Sudakov Minoration

Witold Bednorz

Institute of Mathematics University of Warsaw

Probability and Analysis, Bedlewo, 4.05.2015

• Let
$$X = (X_1, X_2, \dots, X_d)$$
 be a r.v. in \mathbb{R}^d .

- Let $X = (X_1, X_2, \dots, X_d)$ be a r.v. in \mathbb{R}^d .
- ► Usually X is in the isotropic position, i.e. $EX_i = 0$ and $EX_iX_j = 0$ if $i \neq j$ and $EX_i^2 = 1$.

- Let $X = (X_1, X_2, \dots, X_d)$ be a r.v. in \mathbb{R}^d .
- ► Usually X is in the isotropic position, i.e. $EX_i = 0$ and $EX_iX_i = 0$ if $i \neq j$ and $EX_i^2 = 1$.
- ▶ In this setting $\mathbf{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.

- Let $X = (X_1, X_2, \dots, X_d)$ be a r.v. in \mathbb{R}^d .
- ► Usually X is in the isotropic position, i.e. $EX_i = 0$ and $EX_iX_i = 0$ if $i \neq j$ and $EX_i^2 = 1$.
- ► In this setting $\mathbf{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.
- ► The main question: for a given norm || · || on ℝ^d, how to estimate E||X||?

- Let $X = (X_1, X_2, \dots, X_d)$ be a r.v. in \mathbb{R}^d .
- ► Usually X is in the isotropic position, i.e. $EX_i = 0$ and $EX_iX_i = 0$ if $i \neq j$ and $EX_i^2 = 1$.
- ▶ In this setting $\mathbf{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.
- ► The main question: for a given norm || · || on ℝ^d, how to estimate E||X||?
- More generally: for each $T \subset \mathbb{R}^d$ obtain bounds for

$$\mathsf{E}\sup_{t\in\mathcal{T}}\langle t,\mathsf{X}\rangle=\mathsf{E}\sup_{t\in\mathcal{T}}\mathsf{X}_t,$$

where $X_t = \langle t, X \rangle$.

Suppose that $T \subset \mathbb{R}^d$, *T*-finite and $|T| \leq e^p$, where $p \geq 1$.

- Suppose that $T \subset \mathbb{R}^d$, *T*-finite and $|T| \leq e^p$, where $p \geq 1$.
- Let $||X_t||_{\rho} = (\mathbf{E}|X_t|^{\rho})^{\frac{1}{\rho}} = (\mathbf{E}|\langle t, X \rangle|^{\rho})^{\frac{1}{\rho}} \leqslant A$, for all $t \in T$.

- ▶ Suppose that $T \subset \mathbb{R}^d$, *T*-finite and $|T| \leq e^p$, where $p \geq 1$.
- ► Let $||X_t||_p = (\mathbf{E}|X_t|^p)^{\frac{1}{p}} = (\mathbf{E}|\langle t, X \rangle|^p)^{\frac{1}{p}} \leqslant A$, for all $t \in T$.

Then

$$\begin{split} \mathbf{E} \sup_{t \in T} X_t &\leq \mathbf{E} \sup_{t \in T} |X_t| = \mathbf{E} (\sup_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq \\ &\leq (\mathbf{E} \sum_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq (e^p A^p)^{\frac{1}{p}} = e A. \end{split}$$

- ▶ Suppose that $T \subset \mathbb{R}^d$, *T*-finite and $|T| \leq e^p$, where $p \geq 1$.
- ► Let $||X_t||_{\rho} = (\mathbf{E}|X_t|^{\rho})^{\frac{1}{\rho}} = (\mathbf{E}|\langle t, X \rangle|^{\rho})^{\frac{1}{\rho}} \leqslant A$, for all $t \in T$.

Then

$$\mathsf{E}\sup_{t\in T} X_t \leqslant \mathsf{E}\sup_{t\in T} |X_t| = \mathsf{E}(\sup_{t\in T} |X_t|^p)^{\frac{1}{p}} \leqslant \\ \leqslant (\mathsf{E}\sum_{t\in T} |X_t|^p)^{\frac{1}{p}} \leqslant (e^p A^p)^{\frac{1}{p}} = eA.$$

Is it possible to reverse this estimate?

Vector X has a log concave distribution μ_X if for any non-empty compact sets A, B ⊂ ℝ^d and α + β = 1, α, β ≥ 0

 $\mu_X(\alpha \mathbf{A} + \beta \mathbf{B}) \ge \mu_X(\mathbf{A})^{\alpha} \mu_X(\mathbf{B})^{\beta}.$

Vector X has a log concave distribution μ_X if for any non-empty compact sets A, B ⊂ ℝ^d and α + β = 1, α, β ≥ 0

$$\mu_X(\alpha \mathbf{A} + \beta \mathbf{B}) \geqslant \mu_X(\mathbf{A})^{\alpha} \mu_X(\mathbf{B})^{\beta}.$$

If the support of µ_X is ℝ^d then there exists density f_X of µ_X such that f_X = exp(−U_X), where U_X : ℝ^d → ℝ is convex.

Vector X has a log concave distribution μ_X if for any non-empty compact sets A, B ⊂ ℝ^d and α + β = 1, α, β ≥ 0

$$\mu_X(\alpha \mathbf{A} + \beta \mathbf{B}) \geqslant \mu_X(\mathbf{A})^{\alpha} \mu_X(\mathbf{B})^{\beta}.$$

- If the support of µ_X is ℝ^d then there exists density f_X of µ_X such that f_X = exp(−U_X), where U_X : ℝ^d → ℝ is convex.
- ► For log concave X, all $t \in \mathbb{R}^d$ and $p \ge 1$ we have $||X_t||_p = ||\langle t, X \rangle||_p < \infty$.

Vector X has a log concave distribution μ_X if for any non-empty compact sets A, B ⊂ ℝ^d and α + β = 1, α, β ≥ 0

$$\mu_X(\alpha \mathbf{A} + \beta \mathbf{B}) \geqslant \mu_X(\mathbf{A})^{\alpha} \mu_X(\mathbf{B})^{\beta}.$$

- If the support of µ_X is ℝ^d then there exists density f_X of µ_X such that f_X = exp(−U_X), where U_X : ℝ^d → ℝ is convex.
- ► For log concave X, all $t \in \mathbb{R}^d$ and $p \ge 1$ we have $||X_t||_p = ||\langle t, X \rangle||_p < \infty$.
- ▶ Vector X is unconditional if X and $(\varepsilon_1 X_1, ..., \varepsilon_d X_d)$, where ε_i are independent random signs $\mathbf{P}(\varepsilon_i = \pm 1) = \frac{1}{2}$.

Vector X has a log concave distribution μ_X if for any non-empty compact sets A, B ⊂ ℝ^d and α + β = 1, α, β ≥ 0

$$\mu_X(\alpha \mathbf{A} + \beta \mathbf{B}) \geqslant \mu_X(\mathbf{A})^{\alpha} \mu_X(\mathbf{B})^{\beta}.$$

- If the support of µ_X is ℝ^d then there exists density f_X of µ_X such that f_X = exp(−U_X), where U_X : ℝ^d → ℝ is convex.
- ► For log concave X, all $t \in \mathbb{R}^d$ and $p \ge 1$ we have $||X_t||_p = ||\langle t, X \rangle||_p < \infty$.
- ▶ Vector X is unconditional if X and $(\varepsilon_1 X_1, ..., \varepsilon_d X_d)$, where ε_i are independent random signs $\mathbf{P}(\varepsilon_i = \pm 1) = \frac{1}{2}$.
- ► It is known that $||X_t||_p \leq \frac{p}{q} ||X_t||_q$ for all $1 \leq q \leq p$.

Suppose that X is unconditional, isotropic and log concave.

- Suppose that X is unconditional, isotropic and log concave.
- ► Suppose that $t \in \mathbb{R}^d$ has support $I(t) = \{i \in \{1, ..., d\} : t_i \neq 0\}$ such that $|I(t)| \leq p$.

- Suppose that X is unconditional, isotropic and log concave.
- ► Suppose that $t \in \mathbb{R}^d$ has support $I(t) = \{i \in \{1, ..., d\} : t_i \neq 0\}$ such that $|I(t)| \leq p$.
- Then

$$\|X_t\|_{p} = \sup\{\sum_{i\in I(t)} a_i t_i : \mathsf{P}(\bigcap_{i\in I(t)} \{X_i \leqslant a_i\}) \ge e^{-p}\}.$$

- Suppose that X is unconditional, isotropic and log concave.
- ► Suppose that $t \in \mathbb{R}^d$ has support $I(t) = \{i \in \{1, ..., d\} : t_i \neq 0\}$ such that $|I(t)| \leq p$.
- Then

$$\|X_t\|_{\mathcal{P}} = \sup\{\sum_{i\in I(t)} a_i t_i: \mathbf{P}(\bigcap_{i\in I(t)} \{X_i \leqslant a_i\}) \geqslant e^{-\mathcal{P}}\}.$$

▶ In particular for X_i iid $\mathcal{N}(0, 1)$ then $||X_t||_p \sim \sqrt{p} ||t||_2$.

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^d$ has support $I(t) = \{i \in \{1, \dots, d\} : t_i \neq 0\}$ such that $|I(t)| \leq p$.

Then

$$\|X_t\|_{p} = \sup\{\sum_{i\in I(t)} a_i t_i: \mathbf{P}(\bigcap_{i\in I(t)} \{X_i \leqslant a_i\}) \ge e^{-p}\}.$$

- ► In particular for X_i iid $\mathcal{N}(0, 1)$ then $||X_t||_{\rho} \sim \sqrt{\rho} ||t||_2$.
- ▶ If X_i iid symmetric $\mathbf{P}(|X_i| > t) = C_\alpha \exp(-|t|^\alpha)$, $1 \le \alpha \le 2$, $\|X_t\|_{\rho} \sim \sqrt{\rho} \|t\|_2 + \rho^{\frac{1}{\alpha}} \|t\|_{\beta}$, where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.

- Suppose that X is unconditional, isotropic and log concave.
- ▶ Suppose that $t \in \mathbb{R}^d$ has support $I(t) = \{i \in \{1, ..., d\} : t_i \neq 0\}$ such that $|I(t)| \leq p$.

Then

$$\|X_t\|_p = \sup\{\sum_{i\in I(t)} a_i t_i: \mathbf{P}(\bigcap_{i\in I(t)} \{X_i \leqslant a_i\}) \ge e^{-p}\}.$$

- ► In particular for X_i iid $\mathcal{N}(0, 1)$ then $||X_t||_p \sim \sqrt{p} ||t||_2$.
- ▶ If X_i iid symmetric $\mathbf{P}(|X_i| > t) = C_\alpha \exp(-|t|^\alpha)$, $1 \le \alpha \le 2$, $\|X_t\|_{p} \sim \sqrt{p} \|t\|_2 + p^{\frac{1}{\alpha}} \|t\|_{\beta}$, where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.

► If
$$X_i$$
 iid $\mathcal{U}(-\sqrt{3}, \sqrt{3})$ then
 $\|X_t\|_p \sim \sum_{i=1}^p |t_i^*| + \sqrt{p} (\sum_{i>p} |t_i^*|^2)^{\frac{1}{2}}$, where $|t_i^*| \ge |t_{i+1}^*|$.

Suppose that *X* is unconditional, log concave.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \ge e^{p}$, $p \ge 1$.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \ge e^p$, $p \ge 1$.
- Suppose that for each $s, t \in T, s \neq t$

$$\|X_t - X_s\|_{p} = (\mathbf{E}|X_t - X_s|^{p})^{\frac{1}{p}} = (\mathbf{E}|\langle t - s, X\rangle|^{p})^{\frac{1}{p}} \ge A.$$

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \ge e^{p}$, $p \ge 1$.
- Suppose that for each $s, t \in T, s \neq t$

$$\|X_t - X_s\|_{\mathcal{P}} = (\mathsf{E}|X_t - X_s|^{\mathcal{P}})^{\frac{1}{\mathcal{P}}} = (\mathsf{E}|\langle t - s, X \rangle|^{\mathcal{P}})^{\frac{1}{\mathcal{P}}} \geqslant A.$$

Does it imply that

$$\mathsf{E}\sup_{t\in\mathcal{T}}X_t=\mathsf{E}\sup_{t\in\mathcal{T}}\langle t,X\rangle\geqslant K^{-1}A,$$

where K is an absolute constant?

Dimension free estimate for E sup_{t∈T} X_t in a particular case where |T| ~ e^p, 0 ∈ T and ||X_t − X_s||_p ~ A for all s, t ∈ T, s ≠ t.

- Dimension free estimate for E sup_{t∈T} X_t in a particular case where |T| ~ e^p, 0 ∈ T and ||X_t − X_s||_p ~ A for all s, t ∈ T, s ≠ t.
- First step in order to establish dimension free estimates for **E**||X|| by the generic chaining approach.

- Dimension free estimate for E sup_{t∈T} X_t in a particular case where |T| ~ e^p, 0 ∈ T and ||X_t − X_s||_p ~ A for all s, t ∈ T, s ≠ t.
- First step in order to establish dimension free estimates for **E**||X|| by the generic chaining approach.
- Concentration inequalities of the type

$$\mathbf{P}(\|X\| \ge \mathcal{K}(\mathbf{E}\|X\| + \sup_{\|x^*\| \le 1} \|\langle x^*, X \rangle\|_p)) \le e^{-p}.$$

- Dimension free estimate for E sup_{t∈T} X_t in a particular case where |T| ~ e^p, 0 ∈ T and ||X_t − X_s||_p ~ A for all s, t ∈ T, s ≠ t.
- First step in order to establish dimension free estimates for **E**||X|| by the generic chaining approach.
- Concentration inequalities of the type

$$\mathbf{P}(\|X\| \ge K(\mathbf{E}\|X\| + \sup_{\|x^*\| \le 1} \|\langle x^*, X \rangle\|_p)) \le e^{-p}.$$

Paouris type estimates

$$(\mathbf{\mathsf{E}}\|X\|^{\rho})^{\frac{1}{p}} \leqslant \mathcal{K}(\mathbf{\mathsf{E}}\|X\| + \sup_{\|x^*\| \leqslant 1} \|\langle x^*, X \rangle\|_{\rho}).$$

• Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \ge e^{\rho}$, $||X_t - X_s||_{\rho} \ge A$.

- Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \ge e^{\rho}$, $||X_t X_s||_{\rho} \ge A$.
- Sudakov minoration: if ||t − s||₂ ≥ a for all s, t ∈ T, s ≠ t then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}a\sqrt{\ln|T|}.$$

- Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \ge e^{\rho}$, $||X_t X_s||_{\rho} \ge A$.
- Sudakov minoration: if ||t − s||₂ ≥ a for all s, t ∈ T, s ≠ t then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}a\sqrt{\ln|T|}.$$

• Recall that $||X_t||_{\rho} \sim \sqrt{p} ||t||_2$ and hence

$$\|X_t - X_s\|_p \sim \sqrt{p} \|t - s\|_2 \ge A$$
, then $a = \frac{A}{\sqrt{p}}$.

- Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \ge e^{\rho}$, $||X_t X_s||_{\rho} \ge A$.
- Sudakov minoration: if ||t − s||₂ ≥ a for all s, t ∈ T, s ≠ t then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}a\sqrt{\ln|T|}.$$

• Recall that $||X_t||_p \sim \sqrt{p} ||t||_2$ and hence

$$\|X_t - X_s\|_p \sim \sqrt{p} \|t - s\|_2 \ge A$$
, then $a = \frac{A}{\sqrt{p}}$.

• Therefore for $|T| = e^{p}$

$$\mathsf{E}\sup_{t\in T} X_t \ge K^{-1}\frac{A}{\sqrt{p}}\sqrt{p} = K^{-1}A$$

▶ Let X_i be iid random signs, $|T| \ge e^p$, $||X_t - X_s||_p \ge A$, $s \ne t$.

- ▶ Let X_i be iid random signs, $|T| \ge e^p$, $||X_t X_s||_p \ge A$, $s \ne t$.
- ► Talagrand's minoration: let $b(T) = \mathbf{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.

- ▶ Let X_i be iid random signs, $|T| \ge e^{\rho}$, $||X_t X_s||_{\rho} \ge A$, $s \ne t$.
- ► Talagrand's minoration: let $b(T) = \mathbf{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.
- Let N(T, D(a)) denotes the smallest number of shifts of the set D(a) that covers T.

- ▶ Let X_i be iid random signs, $|T| \ge e^p$, $||X_t X_s||_p \ge A$, $s \ne t$.
- ► Talagrand's minoration: let $b(T) = \mathbf{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.
- Let N(T, D(a)) denotes the smallest number of shifts of the set D(a) that covers T.

• Then
$$b(T) \ge K^{-1}a\sqrt{\ln N(T,D(a))}$$
.

- ▶ Let X_i be iid random signs, $|T| \ge e^p$, $||X_t X_s||_p \ge A$, $s \ne t$.
- ► Talagrand's minoration: let $b(T) = \mathbf{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.
- Let N(T, D(a)) denotes the smallest number of shifts of the set D(a) that covers T.
- Then $b(T) \ge K^{-1}a\sqrt{\ln N(T, D(a))}$.
- If ||X_t X_s||_p ≥ A, then t s ∉ AB₁ + A/√pB₂ and hence either b(T) ≥ K⁻¹A or T is covered by at least e^p shifts of D(A/√p) which means

$$b(T) \ge K^{-1} \frac{A}{\sqrt{p}} \sqrt{p} = K^{-1} A.$$

► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \ge x) = e^{-x}$, $|T| \ge e^p$, $||X_t - X_s||_p \ge A$ for all $s \ne t$.

- ► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \ge x) = e^{-x}$, $|T| \ge e^p$, $||X_t - X_s||_p \ge A$ for all $s \ne t$.
- Recall that

$$\|X_t - X_s\|_{p} \sim \sqrt{p}\|t - s\|_2 + p\|s - t\|_{\infty} \ge A.$$

- ► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \ge x) = e^{-x}$, $|T| \ge e^p$, $||X_t - X_s||_p \ge A$ for all $s \ne t$.
- Recall that

$$\|X_t - X_s\|_{\rho} \sim \sqrt{\rho} \|t - s\|_2 + \rho \|s - t\|_{\infty} \ge A.$$

Sudakov minoration: **E** sup_{$t \in T$} $X_t \ge K^{-1}A$?

- ► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \ge x) = e^{-x}$, $|T| \ge e^p$, $||X_t - X_s||_p \ge A$ for all $s \ne t$.
- Recall that

$$\|X_t - X_s\|_{p} \sim \sqrt{p} \|t - s\|_2 + p \|s - t\|_{\infty} \ge A.$$

- Sudakov minoration: **E** sup_{$t \in T$} $X_t \ge K^{-1}A$?
- The question can be reduced to the following one: suppose t_i ∈ {0, k_i}, k_i ≥ 1 for all i ∈ {1, 2, ..., d} then

$$\mathsf{E}\sup_{t\in\mathcal{T}}X_t = \mathsf{E}\sup_{t\in\mathcal{T}}\sum_{i\in I(t)}k_iX_i \geqslant K^{-1}\ln|\mathcal{T}|.$$

- ► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \ge x) = e^{-x}$, $|T| \ge e^{\rho}$, $|X_t X_s||_{\rho} \ge A$ for all $s \ne t$.
- Recall that

$$\|X_t - X_s\|_{\rho} \sim \sqrt{\rho} \|t - s\|_2 + \rho \|s - t\|_{\infty} \ge A.$$

- Sudakov minoration: **E** sup_{$t \in T$} $X_t \ge K^{-1}A$?
- The question can be reduced to the following one: suppose t_i ∈ {0, k_i}, k_i ≥ 1 for all i ∈ {1, 2, ..., d} then

$$\mathbf{E}\sup_{t\in T} X_t = \mathbf{E}\sup_{t\in T} \sum_{i\in I(t)} k_i X_i \ge K^{-1} \ln |T|.$$

 This fact was established by Talagrand and generalized by Latala and then by Latala and Tkocz.

► It suffices to prove the minoration for sets *T* of special form.

- ► It suffices to prove the minoration for sets *T* of special form.
- (Sufficient cardinality) Let T ⊂ ℝ^d consists of e^{Cp} points, C-large.

- ► It suffices to prove the minoration for sets *T* of special form.
- (Sufficient cardinality) Let T ⊂ ℝ^d consists of e^{Cp} points, C-large.
- ► (Cube-like) Let *T* consists of *t* that satisfies $t_i \in \{0, k_i\}$, where $k_i \ge 1$.

- ► It suffices to prove the minoration for sets *T* of special form.
- (Sufficient cardinality) Let T ⊂ ℝ^d consists of e^{Cp} points, C-large.
- ► (Cube-like) Let *T* consists of *t* that satisfies $t_i \in \{0, k_i\}$, where $k_i \ge 1$.
- ► (Short supports) For each *t* the support satisfies $|I(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_i \leq \delta p$

- ► It suffices to prove the minoration for sets *T* of special form.
- (Sufficient cardinality) Let T ⊂ ℝ^d consists of e^{Cp} points, C-large.
- ► (Cube-like) Let *T* consists of *t* that satisfies $t_i \in \{0, k_i\}$, where $k_i \ge 1$.
- (Short supports) For each *t* the support satisfies $|I(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_i \leq \delta p$
- ▶ (Sufficient separation) For each $s, t \in T$, $s \neq t$

$$\|X_t - X_s\|_{p} = \|\sum_{i \in I(t) \setminus I(s)} k_i X_i - \sum_{i \in I(s) \setminus I(t)} k_i X_i\| \ge p = A.$$

- ► It suffices to prove the minoration for sets *T* of special form.
- (Sufficient cardinality) Let T ⊂ ℝ^d consists of e^{Cp} points, C-large.
- ► (Cube-like) Let *T* consists of *t* that satisfies $t_i \in \{0, k_i\}$, where $k_i \ge 1$.
- (Short supports) For each *t* the support satisfies $|I(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_i \leq \delta p$

▶ (Sufficient separation) For each $s, t \in T$, $s \neq t$

$$\|X_t - X_s\|_{p} = \|\sum_{i \in I(t) \setminus I(s)} k_i X_i - \sum_{i \in I(s) \setminus I(t)} k_i X_i\| \ge p = A.$$

• Does it imply that $\mathbf{E} \sup_{t \in T} X_t \ge K^{-1} p = K^{-1} A$?

• Let J(t) consists of points $s \in T$ such that

$$\|\sum_{i\in I(t)\setminus I(s)}k_iX_i\|_p\geq \frac{p}{2}.$$

• Let J(t) consists of points $s \in T$ such that

$$|\sum_{i\in I(t)\setminus I(s)}k_iX_i||_p \geqslant \frac{p}{2}.$$

Suppose that for each $t \in T$ one can select $a_i(t) \ge 1$, $i \in I(t)$ such that

$$\sum_{i\in I(t)\setminus I(s)}k_ia_i(t)\geqslant C^{-1}p$$
 for all $s\in J(t)$

• Let J(t) consists of points $s \in T$ such that

$$|\sum_{i\in I(t)\setminus I(s)}k_iX_i||_p \geqslant \frac{p}{2}.$$

Suppose that for each $t \in T$ one can select $a_i(t) \ge 1$, $i \in I(t)$ such that

$$\sum_{i \in I(t) \setminus I(s)} k_i a_i(t) \geqslant C^{-1} p$$
 for all $s \in J(t)$

and

$$\mathbf{P}(\bigcap_{i\in I(t)} \{X_i \ge a_i(t)\}) \ge e^{-p}.$$

• Let J(t) consists of points $s \in T$ such that

$$|\sum_{i\in I(t)\setminus I(s)}k_iX_i||_p \geqslant \frac{p}{2}.$$

Suppose that for each $t \in T$ one can select $a_i(t) \ge 1$, $i \in I(t)$ such that

$$\sum_{i \in I(t) \setminus I(s)} k_i a_i(t) \geqslant C^{-1} p \text{ for all } s \in J(t)$$

and

$$\mathbf{P}(\bigcap_{i\in I(t)} \{X_i \ge a_i(t)\}) \ge e^{-p}.$$

 The condition is verified when supports are disjoint or intersects in few coordinates.

 For log concave measures (unconditional) the following inequality holds

$$\mathbf{P}(X \in \mathbf{A} + \alpha(\sqrt{u}B_2 + uB_1)) \ge 1 - e^{-u}, \text{ for } u > 0,$$

where $\mathbf{P}(X \in A) \ge \frac{1}{2}$, α -constant (best result $\alpha \sim \log d$).

 For log concave measures (unconditional) the following inequality holds

$$\mathbf{P}(X \in \mathbf{A} + lpha(\sqrt{u}B_2 + uB_1)) \geqslant 1 - e^{-u}, \text{ for } u > 0,$$

where $\mathbf{P}(X \in A) \ge \frac{1}{2}$, α -constant (best result $\alpha \sim \log d$).

• It is believed that it holds for dimension free α .

 For log concave measures (unconditional) the following inequality holds

$$\mathbf{P}(X \in \mathbf{A} + \alpha(\sqrt{u}B_2 + uB_1)) \ge 1 - e^{-u}, \text{ for } u > 0,$$

where $\mathbf{P}(X \in A) \ge \frac{1}{2}$, α -constant (best result $\alpha \sim \log d$).

- It is believed that it holds for dimension free α .
- Assume that

$$\mathbf{P}(\sup_{t\in\mathcal{T}}\sup_{s\in J(t)}|\sum_{i\in I(t)\setminus I(s)}k_iX_i|\leqslant K^{-1}p)\geqslant \frac{1}{2}.$$

otherwise $\mathsf{E} \sup_{t \in T} \sup_{s \in J(t)} |\sum_{i \in I(t) \setminus I(s)} k_i X_i| \ge (2K)^{-1} p$.

 For log concave measures (unconditional) the following inequality holds

$$\mathbf{P}(X \in \mathbf{A} + lpha(\sqrt{u}B_2 + uB_1)) \ge 1 - e^{-u}, \text{ for } u > 0,$$

where $\mathbf{P}(X \in A) \ge \frac{1}{2}$, α -constant (best result $\alpha \sim \log d$).

- It is believed that it holds for dimension free α .
- Assume that

$$\mathbf{P}(\sup_{t\in\mathcal{T}}\sup_{s\in J(t)}|\sum_{i\in I(t)\setminus I(s)}k_iX_i|\leqslant K^{-1}p)\geqslant \frac{1}{2}.$$

otherwise $\mathsf{E} \sup_{t \in T} \sup_{s \in J(t)} |\sum_{i \in I(t) \setminus I(s)} k_i X_i| \ge (2K)^{-1} p$.

► Therefore
$$\mathbf{P}(X \in A) \ge \frac{1}{2}$$
 for
 $A = \{x \in \mathbb{R}^d : \sup_{t \in T} \sup_{s \in J(t)} |\sum_{i \in I(t) \setminus I(s)} k_i x_i| \le K^{-1} \rho\}.$

• Recall that $|T| \ge e^{Cp}$, *C*-large. Clearly

$$e^{(C-1)p} \leq e^{-p}|T| \leq \sum_{t\in T} \mathbf{P}(\bigcap_{i\in I(t)} \{X_i \geq a_i(t)\}) = \mathbf{E}N,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} \mathbf{1}_{|X_i| \ge a_i(t)}$.

• Recall that $|T| \ge e^{Cp}$, *C*-large. Clearly

$$e^{(C-1)\rho} \leqslant e^{-\rho}|\mathcal{T}| \leqslant \sum_{t\in\mathcal{T}} \mathsf{P}(\bigcap_{i\in I(t)} \{X_i \geqslant a_i(t)\}) = \mathsf{E}N,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} \mathbf{1}_{|X_i| \ge a_i(t)}$.

Therefore

$$\mathbf{E}N\leqslant \frac{1}{2}e^{-p}|\mathcal{T}|+|\mathcal{T}|\mathbf{P}(N\geqslant \frac{1}{2}e^{-p}|\mathcal{T}|).$$

▶ Recall that $|T| \ge e^{Cp}$, *C*-large. Clearly

$$e^{(C-1)\rho} \leqslant e^{-\rho}|\mathcal{T}| \leqslant \sum_{t\in\mathcal{T}} \mathsf{P}(\bigcap_{i\in I(t)} \{X_i \geqslant a_i(t)\}) = \mathsf{E}N,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} \mathbf{1}_{|X_i| \ge a_i(t)}$.

Therefore

$$\mathbf{E}N\leqslant \frac{1}{2}e^{-p}|\mathcal{T}|+|\mathcal{T}|\mathbf{P}(N\geqslant \frac{1}{2}e^{-p}|\mathcal{T}|).$$

Hence

$$\mathbf{P}(N \ge \frac{1}{2}e^{(C-1)p}) \ge \frac{1}{2}e^{-p}.$$

• Recall that $|T| \ge e^{Cp}$, C-large. Clearly

$$e^{(C-1)p} \leq e^{-p}|\mathcal{T}| \leq \sum_{t\in\mathcal{T}} \mathbf{P}(\bigcap_{i\in I(t)} \{X_i \geq a_i(t)\}) = \mathbf{E}N,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} 1_{|X_i| \ge a_i(t)}$.

Therefore

$$\mathbf{E}N\leqslant \frac{1}{2}e^{-p}|T|+|T|\mathbf{P}(N\geqslant \frac{1}{2}e^{-p}|T|).$$

Hence

$$\mathbf{P}(N \geqslant \frac{1}{2}e^{(C-1)p}) \geqslant \frac{1}{2}e^{-p}$$

► Consequently $\mathbf{P}(X \in B) \ge \frac{1}{2}e^{-p}$ for $B = \{y \in \mathbb{R}^d : \exists S \subset T, |S| \ge \frac{1}{2}e^{(C-1)p}, y_i \ge a_i(t) \forall i \in I(t), t \in S\}.$

• Consider points $x \in A$ and $y \in B$.

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least Cp points in S such that

$$y_i-x_i\geqslant \frac{1}{2}a_i(t)\geqslant \frac{1}{2}.$$

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least Cp points in S such that

$$y_i-x_i\geqslant \frac{1}{2}a_i(t)\geqslant \frac{1}{2}.$$

Therefore

$$y-x \notin C(\sqrt{p}B_2+pB_1).$$

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least Cp points in S such that

$$y_i-x_i\geqslant \frac{1}{2}a_i(t)\geqslant \frac{1}{2}.$$

Therefore

$$y-x \notin C(\sqrt{p}B_2+pB_1).$$

• Consequently if $\mathbf{P}(X \in A) \ge \frac{1}{2}$

$$\frac{1}{2}e^{-p} \leqslant \mathbf{P}(X \in B) \leqslant \mathbf{P}(X \notin A + C(\sqrt{p}B_2 + pB_1)) \leqslant e^{-2p}.$$

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least Cp points in S such that

$$y_i-x_i\geqslant \frac{1}{2}a_i(t)\geqslant \frac{1}{2}.$$

Therefore

$$y-x \notin C(\sqrt{p}B_2+pB_1).$$

• Consequently if $\mathbf{P}(X \in A) \ge \frac{1}{2}$

$$\frac{1}{2}e^{-p} \leqslant \mathbf{P}(X \in B) \leqslant \mathbf{P}(X \notin A + C(\sqrt{p}B_2 + pB_1)) \leqslant e^{-2p}.$$

The contradiction implies that P(X ∈ A) ≤ ¹/₂ and hence the minoration holds.

This argument shows

This argument shows

Theorem

If in the simplified setting the common witness exists for each $t \in T$ and the exponential inequality holds with dimension free α then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}p = K^{-1}A.$$

This argument shows

Theorem

If in the simplified setting the common witness exists for each $t \in T$ and the exponential inequality holds with dimension free α then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}p = K^{-1}A.$$

There is no chance to remove the common witness assumption from the argument described above.

This argument shows

Theorem

If in the simplified setting the common witness exists for each $t \in T$ and the exponential inequality holds with dimension free α then

$$\mathbf{E}\sup_{t\in T}X_t \geqslant K^{-1}p = K^{-1}A.$$

- There is no chance to remove the common witness assumption from the argument described above.
- Still there is a possibility to strengthen the induction argument which is the core of the main Latala's approach to the Sudakov minoration for canonical processes.

Thank you for your attention