Sudakov Minoration

Witold Bednorz
Institute of Mathematics
University of Warsaw

Probability and Analysis, Bedlewo, 4.05.2015

Random vectors.

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a r.v. in \mathbb{R}^{d}.

Random vectors.

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a r.v. in \mathbb{R}^{d}.
- Usually X is in the isotropic position, i.e. $\mathbf{E} X_{i}=0$ and $\mathbf{E} X_{i} X_{j}=0$ if $i \neq j$ and $\mathbf{E} X_{i}^{2}=1$.

Random vectors.

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a r.v. in \mathbb{R}^{d}.
- Usually X is in the isotropic position, i.e. $\mathbf{E} X_{i}=0$ and $\mathbf{E} X_{i} X_{j}=0$ if $i \neq j$ and $\mathbf{E} X_{i}^{2}=1$.
- In this setting $\mathbf{E}\langle t, X\rangle^{2}=\|t\|_{2}^{2}$ for all $t \in \mathbb{R}^{d}$.

Random vectors.

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a r.v. in \mathbb{R}^{d}.
- Usually X is in the isotropic position, i.e. $\mathrm{E} X_{i}=0$ and $\mathbf{E} X_{i} X_{j}=0$ if $i \neq j$ and $\mathbf{E} X_{i}^{2}=1$.
- In this setting $\mathbf{E}\langle t, X\rangle^{2}=\|t\|_{2}^{2}$ for all $t \in \mathbb{R}^{d}$.
- The main question: for a given norm $\|\cdot\|$ on \mathbb{R}^{d}, how to estimate $\mathbf{E}\|X\|$?

Random vectors.

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a r.v. in \mathbb{R}^{d}.
- Usually X is in the isotropic position, i.e. $\mathrm{E} X_{i}=0$ and $\mathbf{E} X_{i} X_{j}=0$ if $i \neq j$ and $\mathbf{E} X_{i}^{2}=1$.
- In this setting $\mathbf{E}\langle t, X\rangle^{2}=\|t\|_{2}^{2}$ for all $t \in \mathbb{R}^{d}$.
- The main question: for a given norm $\|\cdot\|$ on \mathbb{R}^{d}, how to estimate $\mathbf{E}\|X\|$?
- More generally: for each $T \subset \mathbb{R}^{d}$ obtain bounds for

$$
\mathrm{E} \sup _{t \in T}\langle t, X\rangle=\mathrm{E} \sup _{t \in T} X_{t},
$$

where $X_{t}=\langle t, X\rangle$.

Upper bound.

- Suppose that $T \subset \mathbb{R}^{d}, T$-finite and $|T| \leqslant e^{p}$, where $p \geqslant 1$.

Upper bound.

- Suppose that $T \subset \mathbb{R}^{d}, T$-finite and $|T| \leqslant e^{p}$, where $p \geqslant 1$.
- Let $\left\|X_{t}\right\|_{p}=\left(\mathbf{E}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}}=\left(\mathbf{E}|\langle t, X\rangle|^{p}\right)^{\frac{1}{p}} \leqslant A$, for all $t \in T$.

Upper bound.

- Suppose that $T \subset \mathbb{R}^{d}, T$-finite and $|T| \leqslant e^{p}$, where $p \geqslant 1$.
- Let $\left\|X_{t}\right\|_{p}=\left(\mathbf{E}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}}=\left(\mathbf{E}|\langle t, X\rangle|^{p}\right)^{\frac{1}{p}} \leqslant A$, for all $t \in T$.
- Then

$$
\begin{aligned}
& \mathbf{E} \sup _{t \in T} X_{t} \leqslant \mathbf{E} \sup _{t \in T}\left|X_{t}\right|=\mathbf{E}\left(\sup _{t \in T}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}} \leqslant \\
& \leqslant\left(\mathbf{E} \sum_{t \in T}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left(e^{p} A^{p}\right)^{\frac{1}{p}}=e A
\end{aligned}
$$

Upper bound.

- Suppose that $T \subset \mathbb{R}^{d}, T$-finite and $|T| \leqslant e^{p}$, where $p \geqslant 1$.
- Let $\left\|X_{t}\right\|_{p}=\left(\mathbf{E}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}}=\left(\mathbf{E}|\langle t, X\rangle|^{p}\right)^{\frac{1}{p}} \leqslant A$, for all $t \in T$.
- Then

$$
\begin{aligned}
& \mathbf{E} \sup _{t \in T} X_{t} \leqslant \mathbf{E} \sup _{t \in T}\left|X_{t}\right|=\mathbf{E}\left(\sup _{t \in T}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}} \leqslant \\
& \leqslant\left(\mathbf{E} \sum_{t \in T}\left|X_{t}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left(e^{p} A^{p}\right)^{\frac{1}{p}}=e A
\end{aligned}
$$

- Is it possible to reverse this estimate?

Log concave distribution.

- Vector X has a log concave distribution μ_{X} if for any non-empty compact sets $A, B \subset \mathbb{R}^{d}$ and $\alpha+\beta=1, \alpha, \beta \geqslant 0$

$$
\mu_{X}(\alpha A+\beta B) \geqslant \mu_{X}(A)^{\alpha} \mu_{X}(B)^{\beta}
$$

Log concave distribution.

- Vector X has a log concave distribution μ_{X} if for any non-empty compact sets $A, B \subset \mathbb{R}^{d}$ and $\alpha+\beta=1, \alpha, \beta \geqslant 0$

$$
\mu_{X}(\alpha A+\beta B) \geqslant \mu_{X}(A)^{\alpha} \mu_{X}(B)^{\beta}
$$

- If the support of μ_{X} is \mathbb{R}^{d} then there exists density f_{X} of μ_{X} such that $f_{X}=\exp \left(-U_{X}\right)$, where $U_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex.

Log concave distribution.

- Vector X has a log concave distribution μ_{X} if for any non-empty compact sets $A, B \subset \mathbb{R}^{d}$ and $\alpha+\beta=1, \alpha, \beta \geqslant 0$

$$
\mu_{X}(\alpha A+\beta B) \geqslant \mu_{X}(A)^{\alpha} \mu_{X}(B)^{\beta}
$$

- If the support of μ_{X} is \mathbb{R}^{d} then there exists density f_{X} of μ_{X} such that $f_{X}=\exp \left(-U_{X}\right)$, where $U_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex.
- For log concave X, all $t \in \mathbb{R}^{d}$ and $p \geqslant 1$ we have $\left\|X_{t}\right\|_{p}=\|\langle t, X\rangle\|_{p}<\infty$.

Log concave distribution.

- Vector X has a log concave distribution μ_{X} if for any non-empty compact sets $A, B \subset \mathbb{R}^{d}$ and $\alpha+\beta=1, \alpha, \beta \geqslant 0$

$$
\mu_{X}(\alpha \boldsymbol{A}+\beta \boldsymbol{B}) \geqslant \mu_{X}(\boldsymbol{A})^{\alpha} \mu_{X}(B)^{\beta} .
$$

- If the support of μ_{X} is \mathbb{R}^{d} then there exists density f_{X} of μ_{X} such that $f_{X}=\exp \left(-U_{X}\right)$, where $U_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex.
- For log concave X, all $t \in \mathbb{R}^{d}$ and $p \geqslant 1$ we have $\left\|X_{t}\right\|_{p}=\|\langle t, X\rangle\|_{p}<\infty$.
- Vector X is unconditional if X and $\left(\varepsilon_{1} X_{1}, \ldots, \varepsilon_{d} X_{d}\right)$, where ε_{i} are independent random signs $\mathbf{P}\left(\varepsilon_{i}= \pm 1\right)=\frac{1}{2}$.

Log concave distribution.

- Vector X has a log concave distribution μ_{X} if for any non-empty compact sets $A, B \subset \mathbb{R}^{d}$ and $\alpha+\beta=1, \alpha, \beta \geqslant 0$

$$
\mu_{X}(\alpha \boldsymbol{A}+\beta \boldsymbol{B}) \geqslant \mu_{X}(A)^{\alpha} \mu_{X}(B)^{\beta} .
$$

- If the support of μ_{X} is \mathbb{R}^{d} then there exists density f_{X} of μ_{X} such that $f_{X}=\exp \left(-U_{X}\right)$, where $U_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex.
- For log concave X, all $t \in \mathbb{R}^{d}$ and $p \geqslant 1$ we have $\left\|X_{t}\right\|_{p}=\|\langle t, X\rangle\|_{p}<\infty$.
- Vector X is unconditional if X and $\left(\varepsilon_{1} X_{1}, \ldots, \varepsilon_{d} X_{d}\right)$, where ε_{i} are independent random signs $\mathbf{P}\left(\varepsilon_{i}= \pm 1\right)=\frac{1}{2}$.
- It is known that $\left\|X_{t}\right\|_{p} \leqslant \frac{p}{q}\left\|X_{t}\right\|_{q}$ for all $1 \leqslant q \leqslant p$.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^{d}$ has support $I(t)=\left\{i \in\{1, \ldots, d\}: t_{i} \neq 0\right\}$ such that $|I(t)| \leqslant p$.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^{d}$ has support $I(t)=\left\{i \in\{1, \ldots, d\}: t_{i} \neq 0\right\}$ such that $|I(t)| \leqslant p$.
- Then

$$
\left\|X_{t}\right\|_{p}=\sup \left\{\sum_{i \in I(t)} a_{i} t_{i}: \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \leqslant a_{i}\right\}\right) \geqslant e^{-p}\right\}
$$

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^{d}$ has support $I(t)=\left\{i \in\{1, \ldots, d\}: t_{i} \neq 0\right\}$ such that $|I(t)| \leqslant p$.
- Then

$$
\left\|X_{t}\right\|_{p}=\sup \left\{\sum_{i \in I(t)} a_{i} t_{i}: \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \leqslant a_{i}\right\}\right) \geqslant e^{-p}\right\}
$$

- In particular for X_{i} iid $\mathcal{N}(0,1)$ then $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}$.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^{d}$ has support $I(t)=\left\{i \in\{1, \ldots, d\}: t_{i} \neq 0\right\}$ such that $|I(t)| \leqslant p$.
- Then

$$
\left\|X_{t}\right\|_{p}=\sup \left\{\sum_{i \in I(t)} a_{i} t_{i}: \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \leqslant a_{i}\right\}\right) \geqslant e^{-p}\right\}
$$

- In particular for X_{i} iid $\mathcal{N}(0,1)$ then $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}$.
- If X_{i} iid symmetric $\mathbf{P}\left(\left|X_{i}\right|>t\right)=C_{\alpha} \exp \left(-|t|^{\alpha}\right), 1 \leqslant \alpha \leqslant 2$, $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}+p^{\frac{1}{\alpha}}\|t\|_{\beta}$, where $\frac{1}{\alpha}+\frac{1}{\beta}=1$.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^{d}$ has support $I(t)=\left\{i \in\{1, \ldots, d\}: t_{i} \neq 0\right\}$ such that $|I(t)| \leqslant p$.
- Then

$$
\left\|X_{t}\right\|_{p}=\sup \left\{\sum_{i \in I(t)} a_{i} t_{i}: \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \leqslant a_{i}\right\}\right) \geqslant e^{-p}\right\}
$$

- In particular for X_{i} iid $\mathcal{N}(0,1)$ then $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}$.
- If X_{i} iid symmetric $\mathbf{P}\left(\left|X_{i}\right|>t\right)=C_{\alpha} \exp \left(-|t|^{\alpha}\right), 1 \leqslant \alpha \leqslant 2$, $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}+p^{\frac{1}{\alpha}}\|t\|_{\beta}$, where $\frac{1}{\alpha}+\frac{1}{\beta}=1$.
- If X_{i} iid $\mathcal{U}(-\sqrt{3}, \sqrt{3})$ then
$\left\|X_{t}\right\|_{p} \sim \sum_{i=1}^{p}\left|t_{i}^{*}\right|+\sqrt{p}\left(\sum_{i>p}\left|t_{i}^{*}\right|^{2}\right)^{\frac{1}{2}}$, where $\left|t_{i}^{*}\right| \geqslant\left|t_{i+1}^{*}\right|$.

Minoration problem.

- Suppose that X is unconditional, log concave.

Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geqslant e^{p}, p \geqslant 1$.

Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geqslant e^{p}, p \geqslant 1$.
- Suppose that for each $s, t \in T, s \neq t$

$$
\left\|X_{t}-X_{s}\right\|_{p}=\left(\mathbf{E}\left|X_{t}-X_{s}\right|^{p}\right)^{\frac{1}{p}}=\left(\mathbf{E}|\langle t-s, X\rangle|^{p}\right)^{\frac{1}{p}} \geqslant A .
$$

Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geqslant e^{p}, p \geqslant 1$.
- Suppose that for each $s, t \in T, s \neq t$

$$
\left\|X_{t}-X_{s}\right\|_{p}=\left(\mathbf{E}\left|X_{t}-X_{s}\right|^{p}\right)^{\frac{1}{p}}=\left(\mathbf{E}|\langle t-s, X\rangle|^{p}\right)^{\frac{1}{p}} \geqslant A .
$$

- Does it imply that

$$
E \sup X_{t \in T} X_{t}=\mathbf{E} \sup _{t \in T}\langle t, X\rangle \geqslant K^{-1} A,
$$

where K is an absolute constant?

Motivation.

- Dimension free estimate for $\mathrm{Esup}_{t \in T} X_{t}$ in a particular case where $|T| \sim e^{p}, 0 \in T$ and $\left\|X_{t}-X_{s}\right\|_{p} \sim A$ for all $s, t \in T, s \neq t$.

Motivation.

- Dimension free estimate for $\mathbf{E s u p}_{t \in T} X_{t}$ in a particular case where $|T| \sim e^{p}, 0 \in T$ and $\left\|X_{t}-X_{s}\right\|_{p} \sim A$ for all $s, t \in T, s \neq t$.
- First step in order to establish dimension free estimates for $\mathbf{E}\|X\|$ by the generic chaining approach.

Motivation.

- Dimension free estimate for $\mathbf{E s u p}_{t \in T} X_{t}$ in a particular case where $|T| \sim e^{p}, 0 \in T$ and $\left\|X_{t}-X_{s}\right\|_{p} \sim A$ for all $s, t \in T, s \neq t$.
- First step in order to establish dimension free estimates for $\mathbf{E}\|X\|$ by the generic chaining approach.
- Concentration inequalities of the type

$$
\mathbf{P}\left(\|X\| \geqslant K\left(\mathbf{E}\|X\|+\sup _{\left\|x^{*}\right\| \leqslant 1}\left\|\left\langle x^{*}, X\right\rangle\right\|_{p}\right)\right) \leqslant e^{-p}
$$

Motivation.

- Dimension free estimate for $\mathbf{E s u p}_{t \in T} X_{t}$ in a particular case where $|T| \sim e^{p}, 0 \in T$ and $\left\|X_{t}-X_{s}\right\|_{p} \sim A$ for all $s, t \in T, s \neq t$.
- First step in order to establish dimension free estimates for $\mathbf{E}\|X\|$ by the generic chaining approach.
- Concentration inequalities of the type

$$
\mathbf{P}\left(\|X\| \geqslant K\left(\mathbf{E}\|X\|+\sup _{\left\|x^{*}\right\| \leqslant 1}\left\|\left\langle x^{*}, X\right\rangle\right\|_{p}\right)\right) \leqslant e^{-p}
$$

- Paouris type estimates

$$
\left(\mathbf{E}\|X\|^{p}\right)^{\frac{1}{p}} \leqslant K\left(\mathbf{E}\|X\|+\sup _{\left\|x^{*}\right\| \leqslant 1}\left\|\left\langle x^{*}, X\right\rangle\right\|_{p}\right)
$$

Gaussian case

- Let X_{i} be iid $\mathcal{N}(0,1),|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$.

Gaussian case

- Let X_{i} be iid $\mathcal{N}(0,1),|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$.
- Sudakov minoration: if $\|t-s\|_{2} \geqslant a$ for all $s, t \in T, s \neq t$ then

$$
E \sup _{t \in T} X_{t} \geqslant K^{-1} a \sqrt{\ln |T|} .
$$

Gaussian case

- Let X_{i} be iid $\mathcal{N}(0,1),|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$.
- Sudakov minoration: if $\|t-s\|_{2} \geqslant a$ for all $s, t \in T, s \neq t$ then

$$
E \sup _{t \in T} X_{t} \geqslant K^{-1} a \sqrt{\ln |T|} .
$$

- Recall that $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}$ and hence

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2} \geqslant A, \text { then } a=\frac{A}{\sqrt{p}}
$$

Gaussian case

- Let X_{i} be iid $\mathcal{N}(0,1),|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$.
- Sudakov minoration: if $\|t-s\|_{2} \geqslant a$ for all $s, t \in T, s \neq t$ then

$$
E \sup _{t \in T} X_{t} \geqslant K^{-1} a \sqrt{\ln |T|} .
$$

- Recall that $\left\|X_{t}\right\|_{p} \sim \sqrt{p}\|t\|_{2}$ and hence

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2} \geqslant A, \text { then } a=\frac{A}{\sqrt{p}}
$$

- Therefore for $|T|=e^{p}$
$E \sup _{t \in T} X_{t} \geqslant K^{-1} \frac{A}{\sqrt{p}} \sqrt{p}=K^{-1} A$.

Bernoulli case

- Let X_{i} be iid random signs, $|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A, s \neq t$.

Bernoulli case

- Let X_{i} be iid random signs, $|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A, s \neq t$.
- Talagrand's minoration: let $b(T)=\mathbf{E} \sup _{t \in T} X_{t}$ and $D(a)=b(T) B_{1}+a B_{2}, B_{p}=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{d}\left|x_{i}\right|^{p} \leqslant 1\right\}$.

Bernoulli case

- Let X_{i} be iid random signs, $|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A, s \neq t$.
- Talagrand's minoration: let $b(T)=\mathbf{E s u p}_{t \in T} X_{t}$ and $D(a)=b(T) B_{1}+a B_{2}, B_{p}=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{d}\left|x_{i}\right|^{p} \leqslant 1\right\}$.
- Let $N(T, D(a))$ denotes the smallest number of shifts of the set $D(a)$ that covers T.

Bernoulli case

- Let X_{i} be iid random signs, $|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A, s \neq t$.
- Talagrand's minoration: let $b(T)=\mathbf{E s u p}_{t \in T} X_{t}$ and $D(a)=b(T) B_{1}+a B_{2}, B_{p}=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{d}\left|x_{i}\right|^{p} \leqslant 1\right\}$.
- Let $N(T, D(a))$ denotes the smallest number of shifts of the set $D(a)$ that covers T.
- Then $b(T) \geqslant K^{-1} a \sqrt{\ln N(T, D(a))}$.

Bernoulli case

- Let X_{i} be iid random signs, $|T| \geqslant e^{p},\left\|X_{t}-X_{s}\right\|_{p} \geqslant A, s \neq t$.
- Talagrand's minoration: let $b(T)=\mathbf{E s u p}_{t \in T} X_{t}$ and $D(a)=b(T) B_{1}+a B_{2}, B_{p}=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{d}\left|x_{i}\right|^{p} \leqslant 1\right\}$.
- Let $N(T, D(a))$ denotes the smallest number of shifts of the set $D(a)$ that covers T.
- Then $b(T) \geqslant K^{-1} a \sqrt{\ln N(T, D(a))}$.
- If $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$, then $t-s \notin A B_{1}+\frac{A}{\sqrt{p}} B_{2}$ and hence either $b(T) \geqslant K^{-1} A$ or T is covered by at least e^{p} shifts of $D\left(\frac{A}{\sqrt{D}}\right)$ which means

$$
b(T) \geqslant K^{-1} \frac{A}{\sqrt{p}} \sqrt{p}=K^{-1} A .
$$

Symmetric exponentials

- Let X_{i} be iid, symmetric $\mathbf{P}\left(\left|X_{i}\right| \geqslant x\right)=e^{-x},|T| \geqslant e^{p}$, $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$ for all $s \neq t$.

Symmetric exponentials

- Let X_{i} be iid, symmetric $\mathbf{P}\left(\left|X_{i}\right| \geqslant x\right)=e^{-x},|T| \geqslant e^{p}$, $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$ for all $s \neq t$.
- Recall that

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2}+p\|s-t\|_{\infty} \geqslant A
$$

Symmetric exponentials

- Let X_{i} be iid, symmetric $\mathbf{P}\left(\left|X_{i}\right| \geqslant x\right)=e^{-x},|T| \geqslant e^{p}$, $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$ for all $s \neq t$.
- Recall that

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2}+p\|s-t\|_{\infty} \geqslant A .
$$

- Sudakov minoration: $\operatorname{Esup}_{t \in T} X_{t} \geqslant K^{-1} A$?

Symmetric exponentials

- Let X_{i} be iid, symmetric $\mathbf{P}\left(\left|X_{i}\right| \geqslant x\right)=e^{-x},|T| \geqslant e^{p}$, $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$ for all $s \neq t$.
- Recall that

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2}+p\|s-t\|_{\infty} \geqslant A .
$$

- Sudakov minoration: $\operatorname{Esup}_{t \in T} X_{t} \geqslant K^{-1} A$?
- The question can be reduced to the following one: suppose $t_{i} \in\left\{0, k_{i}\right\}, k_{i} \geqslant 1$ for all $i \in\{1,2, \ldots, d\}$ then

$$
\mathbf{E} \sup _{t \in T} X_{t}=\mathbf{E} \sup _{t \in T} \sum_{i \in I(t)} k_{i} X_{i} \geqslant K^{-1} \ln |T| .
$$

Symmetric exponentials

- Let X_{i} be iid, symmetric $\mathbf{P}\left(\left|X_{i}\right| \geqslant x\right)=e^{-x},|T| \geqslant e^{p}$, $\left\|X_{t}-X_{s}\right\|_{p} \geqslant A$ for all $s \neq t$.
- Recall that

$$
\left\|X_{t}-X_{s}\right\|_{p} \sim \sqrt{p}\|t-s\|_{2}+p\|s-t\|_{\infty} \geqslant A .
$$

- Sudakov minoration: $\operatorname{Esup}_{t \in T} X_{t} \geqslant K^{-1} A$?
- The question can be reduced to the following one: suppose $t_{i} \in\left\{0, k_{i}\right\}, k_{i} \geqslant 1$ for all $i \in\{1,2, \ldots, d\}$ then

$$
\mathrm{E} \sup _{t \in T} X_{t}=\mathbf{E} \sup _{t \in T} \sum_{i \in I(t)} k_{i} X_{i} \geqslant K^{-1} \ln |T| .
$$

- This fact was established by Talagrand and generalized by Latala and then by Latala and Tkocz.

The basic simplification

- It suffices to prove the minoration for sets T of special form.

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^{d}$ consists of $e^{C p}$ points, C-large.

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^{d}$ consists of $e^{C p}$ points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_{i} \in\left\{0, k_{i}\right\}$, where $k_{i} \geqslant 1$.

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^{d}$ consists of $e^{C p}$ points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_{i} \in\left\{0, k_{i}\right\}$, where $k_{i} \geqslant 1$.
- (Short supports) For each t the support satisfies $|I(t)| \leqslant \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_{i} \leqslant \delta p$

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^{d}$ consists of $e^{C p}$ points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_{i} \in\left\{0, k_{i}\right\}$, where $k_{i} \geqslant 1$.
- (Short supports) For each t the support satisfies $|l(t)| \leqslant \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_{i} \leqslant \delta p$
- (Sufficient separation) For each $s, t \in T, s \neq t$

$$
\left\|X_{t}-X_{s}\right\|_{p}=\left\|\sum_{i \in l(t) \backslash /(s)} k_{i} X_{i}-\sum_{i \in l(s) \backslash /(t)} k_{i} X_{i}\right\| \geqslant p=A .
$$

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^{d}$ consists of $e^{C p}$ points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_{i} \in\left\{0, k_{i}\right\}$, where $k_{i} \geqslant 1$.
- (Short supports) For each t the support satisfies $|l(t)| \leqslant \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_{i} \leqslant \delta p$
- (Sufficient separation) For each $s, t \in T, s \neq t$

$$
\left\|X_{t}-X_{s}\right\|_{p}=\left\|\sum_{i \in l(t) \backslash /(s)} k_{i} X_{i}-\sum_{i \in l(s) \backslash /(t)} k_{i} X_{i}\right\| \geqslant p=A .
$$

- Does it imply that $\mathrm{Esup}_{t \in T} X_{t} \geqslant K^{-1} p=K^{-1} A$?

The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$
\left\|\sum_{i \in I(t) \backslash \backslash(s)} k_{i} X_{i}\right\|_{p} \geqslant \frac{p}{2} .
$$

The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$
\left\|\sum_{i \in l(t) \backslash \backslash(s)} k_{i} X_{i}\right\|_{p} \geqslant \frac{p}{2} .
$$

- Suppose that for each $t \in T$ one can select $a_{i}(t) \geqslant 1$, $i \in I(t)$ such that

$$
\sum_{i \in l(t) \backslash \backslash(s)} k_{i} a_{i}(t) \geqslant C^{-1} p \text { for all } s \in J(t)
$$

The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$
\left\|\sum_{i \in l(t) \backslash \backslash(s)} k_{i} X_{i}\right\|_{p} \geqslant \frac{p}{2} .
$$

- Suppose that for each $t \in T$ one can select $a_{i}(t) \geqslant 1$, $i \in I(t)$ such that

$$
\sum_{i \in l(t) \backslash \backslash(s)} k_{i} a_{i}(t) \geqslant C^{-1} p \text { for all } s \in J(t)
$$

- and

$$
\mathbf{P}\left(\bigcap_{i \in(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right) \geqslant e^{-p} .
$$

The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$
\left\|\sum_{i \in l(t) \backslash \backslash(s)} k_{i} X_{i}\right\|_{p} \geqslant \frac{p}{2} .
$$

- Suppose that for each $t \in T$ one can select $a_{i}(t) \geqslant 1$, $i \in I(t)$ such that

$$
\sum_{i \in l(t) \backslash \backslash(s)} k_{i} a_{i}(t) \geqslant C^{-1} p \text { for all } s \in J(t)
$$

- and

$$
\mathbf{P}\left(\bigcap_{i \in l(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right) \geqslant e^{-p} .
$$

- The condition is verified when supports are disjoint or intersects in few coordinates.

Exponential inequality

- For log concave measures (unconditional) the following inequality holds

$$
\mathbf{P}\left(X \in A+\alpha\left(\sqrt{u} B_{2}+u B_{1}\right)\right) \geqslant 1-e^{-u}, \text { for } u>0
$$

where $\mathbf{P}(X \in A) \geqslant \frac{1}{2}, \alpha$-constant (best result $\alpha \sim \log d$).

Exponential inequality

- For log concave measures (unconditional) the following inequality holds

$$
\mathbf{P}\left(X \in A+\alpha\left(\sqrt{u} B_{2}+u B_{1}\right)\right) \geqslant 1-e^{-u}, \text { for } u>0
$$

where $\mathbf{P}(X \in A) \geqslant \frac{1}{2}, \alpha$-constant (best result $\alpha \sim \log d$).

- It is believed that it holds for dimension free α.

Exponential inequality

- For log concave measures (unconditional) the following inequality holds

$$
\mathbf{P}\left(X \in A+\alpha\left(\sqrt{u} B_{2}+u B_{1}\right)\right) \geqslant 1-e^{-u}, \text { for } u>0
$$

where $\mathbf{P}(X \in A) \geqslant \frac{1}{2}, \alpha$-constant (best result $\alpha \sim \log d$).

- It is believed that it holds for dimension free α.
- Assume that

$$
\mathbf{P}\left(\sup _{t \in T} \sup _{s \in J(t)}\left|\sum_{i \in I(t) \backslash /(s)} k_{i} X_{i}\right| \leqslant K^{-1} p\right) \geqslant \frac{1}{2}
$$

otherwise $E \sup _{t \in T} \sup _{s \in J(t)}\left|\sum_{i \in I(t) \backslash /(s)} k_{i} X_{i}\right| \geqslant(2 K)^{-1} p$.

Exponential inequality

- For log concave measures (unconditional) the following inequality holds

$$
\mathbf{P}\left(X \in A+\alpha\left(\sqrt{u} B_{2}+u B_{1}\right)\right) \geqslant 1-e^{-u}, \text { for } u>0,
$$

where $\mathbf{P}(X \in A) \geqslant \frac{1}{2}, \alpha$-constant (best result $\alpha \sim \log d$).

- It is believed that it holds for dimension free α.
- Assume that

$$
\mathbf{P}\left(\sup _{t \in T} \sup _{s \in J(t)}\left|\sum_{i \in l(t) \backslash(s)} k_{i} X_{i}\right| \leqslant K^{-1} p\right) \geqslant \frac{1}{2} .
$$

otherwise $\operatorname{Esup}_{t \in T} \sup _{s \in J(t)}\left|\sum_{i \in l(t) \backslash(s)} k_{i} X_{i}\right| \geqslant(2 K)^{-1} p$.

- Therefore $\mathbf{P}(X \in A) \geqslant \frac{1}{2}$ for
$A=\left\{x \in \mathbb{R}^{d}: \sup _{t \in T} \sup _{s \in J(t)}\left|\sum_{i \in \mid(t) \backslash(s)} k_{i} x_{i}\right| \leqslant K^{-1} p\right\}$.

Set of non-negligible measure

- Recall that $|T| \geqslant e^{C p}$, C-large. Clearly

$$
e^{(C-1) p} \leqslant e^{-p}|T| \leqslant \sum_{t \in T} \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right)=\mathbf{E} N
$$

where $N=\sum_{t \in T} \prod_{i \in I(t)} 1_{\left|X_{i}\right| \geqslant a_{i}(t)}$.

Set of non-negligible measure

- Recall that $|T| \geqslant e^{C p}$, C-large. Clearly

$$
e^{(C-1) p} \leqslant e^{-p}|T| \leqslant \sum_{t \in T} \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right)=\mathbf{E} N
$$

where $N=\sum_{t \in T} \prod_{i \in I(t)} 1_{\left|X_{i}\right| \geqslant a_{i}(t)}$.

- Therefore

$$
\mathrm{E} N \leqslant \frac{1}{2} e^{-p}|T|+|T| \mathbf{P}\left(N \geqslant \frac{1}{2} e^{-p}|T|\right)
$$

Set of non-negligible measure

- Recall that $|T| \geqslant e^{C p}$, C-large. Clearly

$$
e^{(C-1) p} \leqslant e^{-p}|T| \leqslant \sum_{t \in T} \mathbf{P}\left(\bigcap_{i \in I(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right)=\mathbf{E} N
$$

where $N=\sum_{t \in T} \prod_{i \in I(t)} 1_{\left|X_{i}\right| \geqslant a_{i}(t)}$.

- Therefore

$$
\mathrm{E} N \leqslant \frac{1}{2} e^{-p}|T|+|T| \mathbf{P}\left(N \geqslant \frac{1}{2} e^{-p}|T|\right)
$$

- Hence

$$
\mathbf{P}\left(N \geqslant \frac{1}{2} e^{(C-1) p}\right) \geqslant \frac{1}{2} e^{-p} .
$$

Set of non-negligible measure

- Recall that $|T| \geqslant e^{C p}, C$-large. Clearly

$$
e^{(C-1) p} \leqslant e^{-p}|T| \leqslant \sum_{t \in T} \mathbf{P}\left(\bigcap_{i \in \(t)}\left\{X_{i} \geqslant a_{i}(t)\right\}\right)=\mathbf{E N},
$$

where $N=\sum_{t \in T} \prod_{i \in /(t)} \boldsymbol{1}_{\left|X_{i}\right| \geqslant a_{i}(t)}$.

- Therefore

$$
\mathbf{E} N \leqslant \frac{1}{2} e^{-p}|T|+|T| \mathbf{P}\left(N \geqslant \frac{1}{2} e^{-p}|T|\right) .
$$

- Hence

$$
\mathbf{P}\left(N \geqslant \frac{1}{2} e^{(C-1) p}\right) \geqslant \frac{1}{2} e^{-p} .
$$

- Consequently $\mathbf{P}(X \in B) \geqslant \frac{1}{2} e^{-p}$ for $B=\left\{y \in \mathbb{R}^{d}: \exists S \subset\right.$ $\left.T,|S| \geqslant \frac{1}{2} e^{(C-1) p}, y_{i} \geqslant a_{i}(t) \forall i \in I(t), t \in S\right\}$.

Why the minoration holds

- Consider points $x \in A$ and $y \in B$.

Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least $C p$ points in S such that

$$
y_{i}-x_{i} \geqslant \frac{1}{2} a_{i}(t) \geqslant \frac{1}{2}
$$

Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least $C p$ points in S such that

$$
y_{i}-x_{i} \geqslant \frac{1}{2} a_{i}(t) \geqslant \frac{1}{2} .
$$

- Therefore

$$
y-x \notin C\left(\sqrt{p} B_{2}+p B_{1}\right)
$$

Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least $C p$ points in S such that

$$
y_{i}-x_{i} \geqslant \frac{1}{2} a_{i}(t) \geqslant \frac{1}{2} .
$$

- Therefore

$$
y-x \notin C\left(\sqrt{p} B_{2}+p B_{1}\right)
$$

- Consequently if $\mathbf{P}(X \in A) \geqslant \frac{1}{2}$

$$
\frac{1}{2} e^{-p} \leqslant \mathbf{P}(X \in B) \leqslant \mathbf{P}\left(X \notin A+C\left(\sqrt{p} B_{2}+p B_{1}\right)\right) \leqslant e^{-2 p} .
$$

Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least $C p$ points in S such that

$$
y_{i}-x_{i} \geqslant \frac{1}{2} a_{i}(t) \geqslant \frac{1}{2} .
$$

- Therefore

$$
y-x \notin C\left(\sqrt{p} B_{2}+p B_{1}\right)
$$

- Consequently if $\mathbf{P}(X \in A) \geqslant \frac{1}{2}$

$$
\frac{1}{2} e^{-p} \leqslant \mathbf{P}(X \in B) \leqslant \mathbf{P}\left(X \notin A+C\left(\sqrt{p} B_{2}+p B_{1}\right)\right) \leqslant e^{-2 p}
$$

- The contradiction implies that $\mathbf{P}(X \in A) \leqslant \frac{1}{2}$ and hence the minoration holds.

Further thoughts

- This argument shows

Further thoughts

- This argument shows

Theorem

If in the simplified setting the common witness exists for each $t \in T$ and the exponential inequality holds with dimension free α then

$$
\mathrm{E} \sup _{t \in T} X_{t} \geqslant K^{-1} p=K^{-1} A
$$

Further thoughts

- This argument shows

Theorem

If in the simplified setting the common witness exists for each
$t \in T$ and the exponential inequality holds with dimension free
α then

$$
\mathrm{E} \sup _{t \in T} X_{t} \geqslant K^{-1} p=K^{-1} A
$$

- There is no chance to remove the common witness assumption from the argument described above.

Further thoughts

- This argument shows

Theorem

If in the simplified setting the common witness exists for each
$t \in T$ and the exponential inequality holds with dimension free
α then

$$
E \sup _{t \in T} X_{t} \geqslant K^{-1} p=K^{-1} A
$$

- There is no chance to remove the common witness assumption from the argument described above.
- Still there is a possibility to strengthen the induction argument which is the core of the main Latala's approach to the Sudakov minoration for canonical processes.

Thank you for your attention

