Sudakov Minoration

Witold Bednorz

Institute of Mathematics
University of Warsaw

Probability and Analysis, Bedlewo, 4.05.2015
Random vectors.

- Let $X = (X_1, X_2, \ldots, X_d)$ be a r.v. in \mathbb{R}^d.
Random vectors.

- Let \(X = (X_1, X_2, \ldots, X_d) \) be a r.v. in \(\mathbb{R}^d \).
- Usually \(X \) is in the isotropic position, i.e. \(\mathbb{E}X_i = 0 \) and \(\mathbb{E}X_i X_j = 0 \) if \(i \neq j \) and \(\mathbb{E}X_i^2 = 1 \).
Random vectors.

- Let $X = (X_1, X_2, \ldots, X_d)$ be a r.v. in \mathbb{R}^d.
- Usually X is in the isotropic position, i.e. $\mathbb{E}X_i = 0$ and $\mathbb{E}X_iX_j = 0$ if $i \neq j$ and $\mathbb{E}X_i^2 = 1$.
- In this setting $\mathbb{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.
Random vectors.

- Let $X = (X_1, X_2, \ldots, X_d)$ be a r.v. in \mathbb{R}^d.
- Usually X is in the isotropic position, i.e. $\mathbb{E}X_i = 0$ and $\mathbb{E}X_iX_j = 0$ if $i \neq j$ and $\mathbb{E}X_i^2 = 1$.
- In this setting $\mathbb{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.
- The main question: for a given norm $\| \cdot \|$ on \mathbb{R}^d, how to estimate $\mathbb{E}\|X\|$?
Let $X = (X_1, X_2, \ldots, X_d)$ be a r.v. in \mathbb{R}^d.

Usually X is in the isotropic position, i.e. $\mathbf{E}X_i = 0$ and $\mathbf{E}X_iX_j = 0$ if $i \neq j$ and $\mathbf{E}X_i^2 = 1$.

In this setting $\mathbf{E}\langle t, X \rangle^2 = \|t\|_2^2$ for all $t \in \mathbb{R}^d$.

The main question: for a given norm $\| \cdot \|$ on \mathbb{R}^d, how to estimate $\mathbf{E}\|X\|$?

More generally: for each $T \subset \mathbb{R}^d$ obtain bounds for

$$\mathbf{E}\sup_{t \in T} \langle t, X \rangle = \mathbf{E}\sup_{t \in T} X_t,$$

where $X_t = \langle t, X \rangle$.

Random vectors.
Upper bound.

- Suppose that $T \subset \mathbb{R}^d$, T-finite and $|T| \leq e^p$, where $p \geq 1$.

Is it possible to reverse this estimate?
Suppose that $T \subset \mathbb{R}^d$, T-finite and $|T| \leq e^p$, where $p \geq 1$.

Let $\|X_t\|_p = (\mathbb{E}|X_t|^p)^{\frac{1}{p}} = (\mathbb{E}|\langle t, X \rangle|^p)^{\frac{1}{p}} \leq A$, for all $t \in T$.

Is it possible to reverse this estimate?
Upper bound.

- Suppose that $T \subset \mathbb{R}^d$, T-finite and $|T| \leq e^p$, where $p \geq 1$.
- Let $\|X_t\|_p = (E|X_t|^p)^{\frac{1}{p}} = (E|\langle t, X \rangle|^p)^{\frac{1}{p}} \leq A$, for all $t \in T$.
- Then

$$
E \sup_{t \in T} X_t \leq E \sup_{t \in T} |X_t| = E (\sup_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq (E \sum_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq (e^p A^p)^{\frac{1}{p}} = eA.
$$
Suppose that $T \subset \mathbb{R}^d$, T-finite and $|T| \leq e^p$, where $p \geq 1$.

Let $\|X_t\|_p = (\mathbb{E}|X_t|^p)^{\frac{1}{p}} = (\mathbb{E}|\langle t, X \rangle|^p)^{\frac{1}{p}} \leq A$, for all $t \in T$.

Then

$$
\mathbb{E} \sup_{t \in T} X_t \leq \mathbb{E} \sup_{t \in T} |X_t| = \mathbb{E}(\sup_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq \\
(\mathbb{E} \sum_{t \in T} |X_t|^p)^{\frac{1}{p}} \leq (e^p A^p)^{\frac{1}{p}} = eA.
$$

Is it possible to reverse this estimate?
Log concave distribution.

Vector X has a log concave distribution μ_X if for any non-empty compact sets $A, B \subset \mathbb{R}^d$ and $\alpha + \beta = 1$, $\alpha, \beta \geq 0$

$$\mu_X(\alpha A + \beta B) \geq \mu_X(A)^\alpha \mu_X(B)^\beta.$$
Log concave distribution.

- Vector X has a log concave distribution μ_X if for any non-empty compact sets $A, B \subset \mathbb{R}^d$ and $\alpha + \beta = 1$, $\alpha, \beta \geq 0$

 \[\mu_X(\alpha A + \beta B) \geq \mu_X(A)^\alpha \mu_X(B)^\beta. \]

- If the support of μ_X is \mathbb{R}^d then there exists density f_X of μ_X such that $f_X = \exp(-U_X)$, where $U_X : \mathbb{R}^d \to \mathbb{R}$ is convex.
Vector X has a log concave distribution μ_X if for any non-empty compact sets $A, B \subset \mathbb{R}^d$ and $\alpha + \beta = 1, \alpha, \beta \geq 0$

$$\mu_X(\alpha A + \beta B) \geq \mu_X(A)^\alpha \mu_X(B)^\beta.$$

If the support of μ_X is \mathbb{R}^d then there exists density f_X of μ_X such that $f_X = \exp(-U_X)$, where $U_X : \mathbb{R}^d \to \mathbb{R}$ is convex.

For log concave X, all $t \in \mathbb{R}^d$ and $p \geq 1$ we have

$$\|X_t\|_p = \|\langle t, X \rangle\|_p < \infty.$$
Log concave distribution.

- Vector X has a log concave distribution μ_X if for any non-empty compact sets $A, B \subset \mathbb{R}^d$ and $\alpha + \beta = 1$, $\alpha, \beta \geq 0$

$$
\mu_X(\alpha A + \beta B) \geq \mu_X(A)^\alpha \mu_X(B)^\beta.
$$

- If the support of μ_X is \mathbb{R}^d then there exists density f_X of μ_X such that $f_X = \exp(-U_X)$, where $U_X : \mathbb{R}^d \to \mathbb{R}$ is convex.

- For log concave X, all $t \in \mathbb{R}^d$ and $p \geq 1$ we have

$$
\|X_t\|_p = \|\langle t, X \rangle\|_p < \infty.
$$

- Vector X is unconditional if X and $(\varepsilon_1 X_1, \ldots, \varepsilon_d X_d)$, where ε_i are independent random signs $\mathbb{P}(\varepsilon_i = \pm 1) = \frac{1}{2}$.
Vector X has a log concave distribution μ_X if for any non-empty compact sets $A, B \subseteq \mathbb{R}^d$ and $\alpha + \beta = 1$, $\alpha, \beta \geq 0$

$$\mu_X(\alpha A + \beta B) \geq \mu_X(A)^\alpha \mu_X(B)^\beta.$$

If the support of μ_X is \mathbb{R}^d then there exists density f_X of μ_X such that $f_X = \exp(-U_X)$, where $U_X : \mathbb{R}^d \to \mathbb{R}$ is convex.

For log concave X, all $t \in \mathbb{R}^d$ and $p \geq 1$ we have

$$\|X_t\|_p = \|\langle t, X \rangle\|_p < \infty.$$

Vector X is unconditional if X and $(\varepsilon_1 X_1, \ldots, \varepsilon_d X_d)$, where ε_i are independent random signs $P(\varepsilon_i = \pm 1) = \frac{1}{2}$.

It is known that $\|X_t\|_p \leq \frac{p}{q} \|X_t\|_q$ for all $1 \leq q \leq p$.

Log concave distribution.
How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^d$ has support $l(t) = \{ i \in \{1, \ldots, d\} : t_i \neq 0 \}$ such that $|l(t)| \leq p$.

How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^d$ has support

 $l(t) = \{ i \in \{1, \ldots, d\} : t_i \neq 0 \}$ such that $|l(t)| \leq p$.
- Then

\[
\|X_t\|_p = \sup \left\{ \sum_{i \in l(t)} a_i t_i : \mathbb{P} \left(\bigcap_{i \in l(t)} \{ X_i \leq a_i \} \right) \geq e^{-p} \right\}.
\]
How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^d$ has support $l(t) = \{i \in \{1, \ldots, d\} : t_i \neq 0\}$ such that $|l(t)| \leq p$.
- Then
 \[
 \|X_t\|_p = \sup \left\{ \sum_{i \in l(t)} a_i t_i : \mathbb{P}(\bigcap_{i \in l(t)} \{X_i \leq a_i\}) \geq e^{-p} \right\}.
 \]
- In particular for X_i iid $\mathcal{N}(0, 1)$ then $\|X_t\|_p \sim \sqrt{p} \|t\|_2$.
How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.
- Suppose that $t \in \mathbb{R}^d$ has support $l(t) = \{i \in \{1, \ldots, d\} : t_i \neq 0\}$ such that $|l(t)| \leq p$.
- Then
 \[
 \|X_t\|_p = \sup \left\{ \sum_{i \in l(t)} a_i t_i : \mathbb{P}(\bigcap_{i \in l(t)} \{X_i \leq a_i\}) \geq e^{-p} \right\}.
 \]
- In particular for X_i iid $\mathcal{N}(0, 1)$ then $\|X_t\|_p \sim \sqrt{p}\|t\|_2$.
- If X_i iid symmetric $\mathbb{P}(|X_i| > t) = C_\alpha \exp(-|t|^\alpha)$, $1 \leq \alpha \leq 2$,
 $\|X_t\|_p \sim \sqrt{p}\|t\|_2 + p^{\frac{1}{\alpha}}\|t\|_\beta$, where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.
How to compute the norms?

- Suppose that X is unconditional, isotropic and log concave.

- Suppose that $t \in \mathbb{R}^d$ has support $l(t) = \{i \in \{1, \ldots, d\}: t_i \neq 0\}$ such that $|l(t)| \leq p$.

- Then

$$
\|X_t\|_p = \sup \{ \sum_{i \in l(t)} a_i t_i : \mathbf{P}(\bigcap_{i \in l(t)} \{X_i \leq a_i\}) \geq e^{-p} \}.
$$

- In particular for X_i iid $\mathcal{N}(0, 1)$ then $\|X_t\|_p \sim \sqrt{p} \|t\|_2$.

- If X_i iid symmetric $\mathbf{P}(|X_i| > t) = C_\alpha \exp(-|t|^\alpha)$, $1 \leq \alpha \leq 2$, $\|X_t\|_p \sim \sqrt{p} \|t\|_2 + p^{\frac{1}{\alpha}} \|t\|_\beta$, where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.

- If X_i iid $\mathcal{U}(\sqrt{3}, -\sqrt{3})$ then

$$
\|X_t\|_p \sim \sum_{i=1}^{p} |t_i^*| + \sqrt{p}(\sum_{i>p} |t_i^*|^2)^{\frac{1}{2}}, \text{ where } |t_i^*| \geq |t_{i+1}^*|.
$$
Minoration problem.

- Suppose that X is unconditional, log concave.
Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geq e^p$, $p \geq 1$.
Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geq e^p$, $p \geq 1$.
- Suppose that for each $s, t \in T$, $s \neq t$

$$
\|X_t - X_s\|_p = \left(\mathbb{E}|X_t - X_s|^p \right)^{\frac{1}{p}} = \left(\mathbb{E}|\langle t - s, X \rangle|^p \right)^{\frac{1}{p}} \geq A.
$$
Minoration problem.

- Suppose that X is unconditional, log concave.
- Suppose that $|T| \geq e^p$, $p \geq 1$.
- Suppose that for each $s, t \in T$, $s \neq t$

$$\|X_t - X_s\|_p = \left(\mathbb{E}|X_t - X_s|^p\right)^{\frac{1}{p}} = \left(\mathbb{E}|\langle t - s, X \rangle|^p\right)^{\frac{1}{p}} \geq A.$$

- Does it imply that

$$\mathbb{E}\sup_{t \in T} X_t = \mathbb{E}\sup_{t \in T} \langle t, X \rangle \geq K^{-1}A,$$

where K is an absolute constant?
Motivation.

- Dimension free estimate for $\mathbb{E} \sup_{t \in T} X_t$ in a particular case where $|T| \sim e^p$, $0 \in T$ and $\|X_t - X_s\|_p \sim A$ for all $s, t \in T$, $s \neq t$.
Motivation.

- Dimension free estimate for $\mathbb{E} \sup_{t \in T} X_t$ in a particular case where $|T| \sim e^p$, $0 \in T$ and $\|X_t - X_s\|_p \sim A$ for all $s, t \in T$, $s \neq t$.
- First step in order to establish dimension free estimates for $\mathbb{E}\|X\|$ by the generic chaining approach.
Motivation.

- Dimension free estimate for $\mathbb{E}\sup_{t \in T} X_t$ in a particular case where $|T| \sim e^p$, $0 \in T$ and $\|X_t - X_s\|_p \sim A$ for all $s, t \in T$, $s \neq t$.
- First step in order to establish dimension free estimates for $\mathbb{E}\|X\|$ by the generic chaining approach.
- Concentration inequalities of the type

$$
P(\|X\| \geq K(\mathbb{E}\|X\| + \sup_{\|x^*\| \leq 1} \|\langle x^*, X \rangle\|_p)) \leq e^{-p}.$$
Motivation.

- Dimension free estimate for $E \sup_{t \in T} X_t$ in a particular case where $|T| \sim e^p$, $0 \in T$ and $\|X_t - X_s\|_p \sim A$ for all $s, t \in T, s \neq t$.
- First step in order to establish dimension free estimates for $E\|X\|$ by the generic chaining approach.
- Concentration inequalities of the type

$$P(\|X\| \geq K(E\|X\| + \sup_{\|x^*\| \leq 1} \|\langle x^*, X \rangle\|_p)) \leq e^{-p}.$$

- Paouris type estimates

$$(E\|X\|^p)^{\frac{1}{p}} \leq K(E\|X\| + \sup_{\|x^*\| \leq 1} \|\langle x^*, X \rangle\|_p).$$
Gaussian case

Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$.
Gaussian case

- Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$.
- Sudakov minoration: if $\|t - s\|_2 \geq a$ for all $s, t \in T, s \neq t$ then

$$\mathbf{E} \sup_{t \in T} X_t \geq K^{-1} a \sqrt{\ln |T|}.$$
Gaussian case

Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$.

Sudakov minoration: if $\|t - s\|_2 \geq a$ for all $s, t \in T$, $s \neq t$ then

$$\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} a \sqrt{\ln |T|}.$$

Recall that $\|X_t\|_p \sim \sqrt{p} \|t\|_2$ and hence

$$\|X_t - X_s\|_p \sim \sqrt{p} \|t - s\|_2 \geq A, \text{ then } a = \frac{A}{\sqrt{p}}.$$
Gaussian case

- Let X_i be iid $\mathcal{N}(0, 1)$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$.
- Sudakov minoration: if $\|t - s\|_2 \geq a$ for all $s, t \in T$, $s \neq t$ then
 $$\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} a \sqrt{\ln |T|}.$$
- Recall that $\|X_t\|_p \sim \sqrt{p} \|t\|_2$ and hence
 $$\|X_t - X_s\|_p \sim \sqrt{p} \|t - s\|_2 \geq A,$$ then $a = \frac{A}{\sqrt{p}}$.
- Therefore for $|T| = e^p$
 $$\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} \frac{A}{\sqrt{p}} \sqrt{p} = K^{-1} A.$$
Bernoulli case

- Let X_i be iid random signs, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$, $s \neq t$.
Bernoulli case

Let X_i be iid random signs, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$, $s \neq t$.

Talagrand's minoration: let $b(T) = \mathbb{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.
Let X_i be iid random signs, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$, $s \neq t$.

Talagrand's minoration: let $b(T) = \mathbb{E} \sup_{t \in T} X_t$ and
$D(a) = b(T) B_1 + a B_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.

Let $N(T, D(a))$ denotes the smallest number of shifts of the set $D(a)$ that covers T.
Bernoulli case

- Let \(X_i \) be iid random signs, \(|T| \geq e^p, \|X_t - X_s\|_p \geq A, s \neq t \).
- Talagrand’s minoration: let \(b(T) = \mathbb{E} \sup_{t \in T} X_t \) and \(D(a) = b(T)B_1 + aB_2 \), \(B_p = \{ x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1 \} \).
- Let \(N(T, D(a)) \) denotes the smallest number of shifts of the set \(D(a) \) that covers \(T \).
- Then \(b(T) \geq K^{-1} a \sqrt{\ln N(T, D(a))} \).
Bernoulli case

- Let X_i be iid random signs, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$, $s \neq t$.
- Talagrand’s minoration: let $b(T) = \mathbb{E} \sup_{t \in T} X_t$ and $D(a) = b(T)B_1 + aB_2$, $B_p = \{x \in \mathbb{R}^d : \sum_{i=1}^d |x_i|^p \leq 1\}$.
- Let $N(T, D(a))$ denotes the smallest number of shifts of the set $D(a)$ that covers T.
- Then $b(T) \geq K^{-1} a \sqrt{\ln N(T, D(a))}$.
- If $\|X_t - X_s\|_p \geq A$, then $t - s \notin AB_1 + \frac{A}{\sqrt{p}} B_2$ and hence either $b(T) \geq K^{-1} A$ or T is covered by at least e^p shifts of $D(\frac{A}{\sqrt{p}})$ which means

$$b(T) \geq K^{-1} \frac{A}{\sqrt{p}} \sqrt{p} = K^{-1} A.$$
Symmetric exponentials

Let X_i be iid, symmetric $\mathbf{P}(|X_i| \geq x) = e^{-x}$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$ for all $s \neq t$.

Recall that $\|X_t - X_s\|_p \sim \sqrt{p} \|t - s\|_2 + p \|s - t\|_\infty \geq A$.

Sudakov minoration: $E\sup_{t \in T} X_t \geq K^{-1}A$?

This fact was established by Talagrand and generalized by Latala and then by Latala and Tkocz.
Let X_i be iid, symmetric $P(|X_i| \geq x) = e^{-x}$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$ for all $s \neq t$.

Recall that

$$\|X_t - X_s\|_p \sim \sqrt{p}\|t - s\|_2 + p\|s - t\|_\infty \geq A.$$
Symmetric exponentials

- Let X_i be iid, symmetric $\mathbb{P}(|X_i| \geq x) = e^{-x}$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$ for all $s \neq t$.
- Recall that

\[
\|X_t - X_s\|_p \sim \sqrt{p}\|t - s\|_2 + p\|s - t\|_\infty \geq A.
\]

- Sudakov minoration: $\mathbb{E} \sup_{t \in T} X_t \geq K^{-1}A$?
Symmetric exponentials

- Let X_i be iid, symmetric $P(|X_i| \geq x) = e^{-x}$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$ for all $s \neq t$.
- Recall that
 \[
 \|X_t - X_s\|_p \sim \sqrt{p}\|t - s\|_2 + p\|s - t\|_\infty \geq A.
 \]
- Sudakov minoration: $E \sup_{t \in T} X_t \geq K^{-1}A$?
- The question can be reduced to the following one: suppose $t_i \in \{0, k_i\}$, $k_i \geq 1$ for all $i \in \{1, 2, \ldots, d\}$ then
 \[
 E \sup_{t \in T} X_t = E \sup_{t \in T} \sum_{i \in I(t)} k_i X_i \geq K^{-1} \ln |T|.
 \]
Symmetric exponentials

► Let X_i be iid, symmetric $\mathbf{P}(|X_i| \geq x) = e^{-x}$, $|T| \geq e^p$, $\|X_t - X_s\|_p \geq A$ for all $s \neq t$.

► Recall that

$$\|X_t - X_s\|_p \sim \sqrt{p}\|t - s\|_2 + p\|s - t\|_\infty \geq A.$$

► Sudakov minoration: $\mathbf{E} \sup_{t \in T} X_t \geq K^{-1}A$?

► The question can be reduced to the following one: suppose $t_i \in \{0, k_i\}$, $k_i \geq 1$ for all $i \in \{1, 2, \ldots, d\}$ then

$$\mathbf{E} \sup_{t \in T} X_t = \mathbf{E} \sup_{t \in T} \sum_{i \in I(t)} k_i X_i \geq K^{-1} \ln |T|.$$

► This fact was established by Talagrand and generalized by Latala and then by Latala and Tkocz.
The basic simplification

- It suffices to prove the minoration for sets T of special form.
The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^d$ consists of e^{Cp} points, C-large.
The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^d$ consists of e^{Cp} points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_i \in \{0, k_i\}$, where $k_i \geq 1$.

The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^d$ consists of e^{Cp} points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_i \in \{0, k_i\}$, where $k_i \geq 1$.
- (Short supports) For each t the support satisfies $|I(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_i \leq \delta p$.
The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^d$ consists of e^{Cp} points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_i \in \{0, k_i\}$, where $k_i \geq 1$.
- (Short supports) For each t the support satisfies $|I(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in I(t)} k_i \leq \delta p$.
- (Sufficient separation) For each $s, t \in T$, $s \neq t$

$$\|X_t - X_s\|_p = \left\| \sum_{i \in I(t) \setminus I(s)} k_i X_i - \sum_{i \in I(s) \setminus I(t)} k_i X_i \right\|_p \geq p = A.$$
The basic simplification

- It suffices to prove the minoration for sets T of special form.
- (Sufficient cardinality) Let $T \subset \mathbb{R}^d$ consists of e^{Cp} points, C-large.
- (Cube-like) Let T consists of t that satisfies $t_i \in \{0, k_i\}$, where $k_i \geq 1$.
- (Short supports) For each t the support satisfies $|l(t)| \leq \delta p$, where δ is sufficiently small. In fact $\sum_{i \in l(t)} k_i \leq \delta p$
- (Sufficient separation) For each $s, t \in T$, $s \neq t$

$$\|X_t - X_s\|_p = \| \sum_{i \in l(t) \setminus l(s)} k_i X_i - \sum_{i \in l(s) \setminus l(t)} k_i X_i \| \geq p = A.$$

- Does it imply that $\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} p = K^{-1} A$?
The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$\| \sum_{i \in l(t) \setminus l(s)} k_i X_i \|_p \geq \frac{p}{2}.$$
The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that
 \[\| \sum_{i \in I(t) \setminus I(s)} k_i X_i \|_p \geq \frac{p}{2}. \]

- Suppose that for each $t \in T$ one can select $a_i(t) \geq 1$, $i \in I(t)$ such that
 \[\sum_{i \in I(t) \setminus I(s)} k_i a_i(t) \geq C^{-1} p \text{ for all } s \in J(t). \]
The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that
 \[\| \sum_{i \in I(t) \setminus l(s)} k_i X_i \|_p \geq \frac{p}{2}. \]

- Suppose that for each $t \in T$ one can select $a_i(t) \geq 1$, $i \in I(t)$ such that
 \[\sum_{i \in I(t) \setminus l(s)} k_i a_i(t) \geq C^{-1} p \text{ for all } s \in J(t) \]

- and
 \[P \left(\bigcap_{i \in I(t)} \{ X_i \geq a_i(t) \} \right) \geq e^{-p}. \]
The idea of common witness

- Let $J(t)$ consists of points $s \in T$ such that

$$\| \sum_{i \in I(t) \setminus l(s)} k_i X_i \|_p \geq \frac{p}{2}.$$

- Suppose that for each $t \in T$ one can select $a_i(t) \geq 1$, $i \in l(t)$ such that

$$\sum_{i \in l(t) \setminus l(s)} k_i a_i(t) \geq C^{-1} p \text{ for all } s \in J(t)$$

- and

$$\mathbb{P} \left(\bigcap_{i \in l(t)} \{ X_i \geq a_i(t) \} \right) \geq e^{-p}.$$

- The condition is verified when supports are disjoint or intersects in few coordinates.
Exponential inequality

For log concave measures (unconditional) the following inequality holds

\[P(X \in A + \alpha(\sqrt{u}B_2 + uB_1)) \geq 1 - e^{-u}, \quad \text{for } u > 0, \]

where \(P(X \in A) \geq \frac{1}{2}, \) \(\alpha \)-constant (best result \(\alpha \sim \log d \)).
For log concave measures (unconditional) the following inequality holds

\[P(X \in A + \alpha(\sqrt{u}B_2 + uB_1)) \geq 1 - e^{-u}, \quad \text{for } u > 0, \]

where \(P(X \in A) \geq \frac{1}{2}, \alpha \)-constant (best result \(\alpha \sim \log d \)).

It is believed that it holds for dimension free \(\alpha \).
Exponential inequality

- For log concave measures (unconditional) the following inequality holds

\[P(X \in A + \alpha(\sqrt{u}B_2 + uB_1)) \geq 1 - e^{-u}, \quad \text{for } u > 0, \]

where \(P(X \in A) \geq \frac{1}{2}, \) \(\alpha \)-constant (best result \(\alpha \sim \log d \)).

- It is believed that it holds for dimension free \(\alpha \).

- Assume that

\[P(\sup_{t \in T} \sup_{s \in J(t)} | \sum_{i \in I(t) \setminus I(s)} k_i X_i | \leq K^{-1} p) \geq \frac{1}{2}. \]

otherwise \(E \sup_{t \in T} \sup_{s \in J(t)} | \sum_{i \in I(t) \setminus I(s)} k_i X_i | \geq (2K)^{-1} p. \)
Exponential inequality

- For log concave measures (unconditional) the following inequality holds

\[P(X \in A + \alpha(\sqrt{uB_2} + uB_1)) \geq 1 - e^{-u}, \text{ for } u > 0, \]

where \(P(X \in A) \geq \frac{1}{2} \), \(\alpha \)-constant (best result \(\alpha \sim \log d \)).

- It is believed that it holds for dimension free \(\alpha \).

- Assume that

\[P(\sup_{t \in T} \sup_{s \in J(t)} \left| \sum_{i \in I(t) \setminus I(s)} k_i X_i \right| \leq K^{-1} p) \geq \frac{1}{2}. \]

otherwise \(E \sup_{t \in T} \sup_{s \in J(t)} \left| \sum_{i \in I(t) \setminus I(s)} k_i X_i \right| \geq (2K)^{-1} p. \)

- Therefore \(P(X \in A) \geq \frac{1}{2} \) for

\(A = \{ x \in \mathbb{R}^d : \sup_{t \in T} \sup_{s \in J(t)} \left| \sum_{i \in I(t) \setminus I(s)} k_i x_i \right| \leq K^{-1} p \}. \)
Recall that $|T| \geq e^{Cp}$, C-large. Clearly

$$e^{(C-1)p} \leq e^{-p} |T| \leq \sum_{t \in T} P\left(\bigcap_{i \in I(t)} \{X_i \geq a_i(t)\} \right) = EN,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} 1_{|X_i| \geq a_i(t)}$.

Set of non-negligible measure
Recall that $|T| \geq e^{Cp}$, C-large. Clearly

$$e^{(C-1)p} \leq e^{-p}|T| \leq \sum_{t \in T} P(\bigcap_{i \in I(t)} \{X_i \geq a_i(t)\}) = EN,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} 1_{|X_i| \geq a_i(t)}$.

Therefore

$$EN \leq \frac{1}{2} e^{-p}|T| + |T|P(N \geq \frac{1}{2} e^{-p}|T|).$$
Recall that $|T| \geq e^{Cp}$, C-large. Clearly

$$e^{(C-1)p} \leq e^{-p}|T| \leq \sum_{t \in T} \prod_{i \in I(t)} P(X_i \geq a_i(t)) = EN,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} 1_{X_i \geq a_i(t)}$.

Therefore

$$EN \leq \frac{1}{2} e^{-p}|T| + |T|P(N \geq \frac{1}{2} e^{-p}|T|).$$

Hence

$$P(N \geq \frac{1}{2} e^{(C-1)p}) \geq \frac{1}{2} e^{-p}.$$
Recall that $|T| \geq e^{Cp}$, C-large. Clearly

$$e^{(C-1)p} \leq e^{-p}|T| \leq \sum_{t \in T} P\left(\bigcap_{i \in I(t)} \{ X_i \geq a_i(t) \} \right) = EN,$$

where $N = \sum_{t \in T} \prod_{i \in I(t)} 1|X_i|a_i(t)$.

Therefore

$$EN \leq \frac{1}{2} e^{-p}|T| + |T| P(N \geq \frac{1}{2} e^{-p}|T|).$$

Hence

$$P(N \geq \frac{1}{2} e^{(C-1)p}) \geq \frac{1}{2} e^{-p}.$$

Consequently $P(X \in B) \geq \frac{1}{2} e^{-p}$ for $B = \{ y \in \mathbb{R}^d : \exists S \subset T, |S| \geq \frac{1}{2} e^{(C-1)p}, y_i \geq a_i(t) \ \forall i \in I(t), t \in S \}$.
Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exist at least Cp points in S such that

$$y_i - x_i \geq \frac{1}{2} a_i(t) \geq \frac{1}{2}.$$
Why the minoration holds

- Consider points \(x \in A \) and \(y \in B \).
- It is possible to show that there must exist at least \(C_p \) points in \(S \) such that

 \[
 y_i - x_i \geq \frac{1}{2} a_i(t) \geq \frac{1}{2}.
 \]

- Therefore

 \[
 y - x \notin C(\sqrt{p}B_2 + pB_1).
 \]
Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exist at least Cp points in S such that

 \[y_i - x_i \geq \frac{1}{2} a_i(t) \geq \frac{1}{2}. \]

- Therefore

 \[y - x \not\in C(\sqrt{p}B_2 + pB_1). \]

- Consequently if $P(X \in A) \geq \frac{1}{2}$

 \[\frac{1}{2} e^{-p} \leq P(X \in B) \leq P(X \not\in A + C(\sqrt{p}B_2 + pB_1)) \leq e^{-2p}. \]
Why the minoration holds

- Consider points $x \in A$ and $y \in B$.
- It is possible to show that there must exists at least Cp points in S such that
 \[
 y_i - x_i \geq \frac{1}{2} a_i(t) \geq \frac{1}{2}.
 \]
- Therefore
 \[
 y - x \not\in C(\sqrt{p}B_2 + pB_1).
 \]
- Consequently if $P(X \in A) \geq \frac{1}{2}$
 \[
 \frac{1}{2} e^{-p} \leq P(X \in B) \leq P(X \not\in A + C(\sqrt{p}B_2 + pB_1)) \leq e^{-2p}.
 \]
- The contradiction implies that $P(X \in A) \leq \frac{1}{2}$ and hence the minoration holds.
Further thoughts

- This argument shows

\[\mathbb{E} \sup_{t \in T} X_t \geq K - 1_p = K - 1_A. \]

There is no chance to remove the common witness assumption from the argument described above.

Still there is a possibility to strengthen the induction argument which is the core of the main Latala's approach to the Sudakov minoration for canonical processes.
Further thoughts

- This argument shows

Theorem

If in the simplified setting the common witness exists for each \(t \in T \) and the exponential inequality holds with dimension free \(\alpha \) then

\[\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} p = K^{-1} A. \]

There is no chance to remove the common witness assumption from the argument described above.

Still there is a possibility to strengthen the induction argument which is the core of the main Latala's approach to the Sudakov minoration for canonical processes.
Further thoughts

- This argument shows

Theorem

If in the simplified setting the common witness exists for each \(t \in T \) *and the exponential inequality holds with dimension free* \(\alpha \) *then*

\[
\mathbb{E} \sup_{t \in T} X_t \geq K^{-1} p = K^{-1} A.
\]

- There is no chance to remove the common witness assumption from the argument described above.
Further thoughts

➢ This argument shows

Theorem

If in the simplified setting the common witness exists for each \(t \in T \) and the exponential inequality holds with dimension free \(\alpha \) then

\[
E \sup_{t \in T} X_t \geq K^{-1} p = K^{-1} A.
\]

➢ There is no chance to remove the common witness assumption from the argument described above.

➢ Still there is a possibility to strengthen the induction argument which is the core of the main Latala’s approach to the Sudakov minoration for canonical processes.
Thank you for your attention