Ergodic Optimization and Prevalence —Fractal Geometry and dynamics, Będlewo

Yiwei Zhang (IMPAN)

October, 12 2015

ショック 川川 ショー オード・オード・シック

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ergodic optimization: the general setting

- X =compact metric space
- $T: X \to X$ continuous map
- $f: X \to \mathbb{R}$ continuous function ("performance" or "potential")

Ergodic optimization: the general setting

- X =compact metric space
- $T: X \to X$ continuous map
- $f: X \to \mathbb{R}$ continuous function ("performance" or "potential")
- $\mathcal{M}_T \coloneqq \{T\text{-invariant probability measures}\}$
- "ergodic supremum"

$$B(f) \coloneqq \sup_{\mu \in \mathcal{M}_T} \int f \, d\mu$$
$$= \sup_{x \in X} \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$$
$$= \lim_{n \to \infty} \sup_{x \in X} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$$

• Important applications: f is a ch.f or $f = \log |T'|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

An easy example

$$\begin{split} X &= \{0,1\}^{\mathbb{N}} = 2^{\mathbb{N}} \text{ Cantor set} \\ T \colon 2^{\mathbb{N}} \to 2^{\mathbb{N}} \text{ shift} \\ f &= \text{characteristic function of cylinder } C = [101] \end{split}$$

An easy example

- $X = \{0, 1\}^{\mathbb{N}} = 2^{\mathbb{N}} \text{ Cantor set}$ $T \colon 2^{\mathbb{N}} \to 2^{\mathbb{N}} \text{ shift}$
- f = characteristic function of cylinder C = [101]

Then $\beta(f) = 1/2$. Indeed:

Since T⁻¹(C) ∩ C = Ø, for every x ∈ 2^N, the frequency of visits to C is ≤ 1/2;

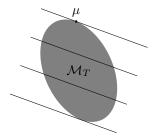
ショック 川川 ショー オード・オード・シック

• The *T*-invariant prob. μ supported on the orbit of $\overline{10} = (1, 0, 1, 0...)$ has $\int f d\mu = 1/2$. Rem.: μ is the *unique* such measure.

Maximizing measures

In general, a measure $\mu \in \mathcal{M}_T$ s.t. $\int f d\mu = \beta(f)$ is called a **maximizing measure**.

Existence? Yes (compactness).

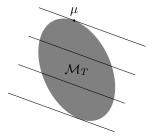


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Maximizing measures

In general, a measure $\mu \in \mathcal{M}_T$ s.t. $\int f d\mu = \beta(f)$ is called a **maximizing measure**.

Existence? Yes (compactness).



Generic uniqueness:

Theorem (Jenkinson and others)

For (topologically) generic f in any "reasonable"(*) space \mathcal{F} of continuous functions, the maximizing measure is **unique**. (*) a vector space \mathcal{F} continuously and densely embedded in $C^0(X)$.

The general problem

Problem

For a fixed "nice" dynamical system T, and a fixed "nice" family/space \mathcal{F} of functions f, understand the maximizing measures for all/most functions f.

Of course, the problem is uninteresting if T has few invariant measures.

ショック 川川 ショー オード・オード・シック

The general problem

Problem

For a fixed "nice" dynamical system T, and a fixed "nice" family/space \mathcal{F} of functions f, understand the maximizing measures for all/most functions f.

Of course, the problem is uninteresting if T has few invariant measures.

ショック 川川 ショー オード・オード・シック

In most of the literature, T is assumed to have strong **hyperbolicity** properties and therefore lots of periodic measures.

In all that follows we will assume T to be **uniformly** expanding.

Regularity makes a big difference

Assume T = uniformly expanding.

Theorem (Bousch–Jenkinson)

For generic C^0 functions, the maximizing measures have full support.

The situation is very different if the functions are more regular:

ショック 川川 ショー オード・オード・シック

Regularity makes a big difference

Assume T = uniformly expanding.

Theorem (Bousch–Jenkinson)

For generic C^0 functions, the maximizing measures have full support.

The situation is very different if the functions are more regular:

Theorem (Subordination principle)

If $f \in C^{\alpha}$ (i.e. f is α -Hölder) then there exists a compact invariant set $K_f \subset X$ ("Mather set") such that

 $\mu \in \mathcal{M}_T$ is maximizing for $f \Leftrightarrow \operatorname{supp} \mu \subset K_f$.

Corollary of the **Mañé Lemma** (or Mañé-Conze-Guivarc'h-Savchenko-Fathi-Contreras-Lopes-Thieullen-Bousch Lemma).

A nice example (Hunt, Ott, Jenkinson, Bousch)

The following example was first studied experimentally by Hunt and Ott (1996):

- $T(x) \coloneqq 2x \mod 1$ on $X = \mathbb{R}/2\pi\mathbb{Z}$.
- Family \mathcal{F} of functions: (nonzero) linear combinations of $\cos x$ and $\sin x$.

A nice example (Hunt, Ott, Jenkinson, Bousch)

The following example was first studied experimentally by Hunt and Ott (1996):

- $T(x) \coloneqq 2x \mod 1$ on $X = \mathbb{R}/2\pi\mathbb{Z}$.
- Family \mathcal{F} of functions: (nonzero) linear combinations of $\cos x$ and $\sin x$.

Theorem (Bousch 2000)

In that setting, maximizing measures are always unique. Moreover, for an **open and full measure** subset of \mathcal{F} , the maximizing measure is supported on a **periodic orbit**.

- ロ ト - 4 回 ト - 4 □

The big conjecture

Conjecture (Hunt-Ott 1996)

For typical chaotic systems, typical parameterized families of smooth functions, and most values of the parameter, the maximizing measure is unique and supported on a periodic orbit.

Dac

(Terms in color are left undefined...)

An important result

Improving on the work of previous authors (Yuan–Hunt, Contreras–Lopes–Thieullen, Bousch, Bressaud–Quas, Morris, Quas–Siefken), Contreras managed to prove the following:

Theorem (Contreras 2013)

For uniformly expanding dynamics, and (topologically) generic Lipschitz functions, the maximizing measure is (unique and) supported on a periodic orbit.

ショック 川川 ショー オード・オード・シック

An important result

Improving on the work of previous authors (Yuan–Hunt, Contreras–Lopes–Thieullen, Bousch, Bressaud–Quas, Morris, Quas–Siefken), Contreras managed to prove the following:

Theorem (Contreras 2013)

For uniformly expanding dynamics, and (topologically) generic Lipschitz functions, the maximizing measure is (unique and) supported on a periodic orbit.

Actually the conclusion holds for an open and dense subset of $C^{\text{Lip}}(X)$, and the "locking property" holds: the maximizing measures are robust under perturbations.

(日) (日) (日) (日) (日) (日) (日)

Goal

We would like to obtain results like Contreras', but with genericity being not only in the topological sense, but in a **probabilistic** sense as well (thus being a little closer to the spirit of the Hunt–Ott conjecture).

ショック 川川 ショー オード・オード・シック

Setting for our main result (details later):

Goal

We would like to obtain results like Contreras', but with genericity being not only in the topological sense, but in a **probabilistic** sense as well (thus being a little closer to the spirit of the Hunt–Ott conjecture).

Setting for our main result (details later):

- T =one-sided shift on 2 symbols;
- $\mathcal{F} =$ space of "super-continuous" functions (very strong modulus of regularity);

(日) (日) (日) (日) (日) (日) (日)

• "probabilistic genericity" is expressed in terms of **prevalence**.

Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional vector spaces?

• There is no useful (say, σ -finite) translation-invariant measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional vector spaces?

- There is no useful (say, σ -finite) translation-invariant measure.
- There is no useful (say, σ -finite) translation-invariant class of measures;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional vector spaces?

- There is no useful (say, σ -finite) translation-invariant measure.
- There is no useful (say, σ -finite) translation-invariant class of measures;
- However there is a translation-invariant notion of "almost every point", called **prevalence** [Hunt–Sauer–Yorke, Christensen].

Measure transversality and shyness

- $\mathcal{F} = \text{complete metrizable (perhaps non-separated) vector space; (e.g., Banach);}$
- $S \subset \mathcal{F}$ Borel set;
- μ = Borel probability measure on \mathcal{F} with compact support.

(日) (日) (日) (日) (日) (日) (日)

 μ is called **transverse** to $S(\mu \overline{\sqcap} S)$ if:

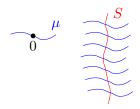
Measure transversality and shyness

- \mathcal{F} = complete metrizable (perhaps non-separated) vector space; (e.g., Banach);
- $S \subset \mathcal{F}$ Borel set;
- μ = Borel probability measure on \mathcal{F} with compact support.

 μ is called **transverse** to S ($\mu \overline{\sqcap} S$) if:

$$\forall f \in \mathcal{F}, \quad \mu(S-f) = 0.$$

I.e. summing to any $f \in \mathcal{F}$ a random perturbation we get outside of S with μ -probability 1.



うつう 山田 エルト エリア エロア

Measure transversality and shyness

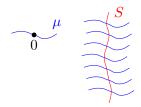
- \mathcal{F} = complete metrizable (perhaps non-separated) vector space; (e.g., Banach);
- $S \subset \mathcal{F}$ Borel set;
- μ = Borel probability measure on \mathcal{F} with compact support.

 μ is called **transverse** to S ($\mu \overline{\sqcap} S$) if:

$$\forall f \in \mathcal{F}, \quad \mu(S-f) = 0.$$

I.e. summing to any $f \in \mathcal{F}$ a random perturbation we get outside of S with μ -probability 1.

 $S \subset \mathcal{F}$ is called **shy** if $\exists \mu \sqcap S$.



うつん 川 エー・エー・ エー・シック

A Borel subset of a complete metrizable vector space is called **prevalent** if its complement is shy.

Less formally: In order to prove that a set $P \subset \mathcal{F}$ is prevalent, we need to find a compactly supported measure μ such that given any $f \in \mathcal{F}$, if we perturb f by adding a μ -random term g, then $f + g \in P$ with μ -probability 1.

Thus f + g can be thought as a **random perturbation** of f.

(日) (日) (日) (日) (日) (日) (日)

Properties of prevalence

 dim *F* < ∞ ⇒ the prevalent sets are exactly those of full Lebesgue measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Properties of prevalence

- dim *F* < ∞ ⇒ the prevalent sets are exactly those of full Lebesgue measure.
- Prevalence is preserved under translation.
- Prevalence is preserved under augmentation.
- Prevalence is preserved under countable intersection.

ショック 川川 ショー オード・オード・シック

• Prevalence implies denseness.

Some spaces of functions on $2^{\mathbb{N}}$

Given a sequence of positive numbers $\mathbf{a} = (a_n) \searrow 0$, define a metric on $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$:

 $d_{\mathbf{a}}(x,y) \coloneqq a_{n(x,y)}$ where $n(x,y) \coloneqq \inf\{i \in \mathbb{N}; x_i \neq y_i\}.$

ショック 川川 ショー オード・オード・シック

Space of functions:

Some spaces of functions on $2^{\mathbb{N}}$

Given a sequence of positive numbers $\mathbf{a} = (a_n) \searrow 0$, define a metric on $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$:

 $d_{\mathbf{a}}(x,y) \coloneqq a_{n(x,y)}$ where $n(x,y) \coloneqq \inf\{i \in \mathbb{N}; x_i \neq y_i\}.$

Space of functions:

 $C^{\mathbf{a}}(2^{\mathbb{N}}) \coloneqq \{ f \colon X \to \mathbb{R}; f \text{ is Lipschitz w.r.t. } d_{\mathbf{a}} \}$

(日) (日) (日) (日) (日) (日) (日)

(The faster $a_n \to 0$, the smaller the space $C^{\mathbf{a}}$.)

Some spaces of functions on $2^{\mathbb{N}}$

Given a sequence of positive numbers $\mathbf{a} = (a_n) \searrow 0$, define a metric on $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$:

 $d_{\mathbf{a}}(x,y) \coloneqq a_{n(x,y)}$ where $n(x,y) \coloneqq \inf\{i \in \mathbb{N}; x_i \neq y_i\}.$

Space of functions:

 $C^{\mathbf{a}}(2^{\mathbb{N}}) \coloneqq \left\{ f \colon X \to \mathbb{R}; \ f \text{ is Lipschitz w.r.t. } d_{\mathbf{a}} \right\}$

(The faster $a_n \to 0$, the smaller the space $C^{\mathbf{a}}$.) This is a (nonseparable) Banach space with the norm:

$$||f||_{\mathbf{a}} \coloneqq ||f||_{\infty} + \operatorname{Lip}_{\mathbf{a}}(f) \,.$$

(日) (日) (日) (日) (日) (日) (日)

Example:

Some spaces of functions on $2^{\mathbb{N}}$

Given a sequence of positive numbers $\mathbf{a} = (a_n) \searrow 0$, define a metric on $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$:

$$d_{\mathbf{a}}(x,y) \coloneqq a_{n(x,y)} \quad \text{where} \quad n(x,y) \coloneqq \inf\{i \in \mathbb{N}; \ x_i \neq y_i\}.$$

Space of functions:

$$C^{\mathbf{a}}(2^{\mathbb{N}}) \coloneqq \{ f \colon X \to \mathbb{R}; f \text{ is Lipschitz w.r.t. } d_{\mathbf{a}} \}$$

(The faster $a_n \to 0$, the smaller the space $C^{\mathbf{a}}$.) This is a (nonseparable) Banach space with the norm:

$$||f||_{\mathbf{a}} \coloneqq ||f||_{\infty} + \operatorname{Lip}_{\mathbf{a}}(f) \,.$$

Example: $d_{\mathbf{a}}$ with $\mathbf{a} = (2^{-n})$ is the "usual" metric on X. The space of α -Hölder functions w.r.t. the usual metric is $C^{\mathbf{b}}(2^{\mathbb{N}})$ where $\mathbf{b} = (2^{-\alpha n})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The main theorem

Theorem (Z. and Bochi. ArXiv:1501.00961)

The locking property (*) is prevalent in $C^{\mathbf{a}}(2^{\mathbb{N}})$, provided $\mathbf{a} = (a_n) \searrow 0$ sufficiently fast (**).

The main theorem

Theorem (Z. and Bochi. ArXiv:1501.00961)

The locking property (*) is prevalent in $C^{\mathbf{a}}(2^{\mathbb{N}})$, provided $\mathbf{a} = (a_n) \searrow 0$ sufficiently fast (**).

(*) A function $f \in C^{\mathbf{a}}(2^{\mathbb{N}})$ satisfies the **locking property** if:

• f has a unique maximizing measure μ (w.r.t. the shift), and it is periodic;

< ロ > < 伊 > < 三 > < 三 > < 三 > < ○ </p>

• μ is also the unique maximizing measure for every $g \in C^{\mathbf{a}}(2^{\mathbb{N}})$ sufficiently close to f.

The main theorem

Theorem (Z. and Bochi. ArXiv:1501.00961)

The locking property (*) is prevalent in $C^{\mathbf{a}}(2^{\mathbb{N}})$, provided $\mathbf{a} = (a_n) \searrow 0$ sufficiently fast (**).

(*) A function $f \in C^{\mathbf{a}}(2^{\mathbb{N}})$ satisfies the **locking property** if:

- f has a unique maximizing measure μ (w.r.t. the shift), and it is periodic;
- μ is also the unique maximizing measure for every $g \in C^{\mathbf{a}}(2^{\mathbb{N}})$ sufficiently close to f.

(**) Unfortunately, we need really fast convergence to 0, namely:

$$\frac{a_{n+1}}{a_n} = O\left(2^{-2^{n+2}}\right)$$

(日) (日) (日) (日) (日) (日) (日)

Haar functions

The **Haar functions** are continuous and form an orthogonal basis of $L^2(2^{\mathbb{N}}, \text{bernoulli}_{\frac{1}{2}, \frac{1}{2}});$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Haar functions

The **Haar functions** are continuous and form an orthogonal basis of $L^2(2^{\mathbb{N}}, \text{bernoulli}_{\frac{1}{2}, \frac{1}{2}})$; they are 1 and

$$h_{\emptyset} \coloneqq \frac{1}{2} (\chi_{[0]} - \chi_{[1]}) =$$

$$h_{0} \coloneqq \frac{1}{2} (\chi_{[00]} - \chi_{[01]}) =$$

$$h_{1} \coloneqq \frac{1}{2} (\chi_{[10]} - \chi_{[11]}) =$$

$$h_{00} \coloneqq \frac{1}{2} (\chi_{[000]} - \chi_{[001]}) =$$

$$\dots$$

$$h_{\omega} \coloneqq \frac{1}{2} (\chi_{[\omega0]} - \chi_{[\omega1]}) \quad (\omega = \text{word}).$$

Every continuous function f on the Cantor set $2^{\mathbb{N}}$ has a uniformly convergent (*) **Haar series**:

$$f(x) = c + \sum_{\omega} c_{\omega} h_{\omega}(x) ,$$

where ω runs on the (finite) words on the letters 0, 1.

(*) In that sense Haar series are better behaved that Fourier series.

The spaces $C^{\mathbf{a}}(2^{\mathbb{N}})$ introduced before can be essentially characterized in terms of the decay of the Haar coefficients (c_{ω}) .

The random perturbations

Given a family of positive numbers $\mathbf{b} = (b_{\omega})$ indexed by words ω , we define a set of functions:

$$\mathcal{H}_{\mathbf{b}} \coloneqq \left\{ \sum_{\omega} c_{\omega} h_{\omega}; \ c_{\omega} \in [-b_{\omega}, b_{\omega}] \right\} = \mathbf{Hilbert \ brick.}$$

ショック 川川 ショー オード・オード・シック

Then, for appropriate **b** (e.g. $b_{\omega} = a_n/(n+1)$, $n = |\omega|$):

The random perturbations

Given a family of positive numbers $\mathbf{b} = (b_{\omega})$ indexed by words ω , we define a set of functions:

$$\mathcal{H}_{\mathbf{b}} \coloneqq \left\{ \sum_{\omega} c_{\omega} h_{\omega}; \; c_{\omega} \in [-b_{\omega}, b_{\omega}] \right\} = \mathbf{Hilbert \; brick.}$$

Then, for appropriate **b** (e.g. $b_{\omega} = a_n/(n+1), n = |\omega|$):

- $\mathcal{H}_{\mathbf{b}}$ is a compact subset of $C^{\mathbf{a}}(2^{\mathbb{N}})$;
- taking random independent coefficients $c_{\omega} \sim \text{Uniform}([-b_{\omega}, b_{\omega}])$ we obtain a probability $\mu_{\mathbf{b}}$ supported on $\mathcal{H}_{\mathbf{b}}$;
- these are the random perturbations in our Main Theorem, i.e., the measure $\mu_{\mathbf{b}}$ is transverse to the set of functions that don't have the locking property.

Strategy of the proof of the Main Theorem

A step function of level n is a function on $2^{\mathbb{N}}$ that is constant on cylinders of rank n. We will see that step functions have periodic maximizing measures.

Since $\mathbf{a} = (a_n) \to 0$ very fast, the functions f in $C^{\mathbf{a}}(2^{\mathbb{N}})$ are well-approximated by step functions f_n (which can be obtained by truncating the Haar series).

(日) (日) (日) (日) (日) (日) (日)

Strategy of the proof of the Main Theorem

A step function of level n is a function on $2^{\mathbb{N}}$ that is constant on cylinders of rank n. We will see that step functions have periodic maximizing measures.

Since $\mathbf{a} = (a_n) \to 0$ very fast, the functions f in $C^{\mathbf{a}}(2^{\mathbb{N}})$ are well-approximated by step functions f_n (which can be obtained by truncating the Haar series).

We will show that with probability 1 (in any translated Hilbert brick...), the maximizing measure for f coincides with the (periodic) maximizing measure for f_n for some n.

We need quantitative information on the ergodic optimization of step functions...

Finite dimensional ergodic optimization

Let F be a finite-dimensional vector space of functions, with basis $\{f_1, \ldots, f_n\}$.

Define a "projection" linear map $\pi: \mathcal{M} \to \mathbb{R}^n$ on the vector space of signed measures \mathcal{M} by

$$\pi(\mu) \coloneqq \left(\int f_1 \, d\mu, \dots, \int f_n \, d\mu\right)$$

Define a compact convex set:

$$R \coloneqq \pi(\mathcal{M}_T) = \mathbf{rotation \ set}$$

(the projection of the $T\mbox{-invariant}$ probability measures).

Origin of the name: (f_1, \ldots, f_n) = displacement function of a map $T: \mathbb{T}^n \to \mathbb{T}^n$ homotopic to id.

- ロ ト - 4 回 ト - 4 □

Finite dimensional ergodic optimization

Functions $f \in F$ can be "integrated" with respect to vectors $v \in R = \pi(\mathcal{M}_T)$:

$$\langle f, v \rangle \coloneqq \int f \, d\mu \quad \text{where } \mu \text{ is s.t. } \pi(\mu) = v.$$

To compute the "ergodic supremum" becomes a finite-dimensional problem:

$$\beta(f) \coloneqq \sup_{\mu \in \mathcal{M}_T} \int f \, d\mu = \sup_{v \in R} \langle f, v \rangle \,.$$

If the extreme points of the rotation set R happen to have unique preimages in \mathcal{M}_T then every $f \in F$ has a unique maximizing measure.

Finite dimensional ergodic optimization

Conclusion

Ergodic optimization of functions in an *n*-dimensional space $F \subset C^0(X)$ is basically equivalent to:

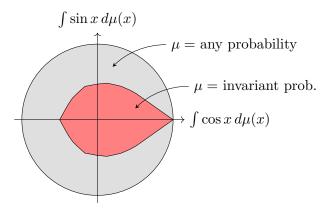
- regarding F as $(\mathbb{R}^n)^*$;
- determining the extreme points of the compact convex set $R := \pi(\mathcal{M}_T) \subset \mathbb{R}^n;$
- determining their preimages under $\pi: \mathcal{M}_T \to \mathbb{R}^n$.

Remark

For T = shift, every compact convex set $R \subset \mathbb{R}^n$ can be realized as a rotation set (for suitable C^0 functions). (Kucherenko–Wolf)

The fish on the dish

Example #1 (Hunt, Ott, Jenkinson, Bousch): $T(x) = 2x \mod 1$ on $\mathbb{R}/2\pi\mathbb{Z}$, $F \coloneqq \{\text{trig. poly. deg } 1\}$.



Note: "sharper" extreme points of the fish are more likely to be maximizing...

ショック 川川 ショー オード・オード・シック

Example #2: step functions of level 2

 $F := \{ \text{step functions on } 2^{\mathbb{N}} \text{ of level } 2 \}, \\ \text{with basis } \chi_{[00]}, \chi_{[01]}, \chi_{[10]}, \chi_{[11]}. \\ \text{The projection } \pi \colon \mathcal{M} \to \mathbb{R}^4 \text{ is:} \end{cases}$

$$\mu\mapsto (\mu([00]),\mu([01]),\mu([10]),\mu([11])).$$

The "dish" $\pi(\{\text{prob. measures}\}) = \text{unit simplex:}$

$$\Delta = \left\{ (p_{ij}) \in \mathbb{R}^4; \ p_{ij} \ge 0, \ \sum p_{ij} = 1 \right\}.$$

The "fish" $R = \pi(\{\text{inv. prob.}\})$ is

$$R = \{(p_{ij}) \in \Delta; \ p_{01} = p_{10}\}.$$

Example #2: step functions of level 2

 $F := \{ \text{step functions on } 2^{\mathbb{N}} \text{ of level } 2 \}, \\ \text{with basis } \chi_{[00]}, \chi_{[01]}, \chi_{[10]}, \chi_{[11]}. \\ \text{The projection } \pi \colon \mathcal{M} \to \mathbb{R}^4 \text{ is:} \end{cases}$

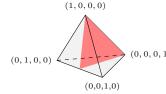
$$\mu \mapsto (\mu([00]), \mu([01]), \mu([10]), \mu([11])).$$

The "dish" $\pi(\{\text{prob. measures}\}) = \text{unit simplex:}$

$$\Delta = \left\{ (p_{ij}) \in \mathbb{R}^4; \ p_{ij} \ge 0, \ \sum p_{ij} = 1 \right\}.$$

The "fish" $R = \pi(\{\text{inv. prob.}\})$ is

$$R = \{(p_{ij}) \in \Delta; \ p_{01} = p_{10}\}.$$



The vertices have unique pre-images in \mathcal{M}_T , which are measures supported on periodic orbits:

Vertex of R	per. orb.	
(1, 0, 0, 0)	$\overline{0}$	
(0, 0, 0, 1)	$\overline{1}$	
$(0, \frac{1}{2}, \frac{1}{2}, 0)$	$\overline{01}$	
A	토	~~~

ショック 川川 ショー オード・オード・シック

Generalization: Step functions of level n

For the shift $T: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, consider:

- $F_n := \{ \text{step functions of level } n \} \simeq \mathbb{R}^{2^n};$
- $R_n \coloneqq$ associated rotation set.

Generalization: Step functions of level n

For the shift $T: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, consider:

- $F_n := \{ \text{step functions of level } n \} \simeq \mathbb{R}^{2^n};$
- $R_n \coloneqq$ associated rotation set.

Theorem (Ziemian)

- The rotation set R_n is a **polytope** in \mathbb{R}^{2^n} ;
- each vertex of R_n is the projection of a **unique** shift-invariant measure, which is supported on a periodic orbit.

ショック 川川 ショー オード・オード・シック

The polytopes R_n

	dim	# vertices	assoc. periodic orbits
R_1	1	2	$\overline{0}, \overline{1}$
R_2	2	3	$\overline{0}, \overline{1}, \overline{01}$
R_3	4	6	$\overline{0}, \overline{1}, \overline{01}, \overline{001}, \overline{001}, \overline{011}, \overline{0011}$
R_4	8	19	
R_5	16	179	
R_6	32	30166	

The number of vertices grows super-exponentially; there is no exact formula.

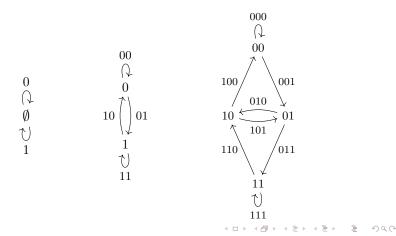
ショック 川川 ショー オード・オード・シック

To describe the polytopes R_n , we need to introduce a combinatorial object.

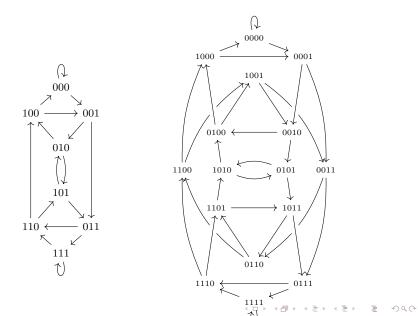
de Bruijn graphs

The **de Bruijn graph** G_n has:

- nodes labelled by words on length n-1;
- arrows labelled by words ω on length n, of form $\operatorname{prefix}(\omega) \xrightarrow{\omega} \operatorname{suffix}(\omega);$



G_4 and G_5



The graph G_n and the rotation set R_n

Recall: $F_n := \{ \text{step functions of level } n \}$ Given $f \in F_n$ assigns **weights** of the arrows of G_n . The maximizing measure μ for f can be obtained as follows:

- find the (simple closed) cycle of G_n of maximum mean weight;¹
- this cycle can be seen as a periodic orbit for the shift;
- μ is the measure supported on this orbit.

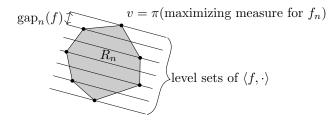
Conclusion

The set R_n is indeed a polytope; its vertices correspond to the (simple closed) cycles on the graph G_n .

¹This problem is studied in applied math (Karp algorithm $\exists \cdot) \in \exists \cdot = 0 \land 0$

A "measure" of uniqueness

Suppose $f: 2^{\mathbb{N}} \to \mathbb{R}$ is a step function of level n, or equivalently, an attribution of weights to the arrows of G_n . Compute $\langle f, v \rangle$ for each vertex v of the polytope R_n . Let $\operatorname{gap}_n(f) \coloneqq$ the difference between the maximum and the second maximum:



So $gap_n(f) \ge 0$, and $gap_n(f) > 0$ iff the maximizing measure is unique.

ショック 川川 ショー オード・オード・シック

Proof of the prevalence theorem

Let us recall the main theorem:

Theorem (Z,Bochi)

Fix a space of "super-continuous" functions $C^{\mathbf{a}}(2^{\mathbb{N}})$, and an appropriate Hilbert brick

$$\mathcal{H}_{\mathbf{b}} \coloneqq \left\{ \sum_{\omega} c_{\omega} h_{\omega}; \ c_{\omega} \in [-b_{\omega}, b_{\omega}] \right\}.$$

Let $g \in C^{\mathbf{a}}(2^{\mathbb{N}})$, and take a random function f in the translated Hilbert brick $g + \mathcal{H}_{\mathbf{b}}$.

Then there exists a "periodic measure" μ which is the unique maximizing measure for f and for all $\tilde{f} \in C^{\mathbf{a}}(2^{\mathbb{N}})$ sufficiently close to f.

Main Lemma: the Gap criterion

Lemma (Gap criterion)

Given an **arbitrary continuous function** f, truncate its Haar series to obtain a step function f_n :

$$f(x) = c(f) + \sum_{\omega} c_{\omega}(f) h_{\omega}(x) \implies f_n(x) \coloneqq c(f) + \sum_{|\omega| < n} c_{\omega}(f) h_{\omega}(x) \,.$$

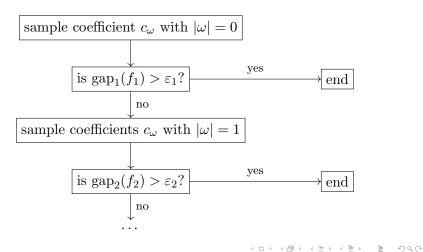
If the following gap condition holds:

$$\operatorname{gap}_{n}(f_{n}) > \sum_{k=n}^{\infty} (k-n+1) \max_{|\omega|=k} |c_{\omega}(f)|$$

then the maximizing measure for f_n (which is unique and periodic) is also the maximizing measure for f.

Proof of the theorem

Let ε_n be an upper bound for the RHS in the gap condition. The following "algorithm" finds the maximizing measure (provided it stops):



We need to show that the algorithm stops with probability 1, i.e., $\operatorname{Prob}\left[\exists n; \operatorname{gap}_n(f_n) > \varepsilon_n\right] = 1.$

ショック 川川 ショー オード・オード・シック

We need to show that the algorithm stops with probability 1, i.e., $\operatorname{Prob}\left[\exists n; \operatorname{gap}_n(f_n) > \varepsilon_n\right] = 1.$

- $gap_n(f_n)$ depends on the Haar coefficients of level n-1;
- $\varepsilon_n = O(\text{Haar coefficients of level } n);$
- the Haar coefficients of level n are much smaller than the **variance** of the Haar coefficients of level n 1.

うつん 川 エー・エー・ エー・シック

We need to show that the algorithm stops with probability 1, i.e., $\operatorname{Prob}\left[\exists n; \operatorname{gap}_n(f_n) > \varepsilon_n\right] = 1.$

- $gap_n(f_n)$ depends on the Haar coefficients of level n-1;
- $\varepsilon_n = O(\text{Haar coefficients of level } n);$
- the Haar coefficients of level n are much smaller than the **variance** of the Haar coefficients of level n 1.

(日) (日) (日) (日) (日) (日) (日)

It follows that:

- variance $(gap_n(f_n)) \gg \varepsilon_n;$
- $\operatorname{Prob}\left[\operatorname{gap}_n(f_n) > \varepsilon_n\right] \to 1$ (overkill)
- Prob[algorithm stops at a level $\leq n$] $\rightarrow 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Proof of the theorem

Why do we need super-exponential decay of the Haar coefficients (strong modulus of continuity)?

Because:

Why do we need super-exponential decay of the Haar coefficients (strong modulus of continuity)?

Because:

- the polytope R_n has a super-exponential number of vertices;
- these vertices are the candidates for maximizing measures for f_n ;
- and we need to guarantee a gap between the top 2 vertices.

ショック 川川 ショー オード・オード・シック

How to improve the main result?

What about the **Hölder case** (exponential decay of Haar coefficients)? Recall:

Lemma (Gap criterion)

$$\operatorname{gap}_n(f_n) > \varepsilon_n \ge \sum_{k=n}^{\infty} (k-n+1) \max_{|\omega|=k} |c_{\omega}(f)| \Longrightarrow$$

the maximizing measure for f_n (which is unique and periodic) is also the maximizing measure for f.

Hölder case $\Rightarrow \varepsilon_n \to 0$ exponentially, while computer experiments indicate that $gap_n(f_n) \to 0$ polynomially (i.e. $O(1/n^{\alpha}))$ a.s. (despite the super-exponential number of candidate maximizers.)

A finer understanding of the geometry of the polyhedra R_n may help...