Local fluctuations of critical Mandelbrot cascades

Konrad Kolesko
joint with
D. Buraczewski and P. Dyszewski
Będlewo, 4 May, 2015
For given random variables X_1, X_2 s.t. $\mathbb{E}e^{-X_1} + e^{-X_2} = 1$ we are interested in random measures μ on $[0,1)$ satisfying self similar property:

$$\mu(B) = e^{-X_1} \mu_1(2(B \cap [0,1/2])) + e^{-X_2} \mu_2(2(B \cap [1/2,1) - 1)),$$

where $\mu_1 \perp \mu_2 \perp X_1, X_2$ and $\mathcal{L}\mu = \mathcal{L}\mu_1 = \mathcal{L}\mu_2$.

Goal: Understand local properties of μ.
For given random variables X_1, X_2 s.t. $\mathbb{E}e^{-X_1} + e^{-X_2} = 1$ we are interested in random measures μ on $[0, 1)$ satisfying self similar property:

$$\mu(B) = e^{-X_1} \mu_1(2(B \cap [0, 1/2])) + e^{-X_2} \mu_2(2(B \cap [1/2, 1) - 1)),$$

where $\mu_1 \perp \mu_2 \perp X_1, X_2$ and $\mathcal{L}\mu = \mathcal{L}\mu_1 = \mathcal{L}\mu_2$.

Goal: Understand local properties of μ.
For given random variables X_1, X_2 s.t. $\mathbb{E}e^{-X_1} + e^{-X_2} = 1$ we are interested in random measures μ on $[0, 1)$ satisfying self similar property:

$$
\mu(B) = e^{-X_1} \mu_1(2(B \cap [0, 1/2))) + e^{-X_2} \mu_2(2(B \cap [1/2, 1) - 1)),
$$

where $\mu_1 \perp \perp \mu_2 \perp \perp X_1, X_2$ and $\mathcal{L}\mu = \mathcal{L}\mu_1 = \mathcal{L}\mu_2$.

Goal: Understand local properties of μ
For any metric space \((X, d)\) and \(A \subset X\) by \(\dim_H^d(A)\) we denote its Hausdorff dimension:

\[
\dim_H(A) = \inf \left\{ s : \inf \{ \text{\{\(B_i\}\)-cover} A \sum_i \text{diam}(B_i)^s = 0 \} \right\}
\]

For any finite measure \(\mu\) by \(\dim(\mu)\) we denote its dimension:

\[
\dim(\mu) = \inf \{ \dim_H(A) : \mu(A^c) = 0 \}
\]

For any Borel \(A\) such that \(\mu(A) > 0\) the following holds:

\[
\inf_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \leq \dim_H(A) \leq \sup_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}
\]
Hausdorff dimension

For any metric space \((X, d)\) and \(A \subset X\) by \(\dim_H^d(A)\) we denote its Hausdorff dimension:

\[
\dim_H(A) = \inf \left\{ s : \inf_{\{B_i\}-cover \ A} \sum_i \text{diam}(B_i)^s = 0 \right\}
\]

For any finite measure \(\mu\) by \(\dim(\mu)\) we denote its dimension:

\[
\dim(\mu) = \inf \{ \dim_H(A) : \mu(A^c) = 0 \}
\]

For any Borel \(A\) such that \(\mu(A) > 0\) the following holds:

\[
\inf_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \leq \dim_H(A) \leq \sup_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}
\]
For any metric space \((X, d)\) and \(A \subset X\) by \(\text{dim}_H^d(A)\) we denote its Hausdorff dimension:

\[
\text{dim}_H(A) = \inf \left\{ s : \inf_{\{B_i\text{-cover}\}} \sum_i \text{diam}(B_i)^s = 0 \right\}
\]

For any finite measure \(\mu\) by \(\text{dim}(\mu)\) we denote its dimension:

\[
\text{dim}(\mu) = \inf \{ \text{dim}_H(A) : \mu(A^c) = 0 \}
\]

For any Borel \(A\) such that \(\mu(A) > 0\) the following holds:

\[
\inf_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \leq \text{dim}_H(A) \leq \sup_{x \in A} \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}
\]
Define $\psi(t) = \log_2 \mathbb{E}(e^{-tX_1} + e^{-tX_2})$. By assumption $\psi(0) = 1$, $\psi(1) = 0$, $\psi \nearrow \infty$.

There are three cases:

1. **Subcritical**: There is a root of ψ in $(1, \infty)$, $\psi'(1) < 0$

2. **Critical**: 1 is the only root of ψ, $\psi'(1) = 0$

3. **Supercritical**: There is a root of ψ in $(0, 1)$, $\psi'(1) > 0$
Subcritical case $\psi'(1) = -m < 0$

KPZ relation - Benjamini, Schramm

For $d_\mu(x, y) = \mu([x, y])$ then for any A

$$\dim(A) = \dim_{d_\mu}(A) - \psi(\dim_{d_\mu}(A))$$

Multifractal analysis - Holley, Waymire; Molchan

For $E_\mu(\gamma) = \left\{ x : \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} = \gamma \right\}$ and $\tau(s) = -1 - \psi(s)$

$$\dim(E_\mu(\gamma)) = \tau^*(\gamma)$$

Pointwise fluctuation - Liu

$$2^{-m+(1-\delta)\sqrt{2\sigma^2 n \log \log n}} \leq \mu(B(x, 2^{-n})) \leq 2^{-m+(1+\delta)\sqrt{2\sigma^2 n \log \log n}}$$
Subcritical case $\psi'(1) = -m < 0$

KPZ relation - Benjamini, Schramm

For $d_\mu(x, y) = \mu([x, y])$ then for any A

$$\dim(A) = \dim_{d_\mu}(A) - \psi(\dim_{d_\mu}(A))$$

Multifractal analysis - Holley, Waymire; Molchan

For $E_\mu(\gamma) = \left\{ x : \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} = \gamma \right\}$ and $\tau(s) = -1 - \psi(s)$

$$\dim(E_\mu(\gamma)) = \tau^*(\gamma)$$

Pointwise fluctuation - Liu

$$2^{-m+(1-\delta)\sqrt{2\sigma^2 n \log \log n}} \leq \mu(B(x, 2^{-n})) \leq 2^{-m+(1+\delta)\sqrt{2\sigma^2 n \log \log n}}$$
Subcritical case $\psi'(1) = -m < 0$

KPZ relation - Benjamini, Schramm

For $d_\mu(x, y) = \mu([x, y])$ then for any A

$$\dim(A) = \dim_{d_\mu}(A) - \psi(\dim_{d_\mu}(A))$$

Multifractal analysis - Holley, Waymire; Molchan

For $E_\mu(\gamma) = \left\{ x : \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} = \gamma \right\}$ and $\tau(s) = -1 - \psi(s)$

$$\dim(E_\mu(\gamma)) = \tau^*(\gamma)$$

Pointwise fluctuation - Liu

$$2^{-m+(1-\delta)\sqrt{2\sigma^2 n \log \log n}} \leq \mu(B(x, 2^{-n})) \leq 2^{-m+(1+\delta)\sqrt{2\sigma^2 n \log \log n}}$$
Barral, Rhodes, Vargas

When $\psi'(1) > 0$ then μ is purely atomic

Barral, Kupiainen, Nikula, Saksman, Webb

If $\psi'(1) = 0$ then the random measure μ almost surely has no atoms. Moreover for any k and $\delta > 0$

1. $\mu(B(x, 2^{-n})) \geq e^{-\sqrt{6 \log 2} \sqrt{n(\log n + (1/3+\delta) \log \log n)}}$ for sufficiently large n
2. $\mu(B(x, 2^{-n})) \geq e^{-(\sqrt{2 \log 2}+\delta) \sqrt{n \log n}}$ i.o.
3. $\mu(B(x, 2^{-n})) \leq n^{-k}$ for sufficiently large n and for μ-a.e. x.
Barral, Rhodes, Vargas

When $\psi'(1) > 0$ then μ is purely atomic.

Barral, Kupiainen, Nikula, Saksman, Webb

If $\psi'(1) = 0$ then the random measure μ almost surely has no atoms. Moreover for any k and $\delta > 0$

- $\mu(B(x, 2^{-n})) \geq e^{-\sqrt{6 \log 2} \sqrt{n \log n + (1/3+\delta) \log \log n}}$ for sufficiently large n
- $\mu(B(x, 2^{-n})) \geq e^{-\sqrt{2 \log 2 + \delta} \sqrt{n \log n}}$ i.o.
- $\mu(B(x, 2^{-n})) \leq n^{-k}$ for sufficiently large n and for μ-a.e. x.
We may identify dyadic intervals with a vertices of a binary rooted tree τ and any point $x \in [0, 1)$ with $\theta \in \partial \tau$.

We write

$$B(v) = \{ \theta \in \partial \tau : v \text{ is in the geodesic between the root and } \theta \}.$$

For a random measure μ_ω with a distribution \mathbb{P} we are interested in a pointwise estimates of $\mu_\omega(B(\theta_n))$ on the enlarged measure space $\tilde{\mathbb{P}}(d\omega, d\theta) := \mathbb{P}(d\omega)\mu_\omega(d\theta)$ i.e. we are looking for deterministic ϕ s.t.

$$\mu_\omega(B(\theta_n)) \leq \phi(n) \text{ for large } n$$

for $\tilde{\mathbb{P}}$-almost all (ω, θ).

$\tilde{\mathbb{P}}$ can be replaced by $\hat{\mathbb{P}}(d\omega, d\theta) = \mathbb{P}(d\omega)\bar{\mu}_\omega(d\theta)$, where $\bar{\mu}_\omega$ is the normalized μ_ω.
We may identify dyadic intervals with vertices of a binary rooted tree τ and any point $x \in [0, 1)$ with $\theta \in \partial\tau$. We write

$$B(v) = \{\theta \in \partial\tau : v \text{ is in the geodesic between the root and } \theta\}.$$

For a random measure μ_{ω} with a distribution \mathbb{P} we are interested in a pointwise estimates of $\mu_{\omega}(B(\theta_n))$ on the enlarged measure space $\tilde{\mathbb{P}}(d\omega, d\theta) := \mathbb{P}(d\omega)\mu_{\omega}(d\theta)$ i.e. we are looking for deterministic ϕ s.t.

$$\mu_{\omega}(B(\theta_n)) \leq \phi(n) \text{ for large } n$$

for $\tilde{\mathbb{P}}$-almost all (ω, θ). $\tilde{\mathbb{P}}$ can be replaced by $\hat{\mathbb{P}}(d\omega, d\theta) = \mathbb{P}(d\omega)\mu_{\omega}(d\theta)$, where μ_{ω} is the normalized μ_{ω}.
We labeled all vertices of the binary rooted tree τ by independent copies of X_1. For any $v \in \tau$ we denote $X(v)$ the sum of random variables along the path between the root and v.

The process $$\{X(v)\}_{v \in \tau}$$

is called branching random walk (BRW). We may identify BRW with a random labeled tree.

Ω-set of labeled binary trees and \mathbb{P} is a measure on Ω i.e.

$$\mathbb{P}(T \in d\omega) = \mathbb{P}(d\omega)$$

When $\psi'(1) \leq 0$ then the random measure μ is measurable with respect to $\sigma(T)$.
Since \(E \sum_{|v|=1} e^{-X(v)} = 1 \) and \(E \sum_{|v|=1} X(v)e^{-X(v)} = 0 \) the equation

\[
E f(Y) := E \sum_{|v|=1} f(X(v)) e^{-X(v)}
\]
defines distribution of a driftless r.v. \(Y \)

Let \(h \) be a harmonic function on some set \(D \),
\(V_n = Y_1 + \cdots + Y_n \) and \(\sigma = \min\{k : s + V_k \notin D\} \). Then the process \(h(s + V_{\min(n,\sigma)}) \) is a martingale.

Let \(\tau = \{w : s + X(w) \notin D \text{ for the first time}\} \), \(v_\tau = \min(v, \tau) \). Then

\[
W_n^s = \sum_{|v|=n} h(s + X(v_\tau)) e^{-X(v_\tau)}
\]
is a martingale.
Some natural martingales

- \(h \equiv 1 \): \(W_n = \sum_{|v|=n} e^{-X(v)} \)
- \(h = x \): \(D_n = \sum_{|v|=n} X(v) e^{-X(v)} \)
- \(D = [0, \infty) \), \(h(x) \approx x \vee 0 \):
 \[W^s_n = \sum_{|v|=n} h(s + X(v)) 1_{s + X(v') > 0, \text{ for } v' \leq v} e^{-X(v)} \]

\(W^s_n \to W^s \) \(\mathbb{P} \)-a.s. and \(L^1 \)

For any \(s \in D \) define

\[\mathbb{P}^s := \frac{1}{h(s)} W^s \cdot \mathbb{P} \]
$P^s \Rightarrow \infty$

Konrad Kolesko

Local fluctuations of critical Mandelbrot cascades

4 May, 2015
Spinal decomposition of \mathbb{P}^s
Spinal decomposition of \mathcal{P}^s
Spinal decomposition of P^s
Spinal decomposition of \mathcal{P}_s:

\[e^{-X_1^1} h(s + X_1^1) \]

\[e^{-X_2^1} h(s + X_2^1) \]
Spinal decomposition of \mathbb{P}_s

$$S_1 = s + X_2^1$$

$$S_0 = s$$
Spinal decomposition of \mathbb{P}_s

X_1^2 X_2^2

BRW

∞

S_1

S_0

0
Spinal decomposition of P_s

\[X_1^2 e^{-X_1^2 h(S_1 + X_1^2)} \]

\[X_2^2 e^{-X_2^2 h(S_1 + X_2^2)} \]
Spinal decomposition of \mathbb{P}^s
Spinal decomposition of \mathbb{P}^s

 Diagram showing branching processes with labels X^3_1 and X^3_2.
Spinal decomposition of \mathbb{P}^s

$X_1^3 e^{-X_1^3} h(S_2 + X_1^3) \quad X_2^3 e^{-X_2^3} h(S_2 + X_2^3)$
Spinal decomposition of \mathbb{P}^s

\[S_3 = S_2 + X_3^1 \]

\[S_2 = S_1 + X_2^1 \]

\[S_1 = S_0 + X_1^1 \]

\[S_0 = \epsilon \]

Konrad Kolesko

Local fluctuations of critical Mandelbrot cascades
Spinal decomposition of P_s
Spinal decomposition of P^s
Spinal decomposition of \mathbb{P}^s
Spinal decomposition of \mathbb{P}_s
Spinal decomposition of \mathcal{P}^s
Spinal decomposition of P^s
Spinal decomposition of \mathbb{P}_s

Konrad Kolesko
Local fluctuations of critical Mandelbrot cascades
4 May, 2015 12 / 20
Spinal decomposition of \mathbb{P}^s
Spinal decomposition of P^s

Random tree T^s with a distinguished ray $\Theta \in T^s$
Spinal decomposition of \mathbb{P}^s:

$$\mathbb{P}(T^s \in d\omega) = \mathbb{P}^s(d\omega)$$
\[\hat{\mathbb{P}}_s(d\omega, d\theta) := \mathbb{P}(T_s \in d\omega, \Theta \in d\theta) \]
For any labeled tree ω (resp. with distinguished ray θ) by ω_n (resp. θ_n) we denote the restriction up to level n. The random variable (T^s_n, Θ_n) can be constructed in two steps:

1. Choose tree T^s_n with according to the distribution \mathbb{P}^s

2. Pick up one of the vertex v from n-th level with distribution proportional to

\[
\frac{1}{W^s_n} \cdot h(s + X(v))1_{[s+X(v')>0, \text{ for } v' \leq v]} e^{-X(v)}
\]

i.e.

\[
\frac{1}{W^s_n} \cdot \frac{1}{W^s_n} \cdot h(s + X(v))1_{[s+X(v')>0, \text{ for } v' \leq v]} e^{-X(v)}.
\]

Set Θ_n to be ray ov.
For s large enough and fixed tree $\omega \in \text{supp}(\mathbb{P})$

\[
\mu_\omega(B(u)) = \lim_{n \to \infty} \sum_{v > u, |v| = n} X(v) e^{-X(v)}
\]

\[
= \lim_{n \to \infty} \sum_{v > u, |v| = n} (s + X(v)) e^{-X(v)}
\]

\[
\approx \lim_{n \to \infty} \sum_{v > u, |v| = n} h(s + X(v)) e^{-X(v)}
\]

\[
\lim_{n \to \infty} \sum_{v > u, |v| = n} h(s + X(v)) 1_{[s+X(v') > 0, \text{for } v' \leq v]} e^{-X(v)}
\]

\[
= W^s(\omega) \cdot \mathbb{P}(\Theta \in B(u) | \mathcal{T}^s = \omega)
\]

In particular $\mathbb{P}(\Theta \in \cdot | \mathcal{T}^s = \omega) \ll \mu_\omega$
\[P(\Theta \in \cdot | T^s = \omega) \ll \mu_\omega \]

For any \(A \subset T^* \)-set of trees with distinguished ray, such that \(\hat{P}^s(A) = 1 \)

\[
\hat{P}^s(A) = \int \int 1_{(\omega,\theta) \in A} P(\Theta \in \theta | T^s = \omega) P^s(d\omega)
\]

\[
\leq \int \int 1_{(\omega,\theta) \in A} \mu(\theta) P^s(d\omega)
\]

\[
\leq \int \int 1_{(\omega,\theta) \in A} \mu(\theta) P(d\omega) + \epsilon = \hat{P}(A) + \epsilon
\]
Probabilistic interpretation of μ

$$e^{-(S_0 - s)}$$

$$e^{-(S_1 - s)}$$

$$e^{-(S_2 - s)}$$

C_0

R_0

C_1

C_2

R_1

R_2
Under $\widehat{\mathbb{P}}^s$ the sequence $\mu_\omega(B(\theta_n))$ is a random variable $\mu_{T^s}(B(\Theta_n))$ which has the same law as

$$\sum_{k \geq n} e^{-(S_k-s)} C_k R_k,$$

where S_k is a random walk starting form s conditioned to to stay positive (discrete version of a Bessel process), R_k independent random variables.
We are looking for LIL for \(\sum_{k \geq n} e^{-S_k} C_k R_k \),

Motto’59; Hambly, Kersting, Kyprianou 2003

- \(\int_{0}^{\infty} \frac{\psi(t)}{t} dt < \infty \) iff \(S_n > \sqrt{n\psi(n)} \) eventually
- \(\lim\sup_n \frac{S_n}{\sqrt{2n\sigma^2 \log \log n}} = 1 \)

\[
\sqrt{n\psi(n)} < S_n < (1 + \delta) \sqrt{2n\sigma^2 \log \log n}
\]

\(\mathbb{P}^s\)-a.s. for \(n \) sufficiently large

Kyprianou

- \(1 - \mathbb{E}e^{-tR} \sim tL(t) \)

In particular, by Borel-Cantelli lemma, \(R_n < n^2 \) for all but finitely many \(n \).
We are looking for LIL for $\sum_{k\geq n} e^{-S_k} R_k$.

Motto’59; Hambly, Kersting, Kyprianou 2003

- $\int_0^{\infty} \frac{\psi(t)}{t} \, dt < \infty$ iff $S_n > \sqrt{n\psi(n)}$ eventually
- $\lim \sup_n \frac{S_n}{\sqrt{2n\sigma^2 \log \log n}} = 1$

\[\sqrt{n\psi(n)} < S_n < (1 + \delta) \sqrt{2n\sigma^2 \log \log n} \]

\mathbb{P}^s-a.s. for n sufficiently large

Kyprianou

- $1 - \mathbb{E}e^{-tR} \sim tL(t)$

In particular, by Borel-Cantelli lemma, $R_n < n^2$ for all but finitely many n.
We are looking for LIL for \(\sum_{k \geq n} e^{-S_k} R_k \).

Motto’59; Hambly, Kersting, Kyprianou 2003

- \(\int_0^\infty \frac{\psi(t)}{t} dt < \infty \) iff \(S_n > \sqrt{n\psi(n)} \) eventually
- \(\limsup_n \frac{S_n}{\sqrt{2n\sigma^2 \log \log n}} = 1 \)

\[
\sqrt{n\psi(n)} < S_n < (1 + \delta) \sqrt{2n\sigma^2 \log \log n}
\]

\(P^s \)-a.s. for \(n \) sufficiently large

Kyprianou

- \(1 - E e^{-tR} \sim tL(t) \)

In particular, by Borel-Cantelli lemma, \(R_n < n^2 \) for all but finitely many \(n \).
Take any ψ such that $\int_{\infty}^{\infty} \frac{\psi(t)dt}{t} < \infty$. We have that

$$\sum_{k \geq n} e^{-S_k} R_k$$

is eventually bounded by

$$\sum_{k \geq n} e^{-\sqrt{k} \psi(k)} k^2.$$

On the other hand, if $\int_{\infty}^{\infty} \frac{\psi(t)dt}{t} = \infty$ then

$$\sum_{k \geq n} e^{-S_k} R_k \geq e^{-S_n} R_n \overset{i.o.}{\geq} e^{-\sqrt{n} \psi(n)} R_n \overset{i.o.}{\geq} \delta e^{-\sqrt{n} \psi(n)}.$$
Take any ψ such that $\int_0^\infty \frac{\psi(t)dt}{t} < \infty$. We have that

$$\sum_{k\geq n} e^{-S_k} R_k$$

is eventually bounded by

$$\sum_{k\geq n} e^{-\sqrt{k}\psi(k)}.$$

On the other hand, if $\int_0^\infty \frac{\psi(t)dt}{t} = \infty$ then

$$\sum_{k\geq n} e^{-S_k} R_k \geq e^{-S_n} R_n \overset{i.o.}{\geq} e^{-\sqrt{n}\psi(n)} R_n \overset{i.o.}{\geq} \delta e^{-\sqrt{n}\psi(n)}$$
Take any ψ such that $\int_\infty^\infty \frac{\psi(t)dt}{t} < \infty$. We have that

$$\sum_{k \geq n} e^{-S_k} R_k$$

is eventually bounded by

$$\sum_{k \geq \sqrt{n\psi(n)}} e^{-k} \cdot polynomial(k).$$

On the other hand, if $\int_\infty^\infty \frac{\psi(t)dt}{t} = \infty$ then

$$\sum_{k \geq n} e^{-S_k} R_k \geq e^{-S_n} R_n \overset{i.o.}{\geq} e^{-\sqrt{n\psi(n)}} R_n \overset{i.o.}{\geq} \delta e^{-\sqrt{n\psi(n)}}$$
Upper bound

Take any \(\psi \) such that \(\int_{\infty}^{\infty} \frac{\psi(t)dt}{t} < \infty \). We have that

\[
\sum_{k \geq n} e^{-S_k} R_k
\]

is eventually bounded by

\[
\sum_{k \geq \sqrt{n}\psi(n)} e^{-k}.
\]

On the other hand, if \(\int_{\infty}^{\infty} \frac{\psi(t)dt}{t} = \infty \) then

\[
\sum_{k \geq n} e^{-S_k} R_k \geq e^{-S_n} R_n \overset{i.o.}{\geq} e^{-\sqrt{n}\psi(n)} R_n \overset{i.o.}{\geq} \delta e^{-\sqrt{n}\psi(n)}
\]
Take any ψ such that $\int_0^\infty \frac{\psi(t)dt}{t} < \infty$. We have that

$$\sum_{k \geq n} e^{-S_k} R_k$$

is eventually bounded by

$$e^{-\sqrt{n\psi(n)}}.$$

On the other hand, if $\int_0^\infty \frac{\psi(t)dt}{t} = \infty$ then

$$\sum_{k \geq n} e^{-S_k} R_k \geq e^{-S_n} R_n \overset{i.o.}{\geq} e^{-\sqrt{n\psi(n)}} R_n \overset{i.o.}{\geq} \delta e^{-\sqrt{n\psi(n)}}$$
Take $q > 1$ and by $N(n) := q^{\lceil \log q \rceil}$. Borel-Cantelli lemma’s implies that for sufficiently large n, $\sup_{q^n < k \leq q^{n+1}} R_k \geq \delta_0$.

$$\sum_{k \geq n} e^{-S_k} R_k \geq \sum_{k \geq n} e^{-(1+\delta)\sqrt{2k\sigma^2 \log \log k}} R_k$$

$$\geq \sum_{k=N(n)} e^{-(1+\delta)\sqrt{2qN(n)\sigma^2 \log \log (qN(n))}} R_k$$

$$\geq \delta_0 e^{-(1+\delta)\sqrt{2q^2 n\sigma^2 \log \log (q^2 n)}}$$

$$\geq e^{-(1+2\delta)\sqrt{2n\sigma^2 \log \log n}}$$

for some q.
Take $q > 1$ and by $N(n) := q^{\lceil \log_q \rceil}$. Borel-Cantelli lemma’s implies that for sufficiently large n, \(\sup_{q^n < k \leq q^{n+1}} R_k \geq \delta_0 \).

\[
\sum_{k \geq n} e^{-S_k} R_k \geq \sum_{k \geq n} e^{-(1+\delta) \sqrt{2k\sigma^2 \log \log k}} R_k
\]

\[
\geq \sum_{k= N(n)}^{qN(n)} e^{-(1+\delta) \sqrt{2k\sigma^2 \log \log k}} R_k
\]

\[
\geq \delta_0 e^{-(1+\delta) \sqrt{2qN(n)\sigma^2 \log \log (qN(n))}}
\]

\[
\geq \delta_0 e^{-(1+\delta) \sqrt{2q^2 n\sigma^2 \log \log (q^2 n)}}
\]

\[
\geq e^{-(1+2\delta) \sqrt{2n\sigma^2 \log \log n}},
\]

for some q.
Take $q > 1$ and by $N(n) := q^{\lceil \log q \rceil}$. Borel-Cantelli lemma’s implies that for sufficiently large n, \(\sup_{q^n < k \leq q^{n+1}} R_k \geq \delta_0 \).

\[
\sum_{k \geq n} e^{-S_k} R_k \geq \sum_{k \geq n} e^{-(1+\delta)\sqrt{2k\sigma^2 \log \log k}} R_k \\
\geq \sum_{k=N(n)}^{qN(n)} e^{-(1+\delta)\sqrt{2k\sigma^2 \log \log k}} R_k \\
\geq \delta_0 e^{-(1+\delta)\sqrt{2qN(n)\sigma^2 \log \log (qN(n))}} \\
\geq \delta_0 e^{-(1+\delta)\sqrt{2q^2n\sigma^2 \log \log (q^2n)}} \\
\geq e^{-(1+2\delta)\sqrt{2n\sigma^2 \log \log n}},
\]

for some q.
Theorem (BDK)

Let $k \in \mathbb{N}$ and $\delta > 0$. Then for \mathbb{P}-a.e. labeled tree ω, for μ_ω-a.e. $\theta \in \partial^* \mathbb{T}$ and sufficiently large n we have

\[
\mu_\omega(B(\theta_n)) \geq \exp \left(-(1 + \delta) \sqrt{2\sigma^2 n \log \log n} \right)
\]

\[
\mu_\omega(B(\theta_n)) \leq \exp \left(\frac{-\sqrt{n}}{\prod_{i=1}^{k} \log(i) n \left(\log(k+1) n \right)^2} \right)
\]
Theorem (BDK)

Let $k \in \mathbb{N}$ and $\delta > 0$. Then for \mathbb{P}-a.e. labeled tree ω, for μ_ω-a.e. $\theta \in \partial^*T$ and sufficiently large n we have

\[
\mu_\omega(B(\theta_n)) \geq \exp\left(-(1 + \delta) \sqrt{2\sigma^2 n \log \log n}\right)
\]

\[
\mu_\omega(B(\theta_n)) \leq \exp\left(\frac{-\sqrt{n}}{\prod_{i=1}^{k} \log(i) n (\log(k+1)n)^2}\right)
\]