INFINITESIMAL GENERATORS OF POLYNOMIAL PROCESSES

Jacek Wesołowski
(Politechnika Warszawska, Warszawa, Poland)

Probability and Analysis
Będlewo, 4-8.05.2015

with Włodek Bryc (Univ. Cincinnati, USA)

Plan

(1) Algebra for polynomial processes

2 Quadratic harnesses

Plan

(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow

Plan

(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow

Plan

(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow

4 Free $\mathrm{QH}: \gamma=-\tau \sigma$
(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow
(4) Free $\mathrm{QH}: \gamma=-\tau \sigma$

Algebra of sequences of polynomials

Let \mathcal{Q} be a linear space of sequences of polynomials in variable $x \in \mathbb{R}$. For $\mathbb{P}=\left(p_{0}, p_{1}, \ldots,\right)$ and $\mathbb{Q}=\left(q_{0}, q_{1}, \ldots\right)$ we define $\mathbb{P} \mathbb{Q}=: \mathbb{R}=\left(r_{0}, r_{1}, \ldots\right) \in \mathcal{Q}$ where

$$
r_{k}=\sum_{j}\left[q_{k}\right]_{j} p_{j}, \quad k=0,1, \ldots
$$

This product is associative. The identity is

$$
\mathbb{E}=\left(1, x, x^{2}, \ldots\right)
$$

If $\operatorname{deg}\left(p_{n}\right)=n$ for all $n \geq 0$ then $\mathbb{P}=\left(p_{0}, p_{1}, p_{2}, \ldots\right)$ is invertible.

\mathbb{F} and \mathbb{D}

We will need special elements $\mathbb{F}, \mathbb{D} \in \mathcal{Q}$:

$$
\mathbb{F}=\left(x, x^{2}, x^{3}, x^{4} \ldots\right) \quad \text { and } \quad \mathbb{D}=\left(0,1, x, x^{2}, \ldots\right)
$$

We note that

$$
\mathbb{D F}=\mathbb{E} \quad \text { and } \quad \mathbb{E}-\mathbb{F D}=(1,0,0,0, \ldots)
$$

Isomorphism

Let \mathcal{P} denote the space of all polynomials on \mathbb{R}.
The algebra $\operatorname{End}(\mathcal{P})$ is isomorphic to the algebra \mathcal{Q}. The isomorphism $\Psi: \operatorname{End}(\mathcal{P}) \rightarrow \mathcal{Q}$ is defined by

$$
\Psi(\mathbf{P})=\left(\mathbf{P}(1), \mathbf{P}(x), \mathbf{P}\left(x^{2}\right), \ldots\right):=\mathbb{P} \in \mathcal{Q}, \quad \forall \mathbf{P} \in \operatorname{End}(\mathcal{P})
$$

For $\mathbf{P}, \mathbf{Q} \in \operatorname{End}(\mathcal{P})$ and $\mathbb{P}=\Psi(\mathbf{P}), \mathbb{Q}=\Psi(\mathbf{Q})$

$$
\Psi(\mathbf{P} \circ \mathbf{Q})=\mathbb{P} \mathbb{Q} .
$$

Polynomial process

Let $\mathcal{P}_{\leq k}$ be a space of polynomials on \mathbb{R} with degree at most k, $k=0,1,2, \ldots$

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a non-homogeneous Markov process with infinite state space $S \subset \mathbb{R}$. If

$$
\mathrm{E}\left(f\left(X_{t}\right) \mid X_{s}\right) \in \mathcal{P}_{\leq k}
$$

for any $f \in \mathcal{P}_{\leq k}, k=1,2, \ldots$, we call X a polynomial process.

Family of operators on \mathcal{P}

Through

$$
\mathbf{P}_{s, t} f(x):=\mathrm{E}\left(f\left(X_{t}\right) \mid X_{s}=x\right), \quad f \in \mathcal{P}
$$

such process can be identified with a family of linear operators
$\mathbf{P}_{s, t}: \mathcal{P} \rightarrow \mathcal{P}, 0 \leq s \leq t$, satisfying

- $\mathbf{P}_{s, t}\left(\mathcal{P}_{\leq k}\right)=\mathcal{P}_{\leq k}, k \geq 0$;
- $\mathbf{P}_{s, t}(1)=1$;
- for $0 \leq s \leq t \leq u$

$$
\mathbf{P}_{s, t} \circ \mathbf{P}_{t, u}=\mathbf{P}_{s, u}
$$

Family of elements of \mathcal{Q}

Through isomorphism $\Psi: \operatorname{End}(\mathcal{P}) \rightarrow \mathcal{Q}$ the process X can be identified with a family of $\mathbb{P}_{s, t}=\left(p_{s, t}^{0}, p_{s, t}^{1}, p_{s, t}^{2}, \ldots\right) \in \mathcal{Q}$, $0 \leq s \leq t$ satisfying

- $\mathbb{P}_{s, t}$ is invertible;
- $\mathbb{P}_{s, t}(\mathbb{E}-\mathbb{F D})=\mathbb{E}-\mathbb{F} \mathbb{D}$;
- for $0 \leq s \leq t \leq u$

$$
\begin{equation*}
\mathbb{P}_{s, t} \mathbb{P}_{t, u}=\mathbb{P}_{s, u} \tag{1}
\end{equation*}
$$

Martingale polynomials

From the above conditions we conclude that

- $\mathbb{P}_{t, t}=\mathbb{E}$
- if $\mathbb{M}_{t}=\mathbb{P}_{0, t}^{-1}$ then

$$
\begin{equation*}
\mathbb{M}_{s}=\mathbb{P}_{s, t} \mathbb{M}_{t} \tag{2}
\end{equation*}
$$

The identity (2) follows by multiplying the flow equation

$$
\mathbb{P}_{0, s} \mathbb{P}_{s, t}=\mathbb{P}_{0, t}
$$

by \mathbb{M}_{s} and \mathbb{M}_{t} :

$$
\mathbb{M}_{s} \mathbb{P}_{0, s} \mathbb{P}_{s, t} \mathbb{M}_{t}=\mathbb{M}_{s} \mathbb{P}_{0, t} \mathbb{M}_{t}
$$

Martingale polynomials, cont.

Condition (2) says that if $\mathbb{M}_{t}=\left(m_{t}^{0}, m_{t}^{1}, m_{t}^{2}, \ldots\right)$ then $\left(m_{t}^{k}\right)_{t \geq 0}$, $k \geq 0$, are martingale polynomials for X, that is

$$
\mathrm{E}\left(m_{t}^{k}\left(X_{t}\right) \mid X_{s}\right)=m_{s}^{k}\left(X_{s}\right), \quad 0 \leq s \leq t \quad k \geq 0 .
$$

Note that $\operatorname{deg}\left(m_{t}^{k}\right)=k, k \geq 0$.
Note also that

$$
\mathbb{P}_{s, t}=\mathbb{M}_{s} \mathbb{M}_{t}^{-1}
$$

(1) Algebra for polynomial processes

(2) Quadratic harnesses
(3) QH flow
4. Free $\mathrm{QH}: \gamma=-\tau \sigma$

Harness (Hammersley, 1967, Mansuy, Yor, 2005)
Let $X=\left(X_{t}\right)_{t \geq 0}$ be a real valued stochastic process,

$$
\mathrm{E} X_{t}=0, \quad \mathrm{E} X_{s} X_{t}=s \quad \forall 0 \leq s \leq t
$$

Harness (Hammersley, 1967, Mansuy, Yor, 2005)
Let $X=\left(X_{t}\right)_{t \geq 0}$ be a real valued stochastic process,

$$
\mathrm{E} X_{t}=0, \quad \mathrm{E} X_{s} X_{t}=s \quad \forall 0 \leq s \leq t
$$

Let $\left(\mathcal{F}_{s, u}\right)_{0 \leq s<u}$ be a natural past-future filtration of X, i.e.

$$
\mathcal{F}_{s, u}=\sigma\left\{X_{\alpha}, \alpha \notin(s, u)\right\}
$$

Harness (Hammersley, 1967, Mansuy, Yor, 2005)

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a real valued stochastic process,

$$
\mathrm{E} X_{t}=0, \quad \mathrm{E} X_{s} X_{t}=s \quad \forall 0 \leq s \leq t
$$

Let $\left(\mathcal{F}_{s, u}\right)_{0 \leq s<u}$ be a natural past-future filtration of X, i.e.

$$
\mathcal{F}_{s, u}=\sigma\left\{X_{\alpha}, \alpha \notin(s, u)\right\}
$$

The process X is a harness if $\forall 0 \leq s<t<u$

$$
\mathrm{E}\left(X_{t} \mid \mathcal{F}_{s, u}\right)=a_{t s u} X_{s}+b_{t s u} X_{u}=\frac{(u-t) X_{s}+(t-s) X_{u}}{u-s}=t \Delta_{s, u}+\widetilde{\Delta}_{s, u}
$$

where

$$
\Delta_{s, u}=\frac{X_{u}-X_{s}}{u-s} \quad \text { oraz } \quad \widetilde{\Delta}_{s, u}=\frac{\frac{1}{u} x_{u}-\frac{1}{s} x_{s}}{\frac{1}{u}-\frac{1}{s}} .
$$

Quadratic harness (BMW, 2007)

If X is a harness and additionally
$\mathrm{E}\left(X_{t}^{2} \mid \mathcal{F}_{s, u}\right)=A_{t s u} X_{s}^{2}+B_{t s u} X_{s} X_{u}+C_{t s u} X_{u}^{2}+D_{t s u} X_{s}+E_{t s u} X_{u}+F_{t s u}$ then X is called a quadratic harness.

Then there exist numbers $\theta, \eta \in \mathbb{R}, \tau, \sigma \geq 0, \gamma \leq 1+2 \sqrt{\tau \sigma}$ such that

Quadratic harness (BMW, 2007)

If X is a harness and additionally
$\mathrm{E}\left(X_{t}^{2} \mid \mathcal{F}_{s, u}\right)=A_{t s u} X_{s}^{2}+B_{t s u} X_{s} X_{u}+C_{t s u} X_{u}^{2}+D_{t s u} X_{s}+E_{t s u} X_{u}+F_{t s u}$ then X is called a quadratic harness.

Then there exist numbers $\theta, \eta \in \mathbb{R}, \tau, \sigma \geq 0, \gamma \leq 1+2 \sqrt{\tau \sigma}$ such that

$$
\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{s, u}\right)=F_{t s u} K\left(\Delta_{s, u}, \widetilde{\Delta}_{s, u}\right)
$$

where

$$
\begin{aligned}
K(x, y):= & 1+\theta x+\eta y+\tau x^{2}+\sigma y^{2}-(1-\gamma) x y \\
& \text { and } \quad F_{t s u}=\frac{(u-t)(u-s)}{u(1+\sigma s)+\tau-\gamma s} .
\end{aligned}
$$

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case $\gamma=1+2 \sqrt{\tau \sigma}$) uniquely determine all moments, and these moments uniquely determine the process $X \sim \mathrm{QH}(\theta, \eta, \tau, \sigma ; \gamma)$;

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case $\gamma=1+2 \sqrt{\tau \sigma}$) uniquely determine all moments, and these moments uniquely determine the process $X \sim \mathrm{QH}(\theta, \eta, \tau, \sigma ; \gamma)$;
- X is a (non-homogeneous) Markov process;

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case $\gamma=1+2 \sqrt{\tau \sigma}$) uniquely determine all moments, and these moments uniquely determine the process $X \sim \mathrm{QH}(\theta, \eta, \tau, \sigma ; \gamma)$;
- X is a (non-homogeneous) Markov process;
- X has orthogonal martingale polynomials $\left(m_{n}(\cdot, t)\right)$ i.e. for $t \geq 0$

$$
\mathrm{E} m_{n}\left(X_{t}, t\right) m_{k}\left(X_{t}, t\right)=0, \quad k \neq n
$$

and for $n \geq 0$

$$
\mathrm{E}\left(m_{n}\left(X_{t}, t\right) \mid \mathcal{F}_{s}\right)=m_{n}\left(X_{s}, s\right) \quad s<t
$$

Examples of $X \sim \operatorname{QH}(\theta, \eta, \tau, \sigma, \gamma)$

- $\mathrm{QH}(0,0,0,0,1)$ - Wiener process,
- $\mathrm{QH}(\theta, 0,0,0,1)$ - centered Poisson process,
- $\mathrm{QH}(\theta, 0, \tau, 0,1)$ - Lévy-Meixner processes (Schoutens, 2000),
- $\mathrm{QH}(0,0,0,0,0)$ - free Brownian motion (Biane, 1998),
- $\mathrm{QH}(0,0,0,0, q)$ - q-Gaussian process (Bożejko, Kümmerer, Speicher, 1997),
- $\mathrm{QH}(\theta, 0, \tau, 0,0)$ - free Lévy-Meixner process (Anshelevich, 2003),
- $\mathrm{QH}(\theta, 0, \tau, 0, q)$ - q-Lévy-Meixner processes (BW, 2005)
- $\mathrm{QH}(\theta, \eta, 0,0, q)$ - bi-Poisson processes (Biane, 1996, BW, $2006(q=1)$, BW $2007(q=0)$, BMW, $2008(q \in[-1,1])$,
- $\mathrm{QH}(\theta, \eta, \tau, \sigma,-\tau \sigma)$ - free quadratic harness (BMW, 2011).
(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow

4. Free $\mathrm{QH}: \gamma=-\tau \sigma$

Definition

$\left(\mathbb{P}_{s, t}, 0 \leq s \leq t\right)$ is a quadratic harness $\operatorname{QH}(\theta, \eta, \tau, \sigma \gamma)$ flow if
(1) (martingale) $\mathbb{P}_{s, t}\left(\mathbb{F D}-\mathbb{F}^{2} \mathbb{D}^{2}\right)=\mathbb{F D}-\mathbb{F}^{2} \mathbb{D}^{2}$,
(2) (harness) There exists $\mathbb{X} \in \mathcal{Q}$ such that

$$
\mathbb{P}_{0, t} \mathbb{F}=(\mathbb{F}+t \mathbb{X}) \mathbb{P}_{0, t}
$$

(3) (quadratic harness) The above \mathbb{X} satisfies

$$
\mathbb{X} \mathbb{F}-\gamma \mathbb{F} \mathbb{X}=\mathbb{E}+\theta \mathbb{X}+\eta \mathbb{F}+\tau \mathbb{X}^{2}+\sigma \mathbb{F}^{2}
$$

Martingale and harness

Ad.1. Note that $\mathbb{F P D}-\mathbb{F}^{2} \mathbb{D}^{2}=(0, x, 0,0, \ldots)$. That is $\mathbf{P}_{s, t}(x)=x$, meaning that $\mathrm{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=X_{s}$.
Ad.2. For a martingale polynomial $m_{n}(\cdot, t)$ the harness property gives

$$
\mathrm{E}\left(X_{t} m_{n}\left(X_{u}, u\right) \mid X_{s}\right)=\frac{u-t}{u-s} X_{s} m_{n}\left(X_{s}, s\right)+\frac{t-s}{u-s} \mathrm{E}\left(X_{u} m_{n}\left(X_{u}, u\right) \mid X_{s}\right)
$$

Martingality gives

$$
\mathrm{E}\left(X_{t} m_{n}\left(X_{u}, u\right) \mid X_{s}\right)=\mathrm{E}\left(X_{t} m_{n}\left(X_{t}, t\right) \mid X_{s}\right)
$$

That is

$$
\mathrm{E}\left(X_{t} m_{n}\left(X_{t}, t\right) \mid X_{s}\right)=\frac{u-t}{u-s} X_{s} m_{n}\left(X_{s}, s\right)+\frac{t-s}{u-s} \mathrm{E}\left(X_{u} m_{n}\left(X_{u}, u\right) \mid X_{s}\right)
$$

Ad 2, cont.

Equivalently,

Define \mathbb{J}_{t} by $\mathbb{F M}_{t}=\mathbb{M}_{t} \mathbb{J}_{t}$. Then from (3) we get

$$
(u-s) \mathbb{J}_{t}=(u-t) \mathbb{J}_{s}+(t-s) \mathbb{J}_{u}
$$

and thus

$$
\mathbb{J}_{t}=\mathbb{Y}+t \mathbb{X} \quad \text { for some } \quad \mathbb{X}, \mathbb{Y} \in \mathcal{Q}
$$

Consequently,

$$
\mathbb{F M}_{t}=\mathbb{M}_{t}(\mathbb{Y}+t \mathbb{X})
$$

Since $\mathbb{M}_{0}=\mathbb{E}$ we get that $\mathbb{Y}=\mathbb{F}$.

Generator

The left infinitesimal generator \mathbb{A}_{t}^{-}exists since \mathbb{M}_{t} is element-wise differentiable in t
$\mathbb{A}_{t}^{-} \mathbb{M}_{t}=\lim _{h \rightarrow 0^{+}} \frac{1}{h}\left(\mathbb{P}_{t-h, t}-\mathbb{E}\right) \mathbb{M}_{t}=\lim _{h \rightarrow 0^{+}} \frac{1}{h}\left(\mathbb{M}_{t-h}-\mathbb{M}_{t}\right)=-\frac{\partial}{\partial t} \mathbb{M}_{t}$.
The right infinitesimal generator exists since $\mathbb{P}_{s, t}$ is continuous in t

$$
\begin{aligned}
\mathbb{A}_{t}^{+} \mathbb{M}_{t} & =\lim _{h \rightarrow 0^{+}} \frac{1}{h}\left(\mathbb{P}_{t, t+h} \mathbb{M}_{t}-\mathbb{M}_{t}\right)=\lim _{h \rightarrow 0^{+}} \mathbb{P}_{t, t+h}\left(\mathbb{M}_{t}-\mathbb{M}_{t+h}\right) \\
& =\lim _{h \rightarrow 0^{+}} \mathbb{P}_{t, t+h} \lim _{h \rightarrow 0^{+}} \frac{1}{h}\left(\mathbb{M}_{t}-\mathbb{M}_{t+h}\right)=-\frac{\partial}{\partial t} \mathbb{M}_{t}
\end{aligned}
$$

Consequently,

$$
\mathbb{A}_{t}^{-}=\mathbb{A}_{t}^{+}:=\mathbb{A}_{t} \in \mathcal{Q}
$$

Uniqueness

We note that for $\mathbb{A}_{t}=\left(a_{t}^{0}, a_{t}^{1}, a_{t}^{2}, \ldots\right)$

- $a_{t}^{n} \in \mathcal{P}_{n}$
- $a_{t}^{0}=0$ since $\mathbb{A}_{t}(\mathbb{E}-\mathbb{F D})=0$ (due to $\left.\mathbb{P}_{s, t}(\mathbb{E}-\mathbb{F D})=\mathbb{E}-\mathbb{F} \mathbb{D}\right)$;
- $a_{t}^{1}=0$ since $\mathbb{A}_{t}\left(\mathbb{F D}-\mathbb{F}^{2} \mathbb{D}^{2}\right)=0$
(due to $\left.\mathbb{P}_{s, t}\left(\mathbb{F} \mathbb{D}-\mathbb{F}^{2} \mathbb{D}^{2}\right)=\mathbb{F D}-\mathbb{F}^{2} \mathbb{D}^{2}\right)$.
Proposition. A polynomial process $\left\{\mathbb{P}_{s, t}, 0 \leq s \leq t\right\}$ satisfying the harness property

$$
\mathbb{P}_{0, t} \mathbb{F}=(\mathbb{F}+t \mathbb{X}) \mathbb{P}_{0, t}
$$

is uniquely determined by the generators $\left(\mathbb{A}_{t}\right)_{t \geq 0}$.

Auxiliary sequence $\mathbb{H}_{t} \in \mathcal{Q}$

For a polynomial harness $\left\{\mathbb{P}_{s, t}\right\}$, differentiate wrt t

$$
\mathbb{F M}_{t}=\mathbb{M}_{t}(\mathbb{F}+t \mathbb{X}), \quad \mathbb{X} \in \mathcal{Q}
$$

to see that

$$
\mathbb{A}_{t} \mathbb{F}-\mathbb{F} \mathbb{A}_{t}=\mathbb{M}_{t} \mathbb{X} \mathbb{M}_{t}^{-1}
$$

Proposition. \mathbb{H}_{t} uniquely determines \mathbb{A}_{t}

Iterating this we get
well defined as element-wise it is a sum of finitely many
elements.

Auxiliary sequence $\mathbb{H}_{t} \in \mathcal{Q}$

For a polynomial harness $\left\{\mathbb{P}_{s, t}\right\}$, differentiate wrt t

$$
\mathbb{F M}_{t}=\mathbb{M}_{t}(\mathbb{F}+t \mathbb{X}), \quad \mathbb{X} \in \mathcal{Q}
$$

to see that

$$
\mathbb{A}_{t} \mathbb{F}-\mathbb{F} \mathbb{A}_{t}=\mathbb{M}_{t} \mathbb{X} \mathbb{M}_{t}^{-1}=: \mathbb{H}_{t}
$$

Proposition. \mathbb{H}_{t} uniquely determines \mathbb{A}_{t}.

Iterating this we get
well defined as element-wise it is a sum of finitely many
elements.

Auxiliary sequence $\mathbb{H}_{t} \in \mathcal{Q}$

For a polynomial harness $\left\{\mathbb{P}_{s, t}\right\}$, differentiate wrt t

$$
\mathbb{F M}_{t}=\mathbb{M}_{t}(\mathbb{F}+t \mathbb{X}), \quad \mathbb{X} \in \mathcal{Q}
$$

to see that

$$
\mathbb{A}_{t} \mathbb{F}-\mathbb{F} \mathbb{A}_{t}=\mathbb{M}_{t} \mathbb{X} \mathbb{M}_{t}^{-1}=: \mathbb{H}_{t}
$$

Proposition. \mathbb{H}_{t} uniquely determines \mathbb{A}_{t}.
Proof. Since $\mathbb{A}_{t}=\mathbb{A}_{t} \mathbb{F D}$ we have

$$
\mathbb{A}_{t}=\mathbb{F} \mathbb{A}_{t} \mathbb{D}+\mathbb{H}_{t} \mathbb{D}
$$

Iterating this we get

$$
\mathbb{A}_{t}=\sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{H}_{t} \mathbb{D}^{k+1}
$$

well defined as element-wise it is a sum of finitely many elements.

QH process

Theorem. Let $\left\{\mathbb{P}_{s, t}, 0 \leq s \leq t\right\}$ be a quadratic harness. Denote $\mathbb{T}_{t}=\mathbb{F}-t \mathbb{H}_{t}$. Then

$$
\begin{equation*}
\mathbb{H}_{t} \mathbb{T}_{t}-\gamma \mathbb{T}_{t} \mathbb{H}_{t}=\mathbb{E}+\theta \mathbb{H}_{t}+\eta \mathbb{T}_{t}+\tau \mathbb{H}_{t}^{2}+\sigma \mathbb{T}_{t}^{2} \tag{4}
\end{equation*}
$$

It follows by the QH property together with

$$
\mathbb{H}_{t}=\mathbb{M}_{t} \mathbb{X} \mathbb{M}_{t}^{-1} \quad \text { and } \quad \mathbb{T}_{t}=\mathbb{M}_{t} \mathbb{F}_{t}^{-1}
$$

If

$$
\gamma \leq 1, \quad \tau, \sigma \leq 0, \quad \text { and } \quad \tau \sigma \neq 0
$$

the equation (4) has a unique solution $\mathbb{H}_{t} \in \mathcal{Q}$ such that $h_{0}=0$.
(1) Algebra for polynomial processes
(2) Quadratic harnesses
(3) QH flow
(4) Free $\mathrm{QH}: \gamma=-\tau \sigma$

Main goal: Generator \mathbf{A}_{t} of free QH

The commutation equation has the form
$(1+\sigma t) \mathbb{H}_{t} \mathbb{F}=\mathbb{E}+\eta \mathbb{F}+\sigma \mathbb{F}^{2}+(\theta-\eta t) \mathbb{H}_{t}-\sigma(t+\tau) \mathbb{F}_{t}+(t+\tau)(1+\sigma t) \mathbb{H}_{t}^{2}$.
Its solution is

$$
\mathbb{H}_{t}=\frac{1}{1+\sigma t}\left(\mathbb{E}+\eta \mathbb{F}+\sigma \mathbb{F}^{2}\right) \phi_{t}(\mathbb{D}) \mathbb{D}
$$

where $\phi_{t}(z)=\sum_{k=1}^{\infty} c_{k}(t) z^{k-1}$ is a power series defined (at least in a neighbourhood of zero) by
$\left(z^{2}+\eta z+\sigma\right)(t+\tau) \phi_{t}^{2}+((\theta-\eta t) z-2 t \sigma-\sigma \tau-1) \phi_{t}+t \sigma+1=0$
and $\phi_{t}(0)=1$.

Back to the generator

$$
\begin{aligned}
& \mathbb{A}_{t}=\sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{H}_{t} \mathbb{D}^{k+1}=\frac{1}{1+t \sigma} \sum_{k=0}^{\infty} \mathbb{F}^{k}\left(\mathbb{E}+\eta \mathbb{F}+\sigma \mathbb{F}^{2}\right) \phi_{t}(\mathbb{D}) \mathbb{D} \mathbb{D}^{k+1} \\
&=\frac{1}{1+t \sigma}\left(\mathbb{E}+\eta \mathbb{F}+\sigma \mathbb{F}^{2}\right)\left(\sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{D}^{k+1}\right) \phi_{t}(\mathbb{D}) \mathbb{D} .
\end{aligned}
$$

But

$$
\sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{D}^{k+1}=\left(0,1,2 x, 3 x^{2}, \ldots, k x^{k-1}, \ldots\right)=: \mathbb{D}_{1}
$$

That is

$$
\mathbb{A}_{t}=\frac{1}{1+t \sigma}\left(\mathbb{E}+\eta \mathbb{F}+\sigma \mathbb{F}^{2}\right) \mathbb{D}_{1} \phi_{t}(\mathbb{D}) \mathbb{D}
$$

Who is ϕ_{t} ?

Let $G_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{z-x} \mu(d x), z \in \mathbb{C}_{+}$, denotes the
Cauchy-Stieltjes transform of a measure μ. It is well known that G_{μ} is an analytic function in \mathbb{C}_{+}, determines μ uniquely. If it extends to real z with $|z|$ large enough then the corresponding moment generating function M_{μ} is well defined for $|z|$ small enough and

$$
G_{\mu}(z)=\frac{1}{z} M_{\mu}\left(\frac{1}{z}\right)
$$

It appears that $\phi_{t}(1 / z) / z$ agrees with the Cauchy-Stieltjes transform of a probability measure ν_{t} identified in Saitoh and Yosida (2001).

Operator \mathbf{H}_{t} through the isomorphism Ψ

For \mathbf{H}_{t} such that $\Psi\left(\mathbf{H}_{t}\right)=\mathbb{H}_{t}$ we have

$$
\mathbf{H}_{t}\left(x^{n}\right)=\frac{1+\eta x+\sigma x^{2}}{1+\sigma t} \sum_{k=1}^{n} c_{k}(t) x^{n-k}
$$

Since $c_{k}(t)=\int y^{k-1} \nu_{t}(d y)$ we get

$$
\mathbf{H}_{t}(f)(x)=\frac{1+\eta x+\sigma x^{2}}{1+\sigma t} \int \frac{f(x)-f(y)}{y-x} \nu_{t}(d y), \quad f \in \mathcal{P} .
$$

Operator \mathbf{A}_{t}

Since

$$
\mathbf{A}_{t}\left(x^{n+1}\right)=\mathbf{H}_{t}\left(x^{n}\right)+x \mathbf{A}_{t}\left(x^{n}\right)
$$

we get
$\mathbf{A}_{t}(f)(x)=\frac{1+\eta x+\sigma x^{2}}{1+\sigma t} \int \frac{\partial}{\partial x}\left(\frac{f(x)-f(y)}{y-x}\right) \nu_{t}(d y)$,
$f \in \mathcal{P}$.

Who is ν_{t} ?

If $\mu_{2}(d x)=\left(a x^{2}+b x+c\right) \mu_{1}(d x)$ and $\int x \mu_{1}(d x)=m$, then

$$
\begin{equation*}
G_{\mu_{2}}(z)=\left(a z^{2}+b z+c\right) G_{\mu_{1}}(z)-a(m+z)-b . \tag{5}
\end{equation*}
$$

Let $\mu_{1}=\pi_{t, \eta, \theta, \sigma, \tau}$ be the univariate law of X_{t}. Then (5) with

$$
m=0, \quad(a, b, c)=\frac{1}{t(t+\tau)}\left(\tau, \theta t, t^{2}\right)
$$

gives

$$
\phi_{t}(z)=G_{\mu_{2}}(1 / z) / z
$$

Therefore, ϕ_{t} is a moment generating function of the probability measure

$$
\nu_{t}(d x)=\frac{t^{2}+\theta t x+\tau x^{2}}{t(t+\tau)} \pi_{t, \eta, \theta, \sigma, \tau}(d x)
$$

