely many } n\right\}
$$

Question: What is the size of $\{x>1: P(x)<1 / b\}$?
Bugeaud-Dubickas 2008: For all real number $X>1$, and $b>1$,

$$
\operatorname{dim}_{H}\{1<x<X: P(x)<1 / b\}=\frac{\log X}{\log (b X)}
$$

Moreover, $\operatorname{dim}_{H}\{x>1: P(x)<1 / b\}=1$.
Proof : Mass transference principle (Beresnevich-Velani 2006) :

$$
\operatorname{Leb}\left(\limsup B\left(x_{n}, r_{n}\right)\right)=1 \Rightarrow \mathcal{H}^{s}\left(\lim \sup B\left(x_{n}, r_{n}^{1 / s}\right)\right)=\infty
$$

III. Dimension result - asymptotic case (continued)

Bugeaud-L-Rams, in preparation : a constructive proof for the result of Bugeaud-Dubickas. In general, for an arbitrary real sequence $\left(y_{n}\right)$,
$\operatorname{dim}_{H}\left\{1<x<X:\left\|x^{n}-y_{n}\right\|<b^{-n}\right.$ for infinitely many $\left.n\right\}=\frac{\log X}{\log (b X)}$.
Thus for a sequence $\left(z_{k}\right)$,
$\operatorname{dim}_{H} \bigcap_{k=1}^{\infty}\left\{1<x<X:\left\|x^{n}-z_{k}\right\|<b^{-n}\right.$ for infinitely many $\left.n\right\}=\frac{\log X}{\log (b X)}$.
Hence, we also have

$$
\operatorname{dim}_{H} \bigcap_{k=1}^{\infty}\left\{x>1:\left\|x^{n}-z_{k}\right\|<b^{-n} \text { for infinitely many } n\right\}=1
$$

IV. Uniform approximation question

For $y \in \mathbb{R}$, we are interested in the following uniform approximation

$$
E(y, \tau)=\left\{x>1: \forall N \gg 1,\left\|x^{n}-y\right\| \leq \tau^{-N} \text { has a solution } 1 \leq n \leq N\right\} .
$$

Furthermore, we also study

$$
\begin{aligned}
& E(y, \tau, b):=\left\{x>1:\left\|z^{n}-y\right\|<b^{-n} \text { for infinitely many } n\right. \\
& \text { and } \left.\forall N \gg 1,\left\|z^{n}-y\right\|<\tau^{-N} \text { has a solution } 1 \leq n \leq N\right\} .
\end{aligned}
$$

Question : Hausdorff dimensions of $E(y, \tau)$ and $E(y, \tau, b)$?

V. Results on uniform approximation of $\left\{x^{n}\right\}$

Theorem (Bugeaud-L-Rams, in preparation)

Suppose $b=\tau^{\theta}$ with $\theta>1$. Then for all $y \in \mathbb{R}$,

$$
\operatorname{dim}_{H}(E(y, \tau, b) \cap] 1, X[) \geq \frac{\log X-\frac{\theta}{\theta-1} \log \tau}{\log X+\theta \log \tau} .
$$

Maximizing with respect to $\theta(\theta=2 \log X /(\log X-\log \tau))$, we have

$$
\operatorname{dim}_{H}(E(y, \tau) \cap] 1, X[) \geq\left(\frac{\log X-\log \tau}{\log X+\log \tau}\right)^{2}
$$

Corollary (Bugeaud-L-Rams, in preparation)

For all $y \in \mathbb{R}$, and all $b \geq \tau>1$,

$$
\operatorname{dim}_{H} E(y, \tau, b)=\operatorname{dim}_{H} E(y, \tau)=1
$$

Proofs on the uniform

Diophantine approximation of $\left\{x^{n}\right\}$

I. Construction of a subset

We will construct a subset F of the set

$$
\begin{array}{r}
E(X, y, \tau, b):=\left\{1<x<X:\left\|z^{n}-y\right\|<b^{-n} \text { for infinitely many } n\right. \\
\text { and } \left.\forall N \gg 1,\left\|z^{n}-y\right\|<\tau^{-N} \text { has a solution } 1 \leq n \leq N\right\}
\end{array}
$$

Suppose $b=\tau^{\theta}$ with $\theta>1$. Take $n_{k}=\left\lfloor\theta^{k}\right\rfloor$. Consider the points $1<z<X$ such that

$$
\left\|z^{n_{k}}-y\right\|<b^{-n_{k}} \Leftrightarrow \exists m, \quad z \in\left[\left(m+y-\frac{1}{b^{n_{k}}}\right)^{\frac{1}{n_{k}}},\left(m+y+\frac{1}{b^{n_{k}}}\right)^{\frac{1}{n_{k}}}\right]
$$

Then $z \in E(X, y, \beta, b)=E\left(X, y, \beta, \tau^{\theta}\right)$.

- Level $1: I_{n_{1}}(m, y, b):=\left[\left(m+y-b^{-n_{1}}\right)^{1 / n_{1}},\left(m+y+b^{-n_{1}}\right)^{1 / n_{1}}\right]$, where $m \in] 1, X^{n_{1}}[$ is an integer.
- Level 2 : for an interval $[c, d]$ at level 1 , its son-intervals are
$I_{n_{2}}(m, y, b):=\left[\left(m+y-b^{-n_{2}}\right)^{1 / n_{2}},\left(m+y+b^{-n_{2}}\right)^{1 / n_{2}}\right]$ with $m \in\left[c^{n_{2}}, d^{n_{2}}\right]$.

II. Computer the numbers and the lengths

By construction, for the fundamental intervals containing $z \in F$, we have

- each interval $\left[c_{k}, d_{k}\right]$ at level k contains at least

$$
m_{k}(z) \approx d_{k}^{n_{k+1}}-c_{k}^{n_{k+1}} \geq n_{k+1} c_{k}^{n_{k+1}-1} \cdot \frac{2}{n_{k} b^{n_{k}} d_{k}^{n_{k}-1}} \approx\left(\frac{z^{\theta-1}}{b}\right)^{\theta^{k}}
$$

son-intervals at level $k+1$.

- the distance between intervals at level $k+1$ contained in the interval $\left[c_{k}, d_{k}\right.$] at level k is at least

$$
\epsilon_{k}(z)=\frac{1-2 / b^{n_{k+1}}}{n_{k+1} d_{k}^{n_{k+1}-1}} \approx \frac{1}{z^{\theta^{k+1}}}
$$

III. Local dimension

The local dimension of $z \in F$ is bounded from below by

$$
\begin{aligned}
& \frac{\log \left(m_{1}(z) \cdots m_{k-1}(z)\right)}{-\log m_{k}(z) \epsilon_{k}(z)} \approx \frac{((\theta-1) \log z-\log b) \sum_{j=1}^{k-1} \theta^{k}}{-\log \theta^{k} \log b z} \\
= & \frac{(\theta-1) \log z-\log b}{(\theta-1) \log b z} \cdot \frac{\theta^{k}-1}{\theta^{k}} \\
\geq & \frac{(\theta-1) \log z-\log b}{(\theta-1) \log b z}-\varepsilon^{\prime}(k)
\end{aligned}
$$

with $\varepsilon^{\prime}(k) \rightarrow 0$ when $k \rightarrow \infty$. Using the relation $b=\tau^{\theta}$, we have a lower bound of the dimension of $E(X, y, \tau, b)$:

$$
\frac{(\theta-1) \log X-\log b}{(\theta-1) \log b X}=\frac{\log X-\frac{\theta}{\theta-1} \log \tau}{\log X+\theta \log \tau}
$$

