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Random vectors.

I Let X = (X1,X2, . . . ,Xd) be a r.v. in Rd .

I Usually X is in the isotropic position, i.e. EXi = 0 and
EXiXj = 0 if i 6= j and EX 2

i = 1.
I In this setting E〈t ,X 〉2 = ‖t‖22 for all t ∈ Rd .
I The main question: for a given norm ‖ · ‖ on Rd , how to

estimate E‖X‖?
I More generally: for each T ⊂ Rd obtain bounds for

E sup
t∈T
〈t ,X 〉 = E sup

t∈T
Xt ,

where Xt = 〈t ,X 〉.
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Upper bound.

I Suppose that T ⊂ Rd , T -finite and |T | 6 ep, where p > 1.

I Let ‖Xt‖p = (E|Xt |p)
1
p = (E|〈t ,X 〉|p)

1
p 6 A, for all t ∈ T .

I Then

E sup
t∈T

Xt 6 E sup
t∈T
|Xt | = E(sup

t∈T
|Xt |p)

1
p 6

6 (E
∑
t∈T

|Xt |p)
1
p 6 (epAp)

1
p = eA.

I Is it possible to reverse this estimate?
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Log concave distribution.

I Vector X has a log concave distribution µX if for any
non-empty compact sets A,B ⊂ Rd and α+β = 1, α, β > 0

µX (αA + βB) > µX (A)αµX (B)β.

I If the support of µX is Rd then there exists density fX of µX
such that fX = exp(−UX ), where UX : Rd → R is convex.

I For log concave X , all t ∈ Rd and p > 1 we have
‖Xt‖p = ‖〈t ,X 〉‖p <∞.

I Vector X is unconditional if X and (ε1X1, . . . , εdXd), where
εi are independent random signs P(εi = ±1) = 1

2 .
I It is known that ‖Xt‖p 6 p

q‖Xt‖q for all 1 6 q 6 p.
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How to compute the norms?

I Suppose that X is unconditional, isotropic and log concave.

I Suppose that t ∈ Rd has support
I(t) = {i ∈ {1, . . . ,d} : ti 6= 0} such that |I(t)| 6 p.

I Then

‖Xt‖p = sup{
∑

i∈I(t)

ai ti : P(
⋂

i∈I(t)

{Xi 6 ai}) > e−p}.

I In particular for Xi iid N (0,1) then ‖Xt‖p ∼
√

p‖t‖2.
I If Xi iid symmetric P(|Xi | > t) = Cα exp(−|t |α), 1 6 α 6 2,
‖Xt‖p ∼

√
p‖t‖2 + p

1
α ‖t‖β, where 1

α + 1
β = 1.

I If Xi iid U(−
√

3,
√

3) then
‖Xt‖p ∼

∑p
i=1 |t

∗
i |+

√
p(
∑

i>p |t∗i |
2)

1
2 , where |t∗i | > |t

∗
i+1|.
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Minoration problem.

I Suppose that X is unconditional, log concave.

I Suppose that |T | > ep, p > 1.
I Suppose that for each s, t ∈ T , s 6= t

‖Xt − Xs‖p = (E|Xt − Xs|p)
1
p = (E|〈t − s,X 〉|p)

1
p > A.

I Does it imply that

E sup
t∈T

Xt = E sup
t∈T
〈t ,X 〉 > K−1A,

where K is an absolute constant?
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Motivation.

I Dimension free estimate for E supt∈T Xt in a particular
case where |T | ∼ ep, 0 ∈ T and ‖Xt − Xs‖p ∼ A for all
s, t ∈ T , s 6= t .

I First step in order to establish dimension free estimates for
E‖X‖ by the generic chaining approach.

I Concentration inequalities of the type

P(‖X‖ > K (E‖X‖+ sup
‖x∗‖61

‖〈x∗,X 〉‖p)) 6 e−p.

I Paouris type estimates

(E‖X‖p)
1
p 6 K (E‖X‖+ sup

‖x∗‖61
‖〈x∗,X 〉‖p).
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Gaussian case

I Let Xi be iid N (0,1), |T | > ep, ‖Xt − Xs‖p > A.

I Sudakov minoration: if ‖t − s‖2 > a for all s, t ∈ T , s 6= t
then

E sup
t∈T

Xt > K−1a
√

ln |T |.

I Recall that ‖Xt‖p ∼
√

p‖t‖2 and hence

‖Xt − Xs‖p ∼
√

p‖t − s‖2 > A, then a =
A
√

p
.

I Therefore for |T | = ep

E sup
t∈T

Xt > K−1 A
√

p
√

p = K−1A.
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Bernoulli case

I Let Xi be iid random signs, |T | > ep, ‖Xt −Xs‖p > A, s 6= t .

I Talagrand’s minoration: let b(T ) = E supt∈T Xt and
D(a) = b(T )B1 + aB2, Bp = {x ∈ Rd :

∑d
i=1 |xi |p 6 1}.

I Let N(T ,D(a)) denotes the smallest number of shifts of the
set D(a) that covers T .

I Then b(T ) > K−1a
√

ln N(T ,D(a)).
I If ‖Xt − Xs‖p > A, then t − s 6∈ AB1 +

A√
p B2 and hence

either b(T ) > K−1A or T is covered by at least ep shifts of
D( A√

p ) which means

b(T ) > K−1 A
√

p
√

p = K−1A.
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Symmetric exponentials

I Let Xi be iid, symmetric P(|Xi | > x) = e−x , |T | > ep,
‖Xt − Xs‖p > A for all s 6= t .

I Recall that

‖Xt − Xs‖p ∼
√

p‖t − s‖2 + p‖s − t‖∞ > A.

I Sudakov minoration: E supt∈T Xt > K−1A?
I The question can be reduced to the following one:

suppose ti ∈ {0, ki}, ki > 1 for all i ∈ {1,2, . . . ,d} then

E sup
t∈T

Xt = E sup
t∈T

∑
i∈I(t)

kiXi > K−1 ln |T |.

I This fact was established by Talagrand and generalized by
Latala and then by Latala and Tkocz.
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The basic simplification

I It suffices to prove the minoration for sets T of special form.

I (Sufficient cardinality) Let T ⊂ Rd consists of eCp points,
C-large.

I (Cube-like) Let T consists of t that satisfies ti ∈ {0, ki},
where ki > 1.

I (Short supports) For each t the support satisfies
|I(t)| 6 δp, where δ is sufficiently small. In fact∑

i∈I(t) ki 6 δp
I (Sufficient separation) For each s, t ∈ T , s 6= t

‖Xt − Xs‖p = ‖
∑

i∈I(t)\I(s)

kiXi −
∑

i∈I(s)\I(t)

kiXi‖ > p = A.

I Does it imply that E supt∈T Xt > K−1p = K−1A?
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The idea of common witness

I Let J(t) consists of points s ∈ T such that

‖
∑

i∈I(t)\I(s)

kiXi‖p >
p
2
.

I Suppose that for each t ∈ T one can select ai(t) > 1,
i ∈ I(t) such that∑

i∈I(t)\I(s)

kiai(t) > C−1p for all s ∈ J(t)

I and
P(

⋂
i∈I(t)

{Xi > ai(t)}) > e−p.

I The condition is verified when supports are disjoint or
intersects in few coordinates.
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Exponential inequality

I For log concave measures (unconditional) the following
inequality holds

P(X ∈ A + α(
√

uB2 + uB1)) > 1− e−u, for u > 0,

where P(X ∈ A) > 1
2 , α-constant (best result α ∼ log d).

I It is believed that it holds for dimension free α.
I Assume that

P(sup
t∈T

sup
s∈J(t)

|
∑

i∈I(t)\I(s)

kiXi | 6 K−1p) >
1
2
.

otherwise E supt∈T sups∈J(t) |
∑

i∈I(t)\I(s) kiXi | > (2K )−1p.

I Therefore P(X ∈ A) > 1
2 for

A = {x ∈ Rd : supt∈T sups∈J(t) |
∑

i∈I(t)\I(s) kixi | 6 K−1p}.
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Set of non-negligible measure

I Recall that |T | > eCp, C-large. Clearly

e(C−1)p 6 e−p|T | 6
∑
t∈T

P(
⋂

i∈I(t)

{Xi > ai(t)}) = EN,

where N =
∑

t∈T
∏

i∈I(t) 1|Xi |>ai (t).

I Therefore

EN 6
1
2

e−p|T |+ |T |P(N >
1
2

e−p|T |).

I Hence
P(N >

1
2

e(C−1)p) >
1
2

e−p.

I Consequently P(X ∈ B) > 1
2e−p for B = {y ∈ Rd : ∃S ⊂

T , |S| > 1
2e(C−1)p, yi > ai(t) ∀i ∈ I(t), t ∈ S}.
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Why the minoration holds

I Consider points x ∈ A and y ∈ B.

I It is possible to show that there must exists at least Cp
points in S such that

yi − xi >
1
2

ai(t) >
1
2
.

I Therefore
y − x 6∈ C(

√
pB2 + pB1).

I Consequently if P(X ∈ A) > 1
2

1
2

e−p 6 P(X ∈ B) 6 P(X 6∈ A + C(
√

pB2 + pB1)) 6 e−2p.

I The contradiction implies that P(X ∈ A) 6 1
2 and hence the

minoration holds.
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Further thoughts

I This argument shows

Theorem
If in the simplified setting the common witness exists for each
t ∈ T and the exponential inequality holds with dimension free
α then

E sup
t∈T

Xt > K−1p = K−1A.

I There is no chance to remove the common witness
assumption from the argument described above.

I Still there is a possibility to strengthen the induction
argument which is the core of the main Latala’s approach
to the Sudakov minoration for canonical processes.
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Thank you for your attention
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