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Ergodic optimization: the general setting

X = compact metric space

T : X → X continuous map

f : X → R continuous function (“performance” or
“potential”)

MT :=
{
T -invariant probability measures}

“ergodic supremum”

β(f) := sup
µ∈MT

∫
f dµ

= sup
x∈X

lim sup
n→∞

1

n

n−1∑
i=0

f(T ix)

= lim
n→∞

sup
x∈X

1

n

n−1∑
i=0

f(T ix)

Important applications: f is a ch.f or f = log |T ′|.
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An easy example

X = {0, 1}N = 2N Cantor set
T : 2N → 2N shift
f = characteristic function of cylinder C = [101]

Then β(f) = 1/2. Indeed:

Since T−1(C) ∩ C = ∅, for every x ∈ 2N, the frequency of
visits to C is ≤ 1/2;

The T -invariant prob. µ supported on the orbit of
10 = (1, 0, 1, 0 . . . ) has

∫
f dµ = 1/2.

Rem.: µ is the unique such measure.
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Maximizing measures

In general, a measure µ ∈ MT s.t.∫
f dµ = β(f) is called a maximiz-

ing measure.

Existence? Yes (compactness).

MT

µ

Generic uniqueness:

Theorem (Jenkinson and others)

For (topologically) generic f in any “reasonable”(*) space F of
continuous functions, the maximizing measure is unique.
(*) a vector space F continuously and densely embedded in C0(X).
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The general problem

Problem

For a fixed “nice” dynamical system T , and a fixed “nice”
family/space F of functions f , understand the maximizing
measures for all/most functions f .

Of course, the problem is uninteresting if T has few invariant
measures.

In most of the literature, T is assumed to have strong
hyperbolicity properties and therefore lots of periodic
measures.
In all that follows we will assume T to be uniformly
expanding.
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Regularity makes a big difference

Assume T = uniformly expanding.

Theorem (Bousch–Jenkinson)

For generic C0 functions, the maximizing measures have full
support.

The situation is very different if the functions are more regular:

Theorem (Subordination principle)

If f ∈ Cα (i.e. f is α-Hölder) then there exists a compact
invariant set Kf ⊂ X (“Mather set”) such that

µ ∈MT is maximizing for f ⇔ suppµ ⊂ Kf .

Corollary of the Mañé Lemma (or Mañé–Conze–Guivarc’h–

Savchenko–Fathi–Contreras–Lopes–Thieullen–Bousch

Lemma).
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A nice example (Hunt, Ott, Jenkinson, Bousch)

The following example was first studied experimentally by Hunt
and Ott (1996):

T (x) := 2x mod 1 on X = R/2πZ.

Family F of functions: (nonzero) linear combinations of
cosx and sinx.

Theorem (Bousch 2000)

In that setting, maximizing measures are always unique.
Moreover, for an open and full measure subset of F , the
maximizing measure is supported on a periodic orbit.
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The big conjecture

Conjecture (Hunt–Ott 1996)

For typical chaotic systems, typical parameterized families of
smooth functions, and most values of the parameter, the
maximizing measure is unique and supported on a periodic
orbit.

(Terms in color are left undefined. . . )
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An important result

Improving on the work of previous authors (Yuan–Hunt,

Contreras–Lopes–Thieullen, Bousch, Bressaud–Quas, Morris,

Quas–Siefken), Contreras managed to prove the following:

Theorem (Contreras 2013)

For uniformly expanding dynamics, and (topologically) generic
Lipschitz functions, the maximizing measure is (unique and)
supported on a periodic orbit.

Actually the conclusion holds for an open and dense subset of
CLip(X), and the “locking property” holds: the maximizing
measures are robust under perturbations.
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Goal

We would like to obtain results like Contreras’, but with
genericity being not only in the topological sense, but in a
probabilistic sense as well (thus being a little closer to the
spirit of the Hunt–Ott conjecture).

Setting for our main result (details later):

T = one-sided shift on 2 symbols;

F = space of “super-continuous” functions (very strong
modulus of regularity);

“probabilistic genericity” is expressed in terms of
prevalence.
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Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional
vector spaces?

There is no useful (say, σ-finite) translation-invariant
measure.

There is no useful (say, σ-finite) translation-invariant class of
measures;

However there is a translation-invariant notion of “almost
every point”, called prevalence [Hunt–Sauer–Yorke,
Christensen].



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional
vector spaces?

There is no useful (say, σ-finite) translation-invariant
measure.

There is no useful (say, σ-finite) translation-invariant class of
measures;

However there is a translation-invariant notion of “almost
every point”, called prevalence [Hunt–Sauer–Yorke,
Christensen].



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Motivation for prevalence

Is it possible to speak of probabilities in infinite-dimensional
vector spaces?

There is no useful (say, σ-finite) translation-invariant
measure.

There is no useful (say, σ-finite) translation-invariant class of
measures;

However there is a translation-invariant notion of “almost
every point”, called prevalence [Hunt–Sauer–Yorke,
Christensen].



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Measure transversality and shyness

F = complete metrizable (perhaps non-separated) vector
space; (e.g., Banach);

S ⊂ F Borel set;

µ = Borel probability measure on F with compact support.

µ is called transverse to S (µ>∩ S) if:

∀f ∈ F , µ(S − f) = 0.

I.e. summing to any f ∈ F a random
perturbation we get outside of S with
µ-probability 1.

µ

0

S

S ⊂ F is called shy if ∃ µ>∩ S.
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Prevalent sets

A Borel subset of a complete metrizable vector space is called
prevalent if its complement is shy.

Less formally: In order to prove that a set P ⊂ F is prevalent,
we need to find a compactly supported measure µ such that
given any f ∈ F , if we perturb f by adding a µ-random term g,
then f + g ∈ P with µ-probability 1.

Thus f + g can be thought as a random perturbation of f .
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Properties of prevalence

dimF <∞ ⇒ the prevalent sets are exactly those of full
Lebesgue measure.

Prevalence is preserved under translation.

Prevalence is preserved under augmentation.

Prevalence is preserved under countable intersection.

Prevalence implies denseness.
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Some spaces of functions on 2N

Given a sequence of positive numbers a = (an)↘ 0, define a
metric on 2N = {0, 1}N:

da(x, y) := an(x,y) where n(x, y) := inf{i ∈ N; xi 6= yi}.

Space of functions:

Ca(2N) :=
{
f : X → R; f is Lipschitz w.r.t. da

}
(The faster an → 0, the smaller the space Ca.)
This is a (nonseparable) Banach space with the norm:

‖f‖a := ‖f‖∞ + Lipa(f) .

Example: da with a = (2−n) is the “usual” metric on X. The
space of α-Hölder functions w.r.t. the usual metric is Cb(2N)
where b = (2−αn).
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space of α-Hölder functions w.r.t. the usual metric is Cb(2N)
where b = (2−αn).



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Some spaces of functions on 2N

Given a sequence of positive numbers a = (an)↘ 0, define a
metric on 2N = {0, 1}N:

da(x, y) := an(x,y) where n(x, y) := inf{i ∈ N; xi 6= yi}.

Space of functions:

Ca(2N) :=
{
f : X → R; f is Lipschitz w.r.t. da

}
(The faster an → 0, the smaller the space Ca.)
This is a (nonseparable) Banach space with the norm:

‖f‖a := ‖f‖∞ + Lipa(f) .

Example: da with a = (2−n) is the “usual” metric on X. The
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The main theorem

Theorem (Z. and Bochi. ArXiv:1501.00961)

The locking property (*) is prevalent in Ca(2N), provided
a = (an)↘ 0 sufficiently fast (**).

(*) A function f ∈ Ca(2N) satisfies the locking property if:

f has a unique maximizing measure µ (w.r.t. the shift),
and it is periodic;

µ is also the unique maximizing measure for every
g ∈ Ca(2N) sufficiently close to f .

(**) Unfortunately, we need really fast convergence to 0,
namely:

an+1

an
= O

(
2−2

n+2
)
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Haar functions

The Haar functions are continuous and form an orthogonal
basis of L2(2N, bernoulli 1

2
, 1
2
);

they are 1 and

h∅ := 1
2(χ[0] − χ[1]) =

h0 := 1
2(χ[00] − χ[01]) =

h1 := 1
2(χ[10] − χ[11]) =

h00 := 1
2(χ[000] − χ[001]) =

. . .

hω := 1
2(χ[ω0] − χ[ω1]) (ω = word).
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Haar series

Every continuous function f on the Cantor set 2N has a
uniformly convergent (*) Haar series:

f(x) = c+
∑
ω

cωhω(x) ,

where ω runs on the (finite) words on the letters 0, 1.

(*) In that sense Haar series are better behaved that Fourier series.

The spaces Ca(2N) introduced before can be essentially
characterized in terms of the decay of the Haar coefficients (cω).
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The random perturbations

Given a family of positive numbers b = (bω) indexed by words
ω, we define a set of functions:

Hb :=

{∑
ω

cωhω; cω ∈ [−bω, bω]

}
= Hilbert brick.

Then, for appropriate b (e.g. bω = an/(n+ 1), n = |ω|):

Hb is a compact subset of Ca(2N);

taking random independent coefficients
cω ∼ Uniform([−bω, bω]) we obtain a probability µb
supported on Hb;

these are the random perturbations in our Main
Theorem, i.e., the measure µb is transverse to the set of
functions that don’t have the locking property.
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Strategy of the proof of the Main Theorem

A step function of level n is a function on 2N that is constant
on cylinders of rank n. We will see that step functions have
periodic maximizing measures.

Since a = (an)→ 0 very fast, the functions f in Ca(2N) are
well-approximated by step functions fn (which can be obtained
by truncating the Haar series).

We will show that with probability 1 (in any translated
Hilbert brick. . . ), the maximizing measure for f coincides
with the (periodic) maximizing measure for fn for some
n.

We need quantitative information on the ergodic optimization
of step functions. . .
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Finite dimensional ergodic optimization

Let F be a finite-dimensional vector space of functions, with
basis {f1, . . . , fn}.
Define a “projection” linear map π : M→ Rn on the vector
space of signed measures M by

π(µ) :=

(∫
f1 dµ, . . . ,

∫
fn dµ

)
.

Define a compact convex set:

R := π(MT ) = rotation set

(the projection of the T -invariant probability measures).

Origin of the name: (f1, . . . , fn) = displacement function of a map

T : Tn → Tn homotopic to id.



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Finite dimensional ergodic optimization

Functions f ∈ F can be “integrated” with respect to vectors
v ∈ R = π(MT ):

〈f, v〉 :=

∫
f dµ where µ is s.t. π(µ) = v.

To compute the “ergodic supremum” becomes a
finite-dimensional problem:

β(f) := sup
µ∈MT

∫
f dµ = sup

v∈R
〈f, v〉 .

If the extreme points of the rotation set R happen to have
unique preimages in MT then every f ∈ F has a unique
maximizing measure.
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Finite dimensional ergodic optimization

Conclusion

Ergodic optimization of functions in an n-dimensional space
F ⊂ C0(X) is basically equivalent to:

regarding F as (Rn)∗;

determining the extreme points of the compact convex set
R := π(MT ) ⊂ Rn;

determining their preimages under π : MT → Rn.

Remark

For T = shift, every compact convex set R ⊂ Rn can be realized
as a rotation set (for suitable C0 functions). (Kucherenko–Wolf)
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The fish on the dish

Example #1 (Hunt, Ott, Jenkinson, Bousch):
T (x) = 2x mod 1 on R/2πZ, F := {trig. poly. deg 1}.

∫
cosx dµ(x)

∫
sinx dµ(x)

µ = any probability

µ = invariant prob.

Note: “sharper” extreme points of the fish are more likely to be
maximizing. . .
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Example #2: step functions of level 2

F := {step functions on 2N of level 2},
with basis χ[00], χ[01], χ[10], χ[11].
The projection π : M→ R4 is:

µ 7→ (µ([00]), µ([01]), µ([10]), µ([11])).

The “dish” π({prob. measures}) = unit
simplex:

∆ =
{

(pij) ∈ R4; pij ≥ 0,
∑

pij = 1
}
.

The “fish” R = π({inv. prob.}) is

R = {(pij) ∈ ∆; p01 = p10} .

(1, 0, 0, 0)

(0, 0, 0, 1)
(0, 1, 0, 0)

(0,0,1,0)

The vertices have
unique pre-images
in MT , which are
measures supported
on periodic orbits:

Vertex of R per. orb.
(1, 0, 0, 0) 0
(0, 0, 0, 1) 1

(0, 1
2
, 1
2
, 0) 01
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Generalization: Step functions of level n

For the shift T : 2N → 2N, consider:

Fn := {step functions of level n} ' R2n ;

Rn := associated rotation set.

Theorem (Ziemian)

The rotation set Rn is a polytope in R2n;

each vertex of Rn is the projection of a unique
shift-invariant measure, which is supported on a periodic
orbit.
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The polytopes Rn

dim # vertices assoc. periodic orbits
R1 1 2 0, 1
R2 2 3 0, 1, 01
R3 4 6 0, 1, 01, 001, 011, 0011
R4 8 19
R5 16 179
R6 32 30166

The number of vertices grows super-exponentially; there is no
exact formula.

To describe the polytopes Rn, we need to introduce a
combinatorial object.
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de Bruijn graphs

The de Bruijn graph Gn has:

nodes labelled by words on length n− 1;
arrows labelled by words ω on length n, of form
prefix(ω)

ω−→ suffix(ω);

∅

0

1

0

1

00

01

11

10

00

0110

11

000

001

010

011

100

101

110

111
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G4 and G5

000

001100

010

101

011110

111
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00011000

1001

00100100

0011010110101100

10111101

0110

01111110

1111
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The graph Gn and the rotation set Rn

Recall: Fn := {step functions of level n }
Given f ∈ Fn assigns weights of the arrows of Gn. The
maximizing measure µ for f can be obtained as follows:

find the (simple closed) cycle of Gn of maximum mean
weight;1

this cycle can be seen as a periodic orbit for the shift;

µ is the measure supported on this orbit.

Conclusion

The set Rn is indeed a polytope; its vertices correspond to the
(simple closed) cycles on the graph Gn.

1This problem is studied in applied math (Karp algorithm . . . )
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A “measure” of uniqueness

Suppose f : 2N → R is a step function of level n, or equivalently,
an attribution of weights to the arrows of Gn .
Compute 〈f, v〉 for each vertex v of the polytope Rn.
Let gapn(f) := the difference between the maximum and the
second maximum:

v = π(maximizing measure for fn)

Rn

gapn(f)

level sets of 〈f, ·〉

So gapn(f) ≥ 0, and gapn(f) > 0 iff the maximizing measure is
unique.
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Proof of the prevalence theorem

Let us recall the main theorem:

Theorem (Z,Bochi)

Fix a space of “super-continuous” functions Ca(2N), and an
appropriate Hilbert brick

Hb :=

{∑
ω

cωhω; cω ∈ [−bω, bω]

}
.

Let g ∈ Ca(2N), and take a random function f in the translated
Hilbert brick g +Hb.
Then there exists a “periodic measure” µ which is the unique
maximizing measure for f and for all f̃ ∈ Ca(2N) sufficiently
close to f .
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Main Lemma: the Gap criterion

Lemma (Gap criterion)

Given an arbitrary continuous function f , truncate its
Haar series to obtain a step function fn:

f(x) = c(f)+
∑
ω

cω(f)hω(x) ⇒ fn(x) := c(f)+
∑
|ω|<n

cω(f)hω(x) .

If the following gap condition holds:

gapn(fn) >

∞∑
k=n

(k − n+ 1) max
|ω|=k

|cω(f)|

then the maximizing measure for fn (which is unique and
periodic) is also the maximizing measure for f .

Proof: Combinatorial arguments with the de Bruijn graphs (4 pages).
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Proof of the theorem

Let εn be an upper bound for the RHS in the gap condition.
The following “algorithm” finds the maximizing measure
(provided it stops):

sample coefficient cω with |ω| = 0

is gap1(f1) > ε1? end

sample coefficients cω with |ω| = 1

is gap2(f2) > ε2? end

· · ·

yes

no

yes

no
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Proof of the theorem

We need to show that the algorithm stops with probability 1,
i.e., Prob

[
∃n; gapn(fn) > εn

]
= 1.

gapn(fn) depends on the Haar coefficients of level n− 1;

εn = O(Haar coefficients of level n);

the Haar coefficients of level n are much smaller than the
variance of the Haar coefficients of level n− 1.

It follows that:

variance(gapn(fn))� εn;

Prob
[

gapn(fn) > εn
]
→ 1 (overkill)

Prob
[
algorithm stops at a level ≤ n

]
→ 1



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Proof of the theorem

We need to show that the algorithm stops with probability 1,
i.e., Prob

[
∃n; gapn(fn) > εn

]
= 1.

gapn(fn) depends on the Haar coefficients of level n− 1;

εn = O(Haar coefficients of level n);

the Haar coefficients of level n are much smaller than the
variance of the Haar coefficients of level n− 1.

It follows that:

variance(gapn(fn))� εn;

Prob
[

gapn(fn) > εn
]
→ 1 (overkill)

Prob
[
algorithm stops at a level ≤ n

]
→ 1



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Proof of the theorem

We need to show that the algorithm stops with probability 1,
i.e., Prob

[
∃n; gapn(fn) > εn

]
= 1.

gapn(fn) depends on the Haar coefficients of level n− 1;

εn = O(Haar coefficients of level n);

the Haar coefficients of level n are much smaller than the
variance of the Haar coefficients of level n− 1.

It follows that:

variance(gapn(fn))� εn;

Prob
[

gapn(fn) > εn
]
→ 1 (overkill)

Prob
[
algorithm stops at a level ≤ n

]
→ 1



Ergodic optimization Prevalence Main theorem Finite dim. erg. opt. Proof of prevalence Final comments

Proof of the theorem

Why do we need super-exponential decay of the Haar
coefficients (strong modulus of continuity)?

Because:

the polytope Rn has a super-exponential number of
vertices;

these vertices are the candidates for maximizing measures
for fn;

and we need to guarantee a gap between the top 2 vertices.
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How to improve the main result?

What about the Hölder case (exponential decay of Haar
coefficients)? Recall:

Lemma (Gap criterion)

gapn(fn) > εn ≥
∞∑
k=n

(k − n+ 1) max
|ω|=k

|cω(f)| ⇒

the maximizing measure for fn (which is unique and periodic) is
also the maximizing measure for f .

Hölder case ⇒ εn → 0 exponentially, while computer
experiments indicate that gapn(fn)→ 0 polynomially (i.e.
O(1/nα)) a.s. (despite the super-exponential number of
candidate maximizers.)

A finer understanding of the geometry of the polyhedra Rn may
help. . .
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