INFINITESIMAL GENERATORS OF POLYNOMIAL PROCESSES

Jacek Wesołowski

(Politechnika Warszawska, Warszawa, Poland)

Probability and Analysis Będlewo, 4-8.05.2015

with Włodek Bryc (Univ. Cincinnati, USA)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 Algebra for polynomial processes

Quadratic harnesses

2 Quadratic harnesses

Algebra of sequences of polynomials

Let Q be a linear space of sequences of polynomials in variable $x \in \mathbb{R}$. For $\mathbb{P} = (p_0, p_1, ...,)$ and $\mathbb{Q} = (q_0, q_1, ...)$ we define $\mathbb{P} \mathbb{Q} =: \mathbb{R} = (r_0, r_1, ...) \in Q$ where

$$r_k = \sum_j [q_k]_j p_j, \qquad k = 0, 1, \dots$$

This product is associative. The identity is

$$\mathbb{E}=(1,x,x^2,\ldots).$$

If $\deg(p_n) = n$ for all $n \ge 0$ then $\mathbb{P} = (p_0, p_1, p_2, \ldots)$ is invertible.

${\mathbb F}$ and ${\mathbb D}$

We will need special elements \mathbb{F} , $\mathbb{D} \in \mathcal{Q}$:

 $\mathbb{F} = (x, x^2, x^3, x^4 \dots)$ and $\mathbb{D} = (0, 1, x, x^2, \dots).$

We note that

 $\mathbb{DF} = \mathbb{E}$ and $\mathbb{E} - \mathbb{FD} = (1, 0, 0, 0, ...)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Isomorphism

Let \mathcal{P} denote the space of all polynomials on \mathbb{R} .

The algebra $\operatorname{End}(\mathcal{P})$ is isomorphic to the algebra \mathcal{Q} . The isomorphism $\Psi : \operatorname{End}(\mathcal{P}) \to \mathcal{Q}$ is defined by

$$\Psi(\mathbf{P}) = (\mathbf{P}(1), \mathbf{P}(x), \mathbf{P}(x^2), \ldots) := \mathbb{P} \in \mathcal{Q}, \qquad \forall \, \mathbf{P} \in \mathrm{End}(\mathcal{P})$$

For $\mathbf{P}, \, \mathbf{Q} \in \operatorname{End}(\mathcal{P})$ and $\mathbb{P} = \Psi(\mathbf{P}), \, \mathbb{Q} = \Psi(\mathbf{Q})$

$$\Psi(\mathbf{P} \circ \mathbf{Q}) = \mathbb{PQ}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polynomial process

Let $\mathcal{P}_{\leq k}$ be a space of polynomials on \mathbb{R} with degree at most k, k = 0, 1, 2, ...

Let $X = (X_t)_{t \ge 0}$ be a non-homogeneous Markov process with infinite state space $S \subset \mathbb{R}$. If

 $\mathrm{E}(f(X_t)|X_s) \in \mathcal{P}_{\leq k}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for any $f \in \mathcal{P}_{\leq k}$, k = 1, 2, ..., we call X a polynomial process.

Family of operators on \mathcal{P}

Through

$$\mathbf{P}_{s,t} f(\mathbf{x}) := \mathrm{E}(f(X_t)|X_s = \mathbf{x}), \qquad f \in \mathcal{P},$$

such process can be identified with a family of linear operators $\mathbf{P}_{s,t} : \mathcal{P} \to \mathcal{P}, 0 \le s \le t$, satisfying

•
$$\mathbf{P}_{s,t}(\mathcal{P}_{\leq k}) = \mathcal{P}_{\leq k}, k \geq 0;$$

•
$$P_{s,t}(1) = 1;$$

• for $0 \le s \le t \le u$

$$\mathbf{P}_{s,t} \circ \mathbf{P}_{t,u} = \mathbf{P}_{s,u}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Family of elements of \mathcal{Q}

Through isomorphism Ψ : End(\mathcal{P}) $\rightarrow \mathcal{Q}$ the process X can be identified with a family of $\mathbb{P}_{s,t} = (p_{s,t}^0, p_{s,t}^1, p_{s,t}^2, \ldots) \in \mathcal{Q}$, $0 \le s \le t$ satisfying

• $\mathbb{P}_{s,t}$ is invertible;

•
$$\mathbb{P}_{s,t}(\mathbb{E} - \mathbb{FD}) = \mathbb{E} - \mathbb{FD};$$

• for
$$0 \le s \le t \le u$$

$$\mathbb{P}_{s,t}\mathbb{P}_{t,u}=\mathbb{P}_{s,u}.$$
 (1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Martingale polynomials

From the above conditions we conclude that

•
$$\mathbb{P}_{t,t} = \mathbb{E}$$

• if $\mathbb{M}_t = \mathbb{P}_{0,t}^{-1}$ then
 $\mathbb{M}_s = \mathbb{P}_{s,t}\mathbb{M}_t.$ (2)

The identity (2) follows by multiplying the flow equation

$$\mathbb{P}_{\mathbf{0},s}\mathbb{P}_{s,t}=\mathbb{P}_{\mathbf{0},t}$$

by \mathbb{M}_s and \mathbb{M}_t :

 $\mathbb{M}_{s}\mathbb{P}_{0,s}\mathbb{P}_{s,t}\mathbb{M}_{t}=\mathbb{M}_{s}\mathbb{P}_{0,t}\mathbb{M}_{t}.$

Martingale polynomials, cont.

Condition (2) says that if $\mathbb{M}_t = (m_t^0, m_t^1, m_t^2, ...)$ then $(m_t^k)_{t \ge 0}$, $k \ge 0$, are martingale polynomials for *X*, that is

$$\operatorname{E}(m_t^k(X_t)|X_s)=m_s^k(X_s), \qquad 0\leq s\leq t \quad k\geq 0.$$

Note that $\deg(m_t^k) = k, k \ge 0$.

Note also that

$$\mathbb{P}_{s,t} = \mathbb{M}_s \mathbb{M}_t^{-1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Harness (Hammersley, 1967, Mansuy, Yor, 2005)

Let $X = (X_t)_{t \ge 0}$ be a real valued stochastic process,

$$\mathbf{E} X_t = \mathbf{0}, \qquad \mathbf{E} X_s X_t = s \qquad \forall \mathbf{0} \le s \le t.$$

Let $(\mathcal{F}_{s,u})_{0 \le s < u}$ be a natural **past-future filtration** of X, i.e.

$$\mathcal{F}_{\boldsymbol{s},\boldsymbol{u}}=\sigma\{\boldsymbol{X}_{\alpha},\,\alpha\not\in(\boldsymbol{s},\boldsymbol{u})\}.$$

The process *X* is a **harness** if $\forall 0 \le s < t < u$

$$\mathbb{E}(X_t | \mathcal{F}_{s,u}) = a_{tsu} X_s + b_{tsu} X_u = \frac{(u-t)X_s + (t-s)X_u}{u-s} = t\Delta_{s,u} + \widetilde{\Delta}_{s,u},$$

where

$$\Delta_{s,u} = \frac{X_u - X_s}{u - s} \quad \text{oraz} \quad \widetilde{\Delta}_{s,u} = \frac{\frac{1}{u} X_u - \frac{1}{s} X_s}{\frac{1}{u} - \frac{1}{s}}.$$

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

Harness (Hammersley, 1967, Mansuy, Yor, 2005)

Let $X = (X_t)_{t>0}$ be a real valued stochastic process,

$$\mathrm{E} X_t = \mathbf{0}, \qquad \mathrm{E} X_s X_t = \mathbf{s} \qquad \forall \mathbf{0} \le \mathbf{s} \le t.$$

Let $(\mathcal{F}_{s,u})_{0 \le s < u}$ be a natural **past-future filtration** of *X*, i.e.

$$\mathcal{F}_{\boldsymbol{s},\boldsymbol{u}} = \sigma\{\boldsymbol{X}_{\alpha}, \, \alpha \not\in (\boldsymbol{s}, \boldsymbol{u})\}.$$

The process X is a **harness** if $\forall 0 \le s < t < u$

$$\mathbb{E}(X_t | \mathcal{F}_{s,u}) = a_{tsu} X_s + b_{tsu} X_u = \frac{(u-t)X_s + (t-s)X_u}{u-s} = t\Delta_{s,u} + \widetilde{\Delta}_{s,u},$$

where

$$\Delta_{s,u} = \frac{X_u - X_s}{u - s} \quad \text{oraz} \quad \widetilde{\Delta}_{s,u} = \frac{\frac{1}{u} X_u - \frac{1}{s} X_s}{\frac{1}{u} - \frac{1}{s}}.$$

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

Harness (Hammersley, 1967, Mansuy, Yor, 2005)

Let $X = (X_t)_{t>0}$ be a real valued stochastic process,

$$E X_t = 0,$$
 $E X_s X_t = s$ $\forall 0 \le s \le t.$

Let $(\mathcal{F}_{s,u})_{0 \le s < u}$ be a natural **past-future filtration** of *X*, i.e.

$$\mathcal{F}_{\boldsymbol{s},\boldsymbol{u}} = \sigma\{\boldsymbol{X}_{\alpha}, \, \alpha \notin (\boldsymbol{s}, \boldsymbol{u})\}.$$

The process X is a harness if $\forall 0 \le s < t < u$

$$\mathbb{E}(X_t|\mathcal{F}_{s,u}) = a_{tsu}X_s + b_{tsu}X_u = \frac{(u-t)X_s + (t-s)X_u}{u-s} = t\Delta_{s,u} + \widetilde{\Delta}_{s,u},$$

where

$$\Delta_{s,u} = \frac{X_u - X_s}{u - s} \quad \text{oraz} \quad \widetilde{\Delta}_{s,u} = \frac{\frac{1}{u}X_u - \frac{1}{s}X_s}{\frac{1}{u} - \frac{1}{s}}.$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Quadratic harness (BMW, 2007)

If X is a harness and additionally

$$\mathbb{E}(X_t^2|\mathcal{F}_{s,u}) = A_{tsu}X_s^2 + B_{tsu}X_sX_u + C_{tsu}X_u^2 + D_{tsu}X_s + E_{tsu}X_u + F_{tsu}X_u + F_{tsu}X_u$$

then X is called a **quadratic harness**.

Then there exist numbers θ , $\eta \in \mathbb{R}$, τ , $\sigma \ge 0$, $\gamma \le 1 + 2\sqrt{\tau\sigma}$ such that $\operatorname{Var}(X_t | \mathcal{F}_{s,u}) = F_{tsu} K\left(\Delta_{s,u}, \widetilde{\Delta}_{s,u}\right)$,

where

$$K(x, y) := 1 + \theta x + \eta y + \tau x^2 + \sigma y^2 - (1 - \gamma) xy$$

and
$$F_{tsu} = \frac{(u-t)(u-s)}{u(1+\sigma s)+\tau-\gamma s}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Quadratic harness (BMW, 2007)

If X is a harness and additionally

$$\mathbb{E}(X_t^2|\mathcal{F}_{s,u}) = A_{tsu}X_s^2 + B_{tsu}X_sX_u + C_{tsu}X_u^2 + D_{tsu}X_s + E_{tsu}X_u + F_{tsu}X_u + F_{tsu}X_u$$

then X is called a **quadratic harness**.

Then there exist numbers θ , $\eta \in \mathbb{R}$, τ , $\sigma \ge 0$, $\gamma \le 1 + 2\sqrt{\tau\sigma}$ such that

$$\operatorname{Var}(X_t|\mathcal{F}_{s,u})=F_{tsu}\,\mathcal{K}\left(\Delta_{s,u},\,\widetilde{\Delta}_{s,u}\right),$$

where

$$\begin{split} \mathcal{K}(x,y) &:= 1 + \theta x + \eta y + \tau x^2 + \sigma y^2 - (1-\gamma)xy\\ \text{and} \qquad \mathcal{F}_{tsu} &= \frac{(u-t)(u-s)}{u(1+\sigma s) + \tau - \gamma s}. \end{split}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case $\gamma = 1 + 2\sqrt{\tau\sigma}$) uniquely determine all moments, and these moments uniquely determine the process $X \sim \text{QH}(\theta, \eta, \tau, \sigma; \gamma)$;
- X is a (non-homogeneous) Markov process;
- X has orthogonal martingale polynomials $(m_n(\cdot, t))$ i.e. for $t \ge 0$

$$\operatorname{E} m_n(X_t,t) m_k(X_t,t) = 0, \quad k \neq n$$

and for $n \ge 0$

$$\mathbb{E}(m_n(X_t,t)|\mathcal{F}_s) = m_n(X_s,s) \quad s < t.$$

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case γ = 1 + 2√τσ) uniquely determine all moments, and these moments uniquely determine the process X ~ QH(θ, η, τ, σ; γ);
- X is a (non-homogeneous) Markov process;
- X has orthogonal martingale polynomials $(m_n(\cdot, t))$ i.e. for $t \ge 0$

$$\operatorname{E} m_n(X_t, t) m_k(X_t, t) = 0, \quad k \neq n$$

and for $n \ge 0$

$$\mathbb{E}(m_n(X_t,t)|\mathcal{F}_s) = m_n(X_s,s) \quad s < t.$$

Typical properties

- linear conditional means and quadratic conditional variances (as above, except the case $\gamma = 1 + 2\sqrt{\tau\sigma}$) uniquely determine all moments, and these moments uniquely determine the process $X \sim QH(\theta, \eta, \tau, \sigma; \gamma)$;
- X is a (non-homogeneous) Markov process;
- X has orthogonal martingale polynomials (m_n(·, t)) i.e. for t ≥ 0

$$\operatorname{E} m_n(X_t, t) m_k(X_t, t) = 0, \quad k \neq n$$

and for $n \ge 0$

$$\mathrm{E}(m_n(X_t,t)|\mathcal{F}_s) = m_n(X_s,s) \quad s < t.$$

Examples of $X \sim QH(\theta, \eta, \tau, \sigma, \gamma)$

- QH(0, 0, 0, 0, 1) Wiener process,
- $QH(\theta, 0, 0, 0, 1)$ centered Poisson process,
- QH(θ, 0, τ, 0, 1) Lévy-Meixner processes (Schoutens, 2000),
- QH(0, 0, 0, 0, 0) free Brownian motion (Biane, 1998),
- QH(0, 0, 0, 0, q) q-Gaussian process (Bożejko, Kümmerer, Speicher, 1997),
- QH(θ, 0, τ, 0, 0) free Lévy-Meixner process (Anshelevich, 2003),
- QH(θ, 0, τ, 0, q) q-Lévy-Meixner processes (BW, 2005)
- QH(θ, η, 0, 0, q) bi-Poisson processes (Biane, 1996, BW, 2006 (q = 1), BW 2007 (q = 0), BMW, 2008 (q ∈ [-1, 1]),
- $QH(\theta, \eta, \tau, \sigma, -\tau\sigma)$ free quadratic harness (BMW, 2011).

Definition

 $(\mathbb{P}_{s,t}, 0 \le s \le t)$ is a quadratic harness $QH(\theta, \eta, \tau, \sigma\gamma)$ flow if (martingale) $\mathbb{P}_{s,t}(\mathbb{FD} - \mathbb{F}^2 \mathbb{D}^2) = \mathbb{FD} - \mathbb{F}^2 \mathbb{D}^2$,

2 (harness) There exists $\mathbb{X} \in \mathcal{Q}$ such that

$$\mathbb{P}_{0,t}\mathbb{F} = (\mathbb{F} + t\mathbb{X})\mathbb{P}_{0,t},$$

(quadratic harness) The above X satisfies

$$\mathbb{XF} - \gamma \mathbb{FX} = \mathbb{E} + \theta \mathbb{X} + \eta \mathbb{F} + \tau \mathbb{X}^2 + \sigma \mathbb{F}^2.$$

Martingale and harness

Ad.1. Note that $\mathbb{FD} - \mathbb{F}^2 \mathbb{D}^2 = (0, x, 0, 0, ...)$. That is $\mathbf{P}_{s,t}(x) = x$, meaning that $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$.

Ad.2. For a martingale polynomial $m_n(\cdot, t)$ the harness property gives

$$\mathbb{E}(X_t m_n(X_u, u) | X_s) = \frac{u-t}{u-s} X_s m_n(X_s, s) + \frac{t-s}{u-s} \mathbb{E}(X_u m_n(X_u, u) | X_s).$$

Martingality gives

$$\mathrm{E}(X_t m_n(X_u, u) | X_s) = \mathrm{E}(X_t m_n(X_t, t) | X_s).$$

That is

$$\mathbb{E}(X_t m_n(X_t, t) | X_s) = \frac{u-t}{u-s} X_s m_n(X_s, s) + \frac{t-s}{u-s} \mathbb{E}(X_u m_n(X_u, u) | X_s).$$

Ad 2, cont.

Equivalently,

$$\mathbb{P}_{s,t}\mathbb{F}\mathbb{M}_t = \frac{u-t}{u-s}\mathbb{F}\mathbb{M}_s + \frac{t-s}{u-s}\mathbb{P}_{s,u}\mathbb{F}\mathbb{M}_u.$$
(3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Define \mathbb{J}_t by $\mathbb{FM}_t = \mathbb{M}_t \mathbb{J}_t$. Then from (3) we get

$$(u-s)\mathbb{J}_t = (u-t)\mathbb{J}_s + (t-s)\mathbb{J}_u$$

and thus

$$\mathbb{J}_t = \mathbb{Y} + t\mathbb{X}$$
 for some $\mathbb{X}, \mathbb{Y} \in \mathcal{Q}$.

Consequently,

$$\mathbb{FM}_t = \mathbb{M}_t(\mathbb{Y} + t\mathbb{X}).$$

Since $\mathbb{M}_0 = \mathbb{E}$ we get that $\mathbb{Y} = \mathbb{F}$.

Generator

The left infinitesimal generator \mathbb{A}_t^- exists since \mathbb{M}_t is element-wise differentiable in *t*

$$\mathbb{A}_t^- \mathbb{M}_t = \lim_{h \to 0^+} \frac{1}{h} \left(\mathbb{P}_{t-h,t} - \mathbb{E} \right) \mathbb{M}_t = \lim_{h \to 0^+} \frac{1}{h} (\mathbb{M}_{t-h} - \mathbb{M}_t) = -\frac{\partial}{\partial t} \mathbb{M}_t.$$

The right infinitesimal generator exists since $\mathbb{P}_{s,t}$ is continuous in *t*

 $\mathbb{A}_{t}^{+}\mathbb{M}_{t} = \lim_{h \to 0^{+}} \frac{1}{h} (\mathbb{P}_{t,t+h}\mathbb{M}_{t} - \mathbb{M}_{t}) = \lim_{h \to 0^{+}} \mathbb{P}_{t,t+h} (\mathbb{M}_{t} - \mathbb{M}_{t+h})$ $= \lim_{h \to 0^{+}} \mathbb{P}_{t,t+h} \lim_{h \to 0^{+}} \frac{1}{h} (\mathbb{M}_{t} - \mathbb{M}_{t+h}) = -\frac{\partial}{\partial t} \mathbb{M}_{t}$ Consequently,

$$\mathbb{A}_t^- = \mathbb{A}_t^+ := \mathbb{A}_t \in \mathcal{Q}.$$

Uniqueness

We note that for $\mathbb{A}_t = (a_t^0, a_t^1, a_t^2, \ldots)$

Proposition. A polynomial process $\{\mathbb{P}_{s,t}, 0 \le s \le t\}$ satisfying the harness property

$$\mathbb{P}_{0,t}\mathbb{F} = (\mathbb{F} + t\mathbb{X})\mathbb{P}_{0,t}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is uniquely determined by the generators $(\mathbb{A}_t)_{t\geq 0}$.

Auxiliary sequence $\mathbb{H}_t \in \mathcal{Q}$

For a polynomial harness $\{\mathbb{P}_{s,t}\}$, differentiate wrt *t*

$$\mathbb{FM}_t = \mathbb{M}_t(\mathbb{F} + t\mathbb{X}), \qquad \mathbb{X} \in \mathcal{Q},$$

to see that

$$\mathbb{A}_t \mathbb{F} - \mathbb{F} \mathbb{A}_t = \mathbb{M}_t \mathbb{X} \mathbb{M}_t^{-1} =: \mathbb{H}_t.$$

Proposition. \mathbb{H}_t uniquely determines \mathbb{A}_t .

<u>Proof.</u> Since $\mathbb{A}_t = \mathbb{A}_t \mathbb{FD}$ we have

$$\mathbb{A}_t = \mathbb{F}\mathbb{A}_t\mathbb{D} + \mathbb{H}_t\mathbb{D}.$$

Iterating this we get

$$\mathbb{A}_t = \sum_{k=0}^{\infty} \mathbb{F}^k \mathbb{H}_t \mathbb{D}^{k+1}$$

well defined as element-wise it is a sum of finitely many elements.

Auxiliary sequence $\mathbb{H}_t \in \mathcal{Q}$

For a polynomial harness $\{\mathbb{P}_{s,t}\}$, differentiate wrt *t*

$$\mathbb{FM}_t = \mathbb{M}_t(\mathbb{F} + t\mathbb{X}), \qquad \mathbb{X} \in \mathcal{Q},$$

to see that

$$\mathbb{A}_t \mathbb{F} - \mathbb{F} \mathbb{A}_t = \mathbb{M}_t \mathbb{X} \mathbb{M}_t^{-1} =: \mathbb{H}_t.$$

Proposition. \mathbb{H}_t uniquely determines \mathbb{A}_t .

<u>Proof.</u> Since $\mathbb{A}_t = \mathbb{A}_t \mathbb{FD}$ we have

$$\mathbb{A}_t = \mathbb{F}\mathbb{A}_t\mathbb{D} + \mathbb{H}_t\mathbb{D}.$$

Iterating this we get

$$\mathbb{A}_t = \sum_{k=0}^{\infty} \mathbb{F}^k \mathbb{H}_t \mathbb{D}^{k+1}$$

well defined as element-wise it is a sum of finitely many elements.

Auxiliary sequence $\mathbb{H}_t \in \mathcal{Q}$

For a polynomial harness $\{\mathbb{P}_{s,t}\}$, differentiate wrt *t*

$$\mathbb{FM}_t = \mathbb{M}_t(\mathbb{F} + t\mathbb{X}), \qquad \mathbb{X} \in \mathcal{Q},$$

to see that

$$\mathbb{A}_t \mathbb{F} - \mathbb{F} \mathbb{A}_t = \mathbb{M}_t \mathbb{X} \mathbb{M}_t^{-1} =: \mathbb{H}_t.$$

Proposition. \mathbb{H}_t uniquely determines \mathbb{A}_t .

<u>Proof.</u> Since $\mathbb{A}_t = \mathbb{A}_t \mathbb{FD}$ we have

$$\mathbb{A}_t = \mathbb{F}\mathbb{A}_t\mathbb{D} + \mathbb{H}_t\mathbb{D}.$$

Iterating this we get

$$\mathbb{A}_t = \sum_{k=0}^{\infty} \mathbb{F}^k \mathbb{H}_t \mathbb{D}^{k+1}$$

elements.

QH process

Theorem. Let { $\mathbb{P}_{s,t}$, $0 \le s \le t$ } be a quadratic harness. Denote $\mathbb{T}_t = \mathbb{F} - t\mathbb{H}_t$. Then

$$\mathbb{H}_{t}\mathbb{T}_{t} - \gamma \mathbb{T}_{t}\mathbb{H}_{t} = \mathbb{E} + \theta \mathbb{H}_{t} + \eta \mathbb{T}_{t} + \tau \mathbb{H}_{t}^{2} + \sigma \mathbb{T}_{t}^{2}.$$
 (4)

It follows by the QH property together with

$$\mathbb{H}_t = \mathbb{M}_t \mathbb{X} \mathbb{M}_t^{-1}$$
 and $\mathbb{T}_t = \mathbb{M}_t \mathbb{F} \mathbb{M}_t^{-1}$.

lf

$$\gamma \leq \mathbf{1}, \quad \tau, \sigma \leq \mathbf{0}, \quad \text{and} \quad \tau \sigma \neq \mathbf{0}$$

the equation (4) has a unique solution $\mathbb{H}_t \in \mathcal{Q}$ such that $h_0 = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Main goal: Generator \mathbf{A}_t of free QH

The commutation equation has the form

 $(1+\sigma t)\mathbb{H}_{t}\mathbb{F} = \mathbb{E}+\eta\mathbb{F}+\sigma\mathbb{F}^{2}+(\theta-\eta t)\mathbb{H}_{t}-\sigma(t+\tau)\mathbb{F}\mathbb{H}_{t}+(t+\tau)(1+\sigma t)\mathbb{H}_{t}^{2}.$

Its solution is

$$\mathbb{H}_t = \frac{1}{1+\sigma t} \left(\mathbb{E} + \eta \mathbb{F} + \sigma \mathbb{F}^2 \right) \phi_t(\mathbb{D}) \mathbb{D},$$

where $\phi_t(z) = \sum_{k=1}^{\infty} c_k(t) z^{k-1}$ is a power series defined (at least in a neighbourhood of zero) by

$$(z^2 + \eta z + \sigma)(t + \tau)\phi_t^2 + ((\theta - \eta t)z - 2t\sigma - \sigma\tau - 1)\phi_t + t\sigma + 1 = 0$$

and $\phi_t(0) = 1$.

Back to the generator

$$\mathbb{A}_{t} = \sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{H}_{t} \mathbb{D}^{k+1} = \frac{1}{1+t\sigma} \sum_{k=0}^{\infty} \mathbb{F}^{k} (\mathbb{E} + \eta \mathbb{F} + \sigma \mathbb{F}^{2}) \phi_{t}(\mathbb{D}) \mathbb{D} \mathbb{D}^{k+1}$$
$$= \frac{1}{1+t\sigma} (\mathbb{E} + \eta \mathbb{F} + \sigma \mathbb{F}^{2}) \left(\sum_{k=0}^{\infty} \mathbb{F}^{k} \mathbb{D}^{k+1} \right) \phi_{t}(\mathbb{D}) \mathbb{D}.$$

But

$$\sum_{k=0}^{\infty} \mathbb{F}^k \mathbb{D}^{k+1} = (0, 1, 2x, 3x^2, \dots, kx^{k-1}, \dots) =: \mathbb{D}_1.$$

That is

$$\mathbb{A}_t = \frac{1}{1+t\sigma} \left(\mathbb{E} + \eta \mathbb{F} + \sigma \mathbb{F}^2 \right) \mathbb{D}_1 \phi_t(\mathbb{D}) \mathbb{D}.$$

Who is ϕ_t ?

Let $G_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{z-x} \mu(dx)$, $z \in \mathbb{C}_+$, denotes the Cauchy-Stieltjes transform of a measure μ . It is well known that G_{μ} is an analytic function in \mathbb{C}_+ , determines μ uniquely. If it extends to real *z* with |z| large enough then the corresponding moment generating function M_{μ} is well defined for |z| small enough and

$$G_{\mu}(z)=rac{1}{z}M_{\mu}(rac{1}{z}).$$

It appears that $\phi_t(1/z)/z$ agrees with the Cauchy-Stieltjes transform of a probability measure ν_t identified in Saitoh and Yosida (2001).

Operator \mathbf{H}_t through the isomorphism Ψ

For \mathbf{H}_t such that $\Psi(\mathbf{H}_t) = \mathbb{H}_t$ we have

$$\mathbf{H}_t(x^n) = \frac{1+\eta x+\sigma x^2}{1+\sigma t} \sum_{k=1}^n c_k(t) x^{n-k}.$$

Since $c_k(t) = \int y^{k-1} v_t(dy)$ we get

$$\mathbf{H}_t(f)(x) = \frac{1+\eta x+\sigma x^2}{1+\sigma t} \int \frac{f(x)-f(y)}{y-x} \nu_t(dy), \qquad f \in \mathcal{P}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Operator **A**_t

Since

$$\mathbf{A}_t(x^{n+1}) = \mathbf{H}_t(x^n) + x\mathbf{A}_t(x^n)$$

we get

$$\mathbf{A}_t(f)(x) = \frac{1+\eta x+\sigma x^2}{1+\sigma t} \int \frac{\partial}{\partial x} \left(\frac{f(x)-f(y)}{y-x}\right) \nu_t(dy),$$

 $f \in \mathcal{P}$.

Who is ν_t ?

If
$$\mu_2(dx) = (ax^2 + bx + c)\mu_1(dx)$$
 and $\int x\mu_1(dx) = m$, then
 $G_{\mu_2}(z) = (az^2 + bz + c)G_{\mu_1}(z) - a(m+z) - b.$ (5)

Let $\mu_1 = \pi_{t,\eta,\theta,\sigma,\tau}$ be the univariate law of X_t . Then (5) with

$$m = 0,$$
 $(a, b, c) = \frac{1}{t(t+\tau)}(\tau, \theta t, t^2)$

gives

$$\phi_t(z) = G_{\mu_2}(1/z)/z.$$

Therefore, ϕ_t is a moment generating function of the probability measure

$$u_t(\mathbf{dx}) = rac{t^2 + heta t \mathbf{x} + au \mathbf{x}^2}{t(t+ au)} \, \pi_{t,\eta, heta,\sigma, au}(\mathbf{dx}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ