Poisson boundary : from discrete to continuous groups

Sara Brofferio - University Paris Sud

Bedlewo, May 2015

Harmonic functions from discrete to continuous groups

- Bounded μ -harmonic functions on a group
- Countable Γ in continuous G

2 G-Poisson Boundary

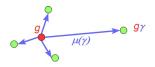
Example ; Affine group

3 From Γ-boundary to *G*-boundary

- Poisson Boundary of Baumslag-Solitar Group
- Open Questions

μ -harmonic functions on a group

- *G* be locally compact group, e.g. group of matrices such as : $SL_2(\mathbb{R})$ or $Aff(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} | a \in \mathbb{R}^*_+, b \in \mathbb{R} \right\}$
- μ probability on G



Bounded μ -harmonic function on G

 $f(g) = \int_G f(g\gamma) d\mu(\gamma)$ for λ -almost all $g \in G$.

 λ -Haar measure on GSpaces of bounded G-harmonic function $H^{\infty}(G) \subset L^{\infty}(G, \lambda)$

State of art : a Quick tour

Questions

- There exist **<u>bounded</u>** harmonic functions on (G, λ) ?
- If yes, describe the space $H^{\infty}(G)$ via an integral representation.

Quite well understood if :

- μ generic for special situation :
 - ▶ for Abelian Groups ⇒ no bounded harmonic function (Choquet and Deny,...)
 - ▶ similar result for nilpotent groups (Guivarc'h ('73), Breuillard ('02),..)
 - NA group for measure μ with specific drift (Raugi('77),..)
 - <u>ا ...</u>
- μ absolutely continuous w.r. to λ (Frustemberg ('63)...)
- in particular if G is countable thus $\lambda =$ counting measure (Derriennic, Kaimanovich and Vershik('83),...)

Purely atomic μ

 μ is **purely atomic** supported by a countable subgroup Γ dense a continuous group G

Exemples :

•
$$\mu$$
 supported by $\begin{bmatrix} 2 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1}$ and $\begin{bmatrix} 3 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1}$.
Then μ is supported by a dense subgroup of $Aff(\mathbb{R})$

 More generally μ supported by matrices with rational coefficient as a sub group of real matrices. E.g. μ supprted by SL₂(ℚ) ⊂ SL₂(ℝ).

Harmonic functions on G or on Γ

$$f(g) = \int_{\Gamma} f(g\gamma) d\mu(\gamma) \xrightarrow{\nearrow} \text{ for } \lambda \text{-almost all } g \in G \Rightarrow f \text{ is } G \text{-harmonic}$$
$$\searrow \text{ for all } g \in \Gamma \Rightarrow f \text{ is } \Gamma \text{-harmonic}$$

G-harmonic functions vs Γ -harmonic functions

$$L^{\infty}(G,\lambda) \supset H^{\infty}(G)
eq H^{\infty}(\Gamma) \subset L^{\infty}(\Gamma, ext{counting})$$

Remarks

- if $f \in H^{\infty}(G)$ is **continuous** then
 - $f(\gamma)$ is well defined for $\gamma \in \Gamma$ and Γ -harmonic.
 - If Γ is dense in G, then f is uniquely determined by $f|_{\Gamma}$
 - $f \mapsto f|_{\Gamma}$ is an isometric embedding $H^{\infty}(G) \cap C^{0}(G) \hookrightarrow H^{\infty}(\Gamma)$
- every function $f \in H^{\infty}(G)$ is λ -a.s. limit **continuous** functions :

$$f_n(g) = \int \alpha_n(h) f(hg) \lambda(dh) \to f(g) \text{ if } \alpha_n(h) \lambda(dh) \to \delta_e$$

Idea

- If $H^{\infty}(\Gamma)$ can be described
- if $\Gamma \hookrightarrow G$ is well understood

On should be able to understand $H^{\infty}(G)$

Random walks

 $gr_n(\omega)$

- $(\Omega,\mathbb{P})=(\mathcal{G},\mu)^{\mathbb{N}},$ be the space of random steps
- the right random walk with starting point g and steps $\{\omega_i\}\in\Omega$:

$$) = g\omega_1 \cdots \omega_n$$

Harmonic function $f \in L^{\infty}(G, \lambda)$

- the process $f(gr_n(\omega))$ is a well defined martingale on $\rho(dg) \times \mathbb{P}(d\omega)$ if ρ is a probability absolutely continuous with respect to λ
- lim_{n→∞} f(gr_n(ω)) =: Z_f(g, ω) exists ρ(dg)ℙ(dω)-almost surely.
 f(g) = ∫ Z_f(g, ω)dℙ(ω)

Poisson transform

 (G, μ) -spaces

a measurable space (X, ν)

- G acts on X
- ν is an μ invariant probability $\int_X \phi(x) d\nu(x) = \int_X \phi(g \cdot x) d\nu(x) d\mu(g)$

Poisson transform

$$\mathcal{P}_{
u}:\phi\mapsto f_{\phi}(g):=\int_{X}\phi(g\cdot x)d
u(x)$$

• f_{ϕ} is harmonic (since ν is μ -invariant)

$$\int_{G} f(g\gamma) d\mu(\gamma) = \int_{G} \int_{X} \phi(g\gamma \cdot x) d\nu(x) d\mu(\gamma) = \int_{X} \phi(g \cdot x) d\nu(x) = f(g)$$

Poisson Boundary

$$\mathcal{P}_{
u}:\phi\mapsto f_{\phi}(g):=\int_{X}\phi(g\cdot x)d
u(x)$$

Problem : $g * \nu$ can be singular w.r. to ν thus $\|\phi\|_{\infty}^{\nu} \neq \|\phi(g \cdot \cdot)\|_{\infty}^{\nu}$

- $\bullet~\rho$ is a probability absolutely continuous with respect to λ
- $\|\phi\|_{\infty}^{\rho*\nu} = \|\phi(g\cdot)\|_{\infty}^{\rho*\nu}$
- \mathcal{P}_{ν} is well defined on $L^{\infty}(X, \rho * \nu)$

$$\mathcal{P}_{\nu}: L^{\infty}(X, \rho * \nu) \to H^{\infty}(G)$$

G-Poisson Boundary

 (X, ν) is a *G*-poisson boundary if

$$\mathcal{P}_{\nu}: L^{\infty}(X, \rho * \nu) \longleftrightarrow H^{\infty}(G)$$

is a bijection.

It can be shown that the Poisson boundary is unique as a G-measurable

Sara Brofferio - University Paris Sud Poisson boundary : from discrete to continuo

Exemple : Affine group

•
$$Aff(\mathbb{R}) = \left\{ \left[egin{array}{cc} a & b \\ 0 & 1 \end{array}
ight| a \in \mathbb{R}^*_+, b \in \mathbb{R}
ight\}$$

• μ on $Aff(\mathbb{R})$ with suitable moments.

 $Aff(\mathbb{R})$ acts on \mathbb{R} by $x \mapsto ax + b$.

Results for $Aff(\mathbb{R})$ -Poisson Boundary (Raugi....)

If ∫ log a µ(da) = 0 the Aff(ℝ)-Poisson Boundary is trivial
If ∫ log a µ(da) < 0
Then if a_n b_n b_n i.i.d.
Z = ∑_{n=1}[∞] a₁ ··· a_{n-1}b_n

converges in \mathbb{R} .

• $(\mathbb{R}, \nu \sim Z)$ is the $Aff(\mathbb{R})$ -Poisson Boundary

• if $\int \log a \ \mu(da) > 0$ no general results. Trivial if μ a.c.

Countable subgroups of $Aff(\mathbb{R})$ Baumsalg-Solitar group :

$$BS(1,2) = \left\langle \left[\begin{array}{cc} 2 & \pm 1 \\ 0 & 1 \end{array} \right] \right\rangle = \left\{ \left[\begin{array}{cc} 2^{k_1} & k_2 2^{k_3} \\ 0 & 1 \end{array} \right] | k_i \in \mathbb{Z} \right\} = \mathbb{Z}(\frac{1}{2}) \rtimes \mathbb{Z}.$$

The action $x \mapsto ax + b$ is defined on \mathbb{R} and in \mathbb{Q}_2

Question :

If BS(1,2)-Poisson Boundary is \mathbb{Q}_2 , there exist **real** harmonic functions?

Same question for μ supported by

$$\begin{bmatrix} 2 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1} \text{ and } \begin{bmatrix} 3 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1}$$

Sara Brofferio - University Paris Sud Poisson boundary : from discrete to continuo

G-action on Γ -space

- μ supported on countable Γ dense in G.
- (X, ν) Γ -Poisson boundary

Goal

Build the G-boundary on the Γ -space X

If f continuous G-harmonic function

- $f|_{\Gamma} \in H^{\infty}(\Gamma) \Rightarrow f(\gamma) = \int_{X} \phi(\gamma \cdot x) d\nu(x) \quad \forall \gamma \in \Gamma.$ Do not hold for $\gamma = g \in G \setminus \Gamma$, since X is not a priori a G-space.
- For fixed g $f(g \cdot)$ is Γ -harmonic thus exist $\phi(g, \cdot) \in L^{\infty}(X, \nu)$:

$$f(g\gamma) = \int_X \phi(g, \gamma \cdot x) d\nu(x) \qquad \forall \gamma \in \Gamma.$$

• Since $f(g) = f(g\gamma^{-1}\gamma) \Rightarrow$

$$f(g) = \int_X \phi(g, x) d\nu(x) = \int_X \phi(g\gamma^{-1}, \gamma \cdot x) d\nu(x) = f(g\gamma^{-1}\gamma)$$

From Γ-boundary to *G*-boundary

Theorem

- μ supported by a countable subgroup Γ of ${\it G}$
- X be the Γ-Poisson Boundary

For all $f \in H^{\infty}(G)$ there exits $\phi \in L^{\infty}(G \times X, \rho \times \nu)$ such that

$$\phi(g,x)=\phi(g\gamma^{-1},\gamma\cdot x)$$
 for all $\gamma\in \mathsf{\Gamma}$ and $ho(dg)
u(dx)$ a.s.

and

$$f(g) = \int_X \phi(g, x) \nu(dx) \quad \rho(dg) \text{ a.s.}.$$

The G-Poisson boundary is the measurable quotient space

 $(G \times X, \rho \times \nu)/\Gamma$

for the Γ -action $\gamma * (g, x) = (g\gamma^{-1}, \gamma \cdot x)$

$(G \times X)/\Gamma$

Remarks :

γ * (g, x) = (gγ⁻¹, γ · x) is (after conjugation) equal to is the action of Γ on G × X :

$$\gamma \stackrel{\mathsf{d}}{\cdot} (g, x) = (\gamma g, \gamma \cdot x).$$

η(g,x) ∈ (G × X) /Γ is a measurable equivalence class containing (g,x) :

$$\eta({m g},{m x})=\eta({m g}{m \gamma}^{-1},{m \gamma}\cdot{m x})$$
 for all $\gamma\in{\sf \Gamma}$

• $(G \times X)/\Gamma$ is a measurable *G*-space

$$g_0\eta(g,x) = \eta(g_0g,x)$$

• The G-action coincide with the Γ -action on X :

$$\gamma \eta(e, x) = \eta(\gamma, x) = \eta(e, \gamma \cdot x).$$

Actions with fundamental domain

$$\gamma_{1} * D \qquad \gamma_{2} * D \qquad \gamma_{4} * D$$

$$D \qquad \gamma_{3} * D \qquad \gamma_{5} * D \qquad \gamma_{1} * D$$

$$(g,x) \qquad \circ \gamma_{3} * (g,x)$$

Corollary

Suppose there exists measurable fundamental domain $D \subset G \times X$ for the action * of Γ that is

•
$$\Gamma * D = G \times X$$
 $\rho \times \nu$ -a.s.

•
$$\rho \times \nu(D \cap \gamma * D) = 0 \quad \forall \gamma \in \Gamma - \{e\}$$

then $D = (G \times X) / \Gamma$ is the G-Poisson boundary

Poisson Boundary of Baumslag-Solitar Group

Corollary

$$BS(1,2) = \left\langle \left[\begin{array}{cc} 2 & \pm 1 \\ 0 & 1 \end{array} \right] \right\rangle = \left\{ \left[\begin{array}{cc} 2^{k_1} & k_2 2^{k_3} \\ 0 & 1 \end{array} \right] | k_i \in \mathbb{Z} \right\} = \mathbb{Z}(\frac{1}{2}) \rtimes \mathbb{Z}.$$

• μ with first logarithmic moment on \mathbb{R} and \mathbb{Q}_2 .

• $\int \log a \ \mu(da) > 0$,(thus BS(1,2)-Poisson boundary is $X = \mathbb{Q}_2$).

then the **real** Poisson boundary is is the *p*-solenoid : $D = [0,1) \times \mathbb{Z}_2 = \mathbb{R} \times \mathbb{Q}_2 / \mathbb{Z}(\frac{1}{2}).$

That is any bounded function on
$$D$$
 rise in a harmonic function on $\left\{ \begin{bmatrix} 2^m & b \\ 0 & 1 \end{bmatrix} | m \in \mathbb{Z}, b \in \mathbb{R} \right\} = \mathbb{R} \rtimes \mathbb{Z}$
Proof : For all $(x, \xi) \in \mathbb{R} \times \mathbb{Q}_2$ there exist a unique $k \in \mathbb{Z}(\frac{1}{2})$ such that $0 < x - k \le 1$ and $|\xi + k| \le 1$.

Open questions

- μ supported by $\Gamma = \left\langle \begin{bmatrix} 2 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1}, \begin{bmatrix} 3 & \pm 1 \\ 0 & 1 \end{bmatrix}^{\pm 1} \right\rangle$. If $\int \log a \ \mu(da) > 0$, the Γ -Poisson boundary is \mathbb{Q}_2 or $\mathbb{Q}_2 \times \mathbb{Q}_3$ The *Aff*(\mathbb{R})-Poisson Boundary is it trivial?
- μ supported by

$$\Gamma = SL_2(\mathbb{Z}(1/2)) = \left\{ \left[egin{array}{c} a & b \ c & d \end{array}
ight] | ad - cd = 1, a, b, c ext{ et } d \in \mathbb{Z}/2^m
ight\}$$

The Γ -Poisson boundary is $\mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^1(\mathbb{Q}_2)$. The $SL_2(\mathbb{R})$ -Poisson boundary is $\mathbb{P}^1(\mathbb{R})$?