Self-similar sets from the topological point of view

Magdalena Nowak

Jan Kochanowski University in Kielce

Będlewo 2015

joint work with T. Banakh, F. Strobin

Self-similar sets

X - topological space $\mathcal{H}(X)$ - the space of nonempty, compact subsets of X

Definition

For a dynamical system on $\mathcal{H}(X)$ generated by a finite family \mathcal{F} of continuous maps $X \to X$, such that

$$\mathcal{K} \in \mathcal{H}(X)$$
 $\mathcal{F}(\mathcal{K}) = \bigcup_{f \in \mathcal{F}} f(\mathcal{K}),$

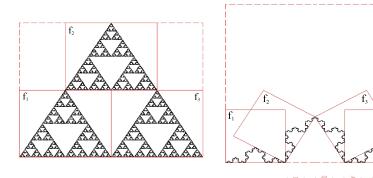
the **self-similar set** (**fractal**) is a nonempty compact set $A \subset X$ such that $A = \mathcal{F}(A)$ and for every compact set $K \in \mathcal{H}(X)$ the sequence $(\mathcal{F}^n(K))_{n=1}^{\infty}$ converges to A in the Vietoris topology on $\mathcal{H}(X)$.

イロト イポト イラト イラト

Classical self-similar sets

Definition

For a complete metric space X and a family \mathcal{F} of Banach contractions, the self-similar set is called the attractor of iterated function system (IFS) \mathcal{F} or **IFS-attractor**.



f.

Definitions Results

Fractals Scattered height

Definition

A compact space $A = \bigcup_{f \in \mathcal{F}} f(A)$ for continuous $f : A \to A$ is

- topological fractal if A is a Hausdorff space and each f ∈ F is topologically contracting; for every open cover U of A there is n ∈ N such that for any maps f₁,..., f_n ∈ F the set f₁ ∘ · · · ∘ f_n(A) ⊂ U ∈ U.
- Banach fractal if A is homeomorphic to some IFS-attractor.
- **Euclidean fractal** if A is homeomorphic to some IFS-attractor in \mathbb{R}^n .
- Banach ultrafractal if A is metrizable, the family (f(A))_{f∈F} is disjoint and for any λ > 0 each f ∈ F has Lip(f) < λ with respect to some ultrametric generating the topology of A.

A metric *d* on *X* is called an *ultrametric* if it satisfies the strong triangle inequality $d(x, z) \leq \max\{d(x, y), d(y, z)\}$ for $x, y, z \in X$.

Fact 1

For any compact metrizable space we have the implications

Banach ultrafr. \Rightarrow Euclidean fr. \Rightarrow Banach fr. \Rightarrow topological fr.

Fact 2

The topology of a compact metrizable space X is generated by an ultrametric if and only if X is zero-dimensional (has a base of closed-and-open sets).

 $\mathsf{Banach}\ \mathsf{ultrafractal} \Rightarrow \mathsf{zero-dimensional}\ \mathsf{space}$

Problem Which zero-dimensional compact spaces are Banach ultrafractals? (미나네라나로바네로 한 것으로 Magdalena Nowak Self-similar sets from the topological point of view

Fact 1

For any compact metrizable space we have the implications

Banach ultrafr. \Rightarrow Euclidean fr. \Rightarrow Banach fr. \Rightarrow topological fr.

Fact 2

The topology of a compact metrizable space X is generated by an ultrametric if and only if X is zero-dimensional (has a base of closed-and-open sets).

 $\mathsf{Banach}\ \mathsf{ultrafractal} \Rightarrow \mathsf{zero-dimensional}\ \mathsf{space}$

Fact 1

For any compact metrizable space we have the implications

Banach ultrafr. \Rightarrow Euclidean fr. \Rightarrow Banach fr. \Rightarrow topological fr.

Fact 2

The topology of a compact metrizable space X is generated by an ultrametric if and only if X is zero-dimensional (has a base of closed-and-open sets).

 $\mathsf{Banach}\ \mathsf{ultrafractal} \Rightarrow \mathsf{zero-dimensional}\ \mathsf{space}$

Scattered height

For a topological space X let

 $X' = \{x \in X : x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})^{\prime}$$

• $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α

Definition

For a countable compact topological space X we define its height

$$\hbar(X) = \min\{\beta \colon X^{(\beta)} \text{ is finite}\}.$$

For an uncountable space X we put $\hbar(X) = \infty$, where $\infty > \alpha$ for each ordinal α .

イロト イポト イラト イラト

Scattered height

For a topological space X let

 $X' = \{x \in X : x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})'$$

•
$$X^{(lpha)} = igcap_{eta < lpha} X^{(eta)}$$
 for a limit ordinal $lpha$

Definition

For a countable compact topological space X we define its height

$$\hbar(X) = \min\{\beta \colon X^{(\beta)} \text{ is finite}\}.$$

For an uncountable space X we put $\hbar(X) = \infty$, where $\infty > \alpha$ for each ordinal α .

- (同) - (同) - (同)

Scattered height

For a topological space X let

 $X' = \{x \in X : x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})'$$

• $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α

Definition

For a countable compact topological space X we define its height

$$\hbar(X) = \min\{\beta \colon X^{(\beta)} \text{ is finite}\}.$$

For an uncountable space X we put $\hbar(X) = \infty$, where $\infty > \alpha$ for each ordinal α .

イロト イポト イヨト イヨト

э

Theorem (Banakh, N., Strobin) 2014

For a zero-dimensional compact metrizable space X the following conditions are equivalent:

- X is a topological fractal;
- X is a Banach fractal;
- X is an Euclidean fractal;
- X is a Banach ultrafractal;
- \bigcirc X is uncountable or is countable with the non limit height.

医下子 医下

Theorem (Banakh, N., Strobin) 2014

For a zero-dimensional compact metrizable space X the following conditions are equivalent:

- X is a topological fractal;
- X is a Banach fractal;
- X is an Euclidean fractal;
- X is a Banach ultrafractal;
- **\bigcirc** X is uncountable or is countable with the non limit height.

$$(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$$
 by the definitions

医下子 医下

Theorem (Banakh, N., Strobin) 2014

For a zero-dimensional compact metrizable space X the following conditions are equivalent:

- X is a topological fractal;
- X is a Banach fractal;
- X is an Euclidean fractal;
- X is a Banach ultrafractal;
- **\bigcirc** X is uncountable or is countable with the non limit height.

 $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ by the definitions $(1) \Rightarrow (5)$ follows form results obtained by Banakh, Kubiś, Novosad, N., Strobin

・吊り ・ ヨト ・ ヨト

Theorem (Banakh, N., Strobin) 2014

For a zero-dimensional compact metrizable space X the following conditions are equivalent:

- X is a topological fractal;
- X is a Banach fractal;
- X is an Euclidean fractal;
- X is a Banach ultrafractal;
- **\bigcirc** X is uncountable or is countable with the non limit height.

 $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ by the definitions (1) \Rightarrow (5) follows form results obtained by Banakh, Kubiś, Novosad, N., Strobin (5) \Rightarrow (4)

・吊り ・ ヨト ・ ヨト

Idea of the proof

Definition

A compact metrizable space X will be called **unital** if X is either uncountable or X is countable and the set $X^{(\hbar(X))}$ is a singleton.

Idea of the proof

Definition

A compact metrizable space X will be called **unital** if X is either uncountable or X is countable and the set $X^{(\hbar(X))}$ is a singleton.

Each compact metrizable space can be written as a finite topological sum of its unital subspaces.

化原因 化原因

Idea of the proof

Definition

A compact metrizable space X will be called **unital** if X is either uncountable or X is countable and the set $X^{(\hbar(X))}$ is a singleton.

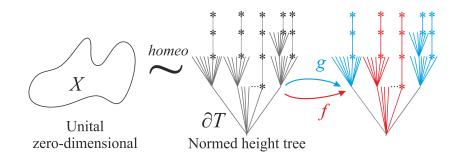
Each compact metrizable space can be written as a finite topological sum of its unital subspaces.

The compact zero-dimensional unital space X with non-limit $\hbar(X)$ is a closure of disjoint union $X = \overline{\bigcup_{i \in \mathbb{N}} X_i}$ of unital spaces of the same height $\hbar(X_i) + 1 = \hbar(X)$, where $\infty + 1 = \infty$.

イロト イポト イラト イラト

Definitions Results Zero-dimensional spaces Euclidean fractals

Idea of the proof

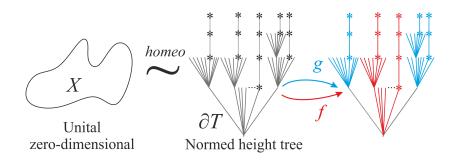


э

★ Ξ ► < Ξ ►</p>

Definitions Results Zero-dimensional spaces Euclidean fractals

Idea of the proof



Lemma

For any zero-dimensional unital spaces T, S with $\hbar(T) \ge \hbar(S)$ there exists a continuous surjection $f : T \to S$.

イロト イポト イヨト イヨト

Definitions Zero-dimensional : Results Euclidean fractals

Which compact spaces are Euclidean fractals?

(4 回) (4 回) (4 回)

э

Which compact spaces are Euclidean fractals?

Definition

A metric *d* on the space *X* is called **doubling** if there exists a natural number *M* such that each open ball B(x, r) is contained in at most *M* open balls $B(y, \frac{r}{2})$.

Which compact spaces are Euclidean fractals?

Definition

A metric *d* on the space *X* is called **doubling** if there exists a natural number *M* such that each open ball B(x, r) is contained in at most *M* open balls $B(y, \frac{r}{2})$.

Assouad's theorem

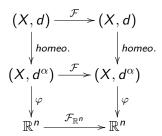
For each metric space X with doubling metric d and for each $\alpha \in (0, 1)$ there exists bi-Lipschitz function $f: (X, d^{\alpha}) \to \mathbb{R}^n$ which embeds space (X, d^{α}) into the Euclidean space.

イロト イポト イヨト イヨト

Euclidean fractals

Lemma

Each IFS-attractor with doubling metric is Euclidean fractal.

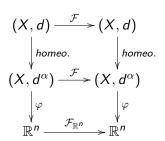


Zero-dimensional space Euclidean fractals

Euclidean fractals

Lemma

Each IFS-attractor with doubling metric is Euclidean fractal.



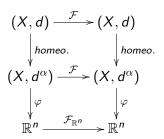
Each
$$f\in \mathcal{F}$$
 is $\lambda ext{-Lipschitz}$ in $(X,d).$
 $(\lambda<1)$

Zero-dimensional spaces Euclidean fractals

Euclidean fractals

Lemma

Each IFS-attractor with doubling metric is Euclidean fractal.



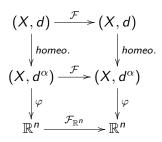
Each
$$f\in \mathcal{F}$$
 is $\lambda ext{-Lipschitz}$ in $(X,d).$
 $(\lambda<1)$

Each $f \in \mathcal{F}$ is λ^{α} -Lipschitz in (X, d^{α}) .

Euclidean fractals

Lemma

Each IFS-attractor with doubling metric is Euclidean fractal.



Each
$$f\in \mathcal{F}$$
 is $\lambda ext{-Lipschitz}$ in $(X,d).$
 $(\lambda<1)$

Each $f \in \mathcal{F}$ is λ^{α} -Lipschitz in (X, d^{α}) .

Let
$$k \in \mathbb{N}$$
 be such that
 $\operatorname{Lip}(\varphi) \cdot (\lambda^{\alpha})^k \cdot \operatorname{Lip}(\varphi^{-1}) < 1$
 $\mathcal{F}_{\mathbb{R}^n} = \{\varphi \circ f_1 \circ \cdots \circ f_k \circ \varphi^{-1} \colon f_i \in \mathcal{F}$

Definitions Zero-dimensional Results Euclidean fractals

IFS-attractors with doubling metric

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.

Zero-dimensional space Euclidean fractals

IFS-attractors with doubling metric

Fact

Bi-Lipschitz image of IFS-attractor is also IFS-attractor.

Problem

Which compact spaces are homeomorphic to IFS-attractor with doubling metric?

Theorem (Banakh, N 2015)

Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.

A (10) + (10)

Theorem (Banakh, N 2015)

Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.

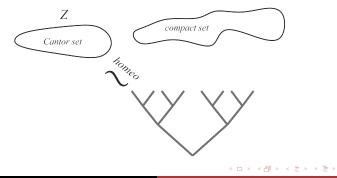
1992 - Duvall & Husch

イロト イポト イヨト イヨト

Theorem (Banakh, N 2015)

Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.

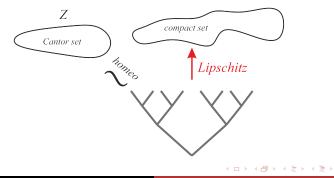
1992 - Duvall & Husch



Theorem (Banakh, N 2015)

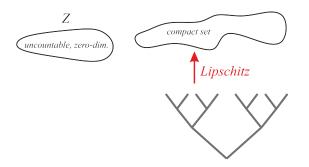
Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.

1992 - Duvall & Husch



Theorem (Banakh, N 2015)

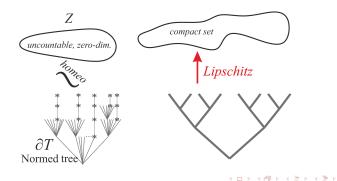
Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.



イロト 不得下 イヨト イヨト

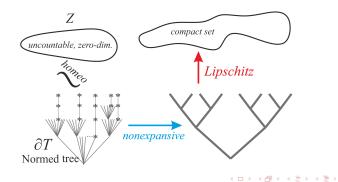
Theorem (Banakh, N 2015)

Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.



Theorem (Banakh, N 2015)

Let $X \subset \mathbb{R}^n$ be compact set and Z be its uncountable, zero-dimensional, open subset. Then X is an Euclidean fractal.



- T. Banakh, W. Kubiś, N. Novosad, M. Nowak, F. Strobin, Contractive function systems, their attractors and metrization, to appear in Topological Methods in Nonlinear Analysis; arxiv: arXiv: 1405.6289v1 2014.
- T. Banakh, M. Nowak, F. Strobin Detecting topological and Banach fractals among zero-dimensional spaces, Topology Appl. 196 A (2015) 22–30.

M. Nowak, *Topological classification of scattered IFS-attractors*, Topology Appl. **160** (2013), no. 14, 1889–1901.

- 4 周 ト 4 ラ ト 4 ラ ト