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History I

The research related to transversality condition is a
continuation of the following results:

Marstrand Projection Theorem: Given a set A ⊂ R2

Borel set. Let Πα(A) its pojection to the line of
angle α. Then for lebesgue almost all α:

(a) dimH(Πα(A)) = min {1, dimH(A)}.
(b) Leb(Πα(A)) > 0 if dimH(A) > 1.

Matilla generalized it to higher dimension
Falconer papers on the dimension of ”typical”-self
similar and self-affine sets.

Károly Simon (TU Budapest) File A October 6, 2015 2 / 125



History I

The research related to transversality condition is a
continuation of the following results:

Marstrand Projection Theorem: Given a set A ⊂ R2

Borel set. Let Πα(A) its pojection to the line of
angle α. Then for lebesgue almost all α:

(a) dimH(Πα(A)) = min {1, dimH(A)}.
(b) Leb(Πα(A)) > 0 if dimH(A) > 1.

Matilla generalized it to higher dimension
Falconer papers on the dimension of ”typical”-self
similar and self-affine sets.
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Mike Keane’s {0, 1, 3} Problem

1 Mike Keane’s {0, 1, 3}Problem
2 Methods from Geometric Measure theory
3 An Erdős Problem from 1930’s
4 Pisot Vijayaraghaven (PV) and Garcia numbers
5 Solomyak (1995) Theorem and its generalizations

Absolute cont. measure with Lq densities
6 The proof of Peres Solomyak Theorem

How to find out if there is transversality?
Non-uniform contractions

7 Randomly perturbed IFS
8 Hochman’s fantastic result

Sketch of of the proof of Shmerkin’s Theorem
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Mike Keane’s {0, 1, 3} Problem

M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (1
4 ,

2
5) consider the following self-similar

set:

Λλ :=

∞∑

i=0
aiλ

i : ai ∈ {0, 1, 3}
 .

Then Λλ is the attractor of the one-parameter (λ) family
IFS:

{
Sλ

i (x) := λ · x + i
}

i=0,1,3
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Mike Keane’s {0, 1, 3} Problem

{0, 1, 3} problem II.

0

3λ
1−λ

3
1−λ
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Mike Keane’s {0, 1, 3} Problem
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Károly Simon (TU Budapest) File A October 6, 2015 5 / 125



Mike Keane’s {0, 1, 3} Problem

{0, 1, 3} problem II.
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Mike Keane’s {0, 1, 3} Problem

Πλ : {0, 1, 3}N 7→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸
Σ

.

Iλi0,...,ik := Sλ
i0
◦ · · · ◦ Sλ

ik
(Iλ) and Πλ(i) :=

∞⋂
k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0

Iλ :=
[
0, 3

1−λ

]
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Mike Keane’s {0, 1, 3} Problem

The dimension of the attractor

Mike Keane asked: is the function λ→ dimH Λλ
continuous on λ ∈ (1/4, 1/3)?

Theorem 1.1 (Pollicott, S. (1994))
For Lebesgue almost all λ ∈ (1/4, 1/3) we have
dimH Λλ = log 3

log(1/λ) (which is the similarity
dimension).
There is an exceptional set E which is dense in
[1/4, 1/3] such that for λ ∈ E we have
dimH Λλ < log 3

log(1/λ) .
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Mike Keane’s {0, 1, 3} Problem

Transversality condition (Pollicott, S.
1995)[9]

We say that the transversality condition holds if, for
every distinct i, j ∈ Σ := {1, . . . ,m}N the graph of the
functions

λ 7→ Πλ(i) and λ 7→ Πλ(j)
have transversal intersection. That is if these two
graphs intersect then their tangent lines are different.
This is a generalization of Marstrand theorem.
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Mike Keane’s {0, 1, 3} Problem

Πλ(i) := ⋂∞
k=0 Iλi0,...,ik ,Πλ(j) := ⋂∞

k=0 Iλj0,...,jk

λ 7→ Πλ
(i)

λ

J

Károly Simon (TU Budapest) File A October 6, 2015 9 / 125
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Mike Keane’s {0, 1, 3} Problem

Transversality condition can hold for:

Figure: Linear, hyperbolic and parabolic Cantor sets
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Mike Keane’s {0, 1, 3} Problem

Examples for transversality condition I
Let Λ ⊂ R2 be the attractor
of a self-similar sets with
disjoint cylinders of
similarities of the form
Si(x) = λix + ti .Let
J := [0, π]. Let Λλ be the
projection of Λ to a line Lλ
having angle λ ∈ J with the
positive part of the x axis on
the plane. The transversality
condition holds.
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Mike Keane’s {0, 1, 3} Problem

Examples for transversality condition II

(1) K r
u :=

{
∞∑

n=0
anr n : an ∈ {0, 1, u}

}
.

We get a one-parameter family if we fix one of the two
parameters r , u. The cylinders intersect and the
transversality condition holds in both of the following
one-parameter families:

Fix u ∈ [2, 4], and the parameter in K r
u is

r ∈ ( 1
1+u ,

1
3)

Fix r ∈ (1
5 ,

1
3) be fixed. The parameter in K r

u is
u ∈

[
1−r

r ,
2(1−r)
1−3r

]
.
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Mike Keane’s {0, 1, 3} Problem

Examples for transversality condition III

Example 1.2
Let f1(x), . . . , fm(x) : R→ R such that for every
i = 1, . . . ,m we assume that f ′i (x) exists for all x ∈ J
and |f ′i (x)| < 1

2 for every x ∈ J . Fix a j ∈ {1, . . . ,m}
then the one parameter family of contracting IFS

{f1(x), . . . , fi(x) + λ, . . . , fm(x)}

satisfies transversality holds.

Károly Simon (TU Budapest) File A October 6, 2015 13 / 125



Mike Keane’s {0, 1, 3} Problem

Examples for transversality condition IV

Example 1.3 (R. Lyons’ continued fraction example [2])
Let f α1 (x) := x+α

1+x+α and f α2 := x
1+x for

λ ∈ J = (0.215, 0.5). Then the transversality condition
holds. The invariant measure νλ for this IFS above is the
same as the distribution of the random continued
fractions y = [1,Y1, 1,Y2, 1,Y3, · · · ] , where Yi = 0, α
independently with 1

2 , 1
2 probability.
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Mike Keane’s {0, 1, 3} Problem

Also we can define the same distribution as the stationary
measure of the sequence of random matrix products: 1 Yn

1 1 + Yn

 · · ·
 1 Y1

1 1 + Y1

 .
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Mike Keane’s {0, 1, 3} Problem

Examples for transversality condition V

Figure: f2(x) = x
1+x and

f α
1 (x) = f2(x + α)

The parabolic IFS {f α1 , f2}
satisfies transversality
condition on the parameter
interval
α ∈ [0.215, 0.5] .Using that
we can compute the
dimension of the attractor
and the dimension of
invariant measures. See
[10], [11].
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Mike Keane’s {0, 1, 3} Problem

Some consequences of the transversality
condition for the dimension I

Theorem 1.4

Let Sλ
i : R→ R,

Sλ
i := ri(λ) · x + ti(λ) ,

i = 1, . . . ,m and λ ∈ J. We assume that
ri(λ), ti(λ) ∈ C∞(J) and there exist β, γ such that for all
i = 1, . . . ,m and for all λ ∈ J we have
0 < β < ri(λ) < γ < 1. Let Λλ be the attractor of Sλ

i .
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Mike Keane’s {0, 1, 3} Problem

Some consequences of the transversality
condition for the dimension II

Theorem 1.4 (Cont.)
Let us call IP the set of those parameters λ for which
the cylinders of Λλ intersect. That is

IP := {λ ∈ J : ∃i 6= j such that Πλ(i) = Πλ(j)} .

Further, we assume that the
transversality condition holds .
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Mike Keane’s {0, 1, 3} Problem

Some consequences of the transversality
condition for the dimension III

Theorem 1.4 (Cont.)
Then

(i) dimH Λλ = s(λ), where s(λ) is the similarity
dimension,

(ii) for Lebesgue almost all λ ∈ IP we have

(2) Hs(λ)(Λλ) = 0 ,
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Mike Keane’s {0, 1, 3} Problem

Some consequences of the transversality
condition for the dimension IV

Theorem 1.4 (Cont.)
Then

(iii) assuming that ∀λ ∈ J , #Λλ > 1 we get that
the set{
λ ∈ IP : Hs(λ)(Λλ) = 0

}
is a Gδ dense set in

IP ,
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Mike Keane’s {0, 1, 3} Problem

Some consequences of the transversality
condition for the dimension V
Theorem 1.4 (Cont.)
Then

(iv) if we assume that there exists a function ϕ(λ)
and constants r1, . . . , rm such that for all
λ ∈ J , ri(λ) = rϕ(λ)

i then for almost all λ ∈ J

(3) 0 < P s(λ)(Λλ) <∞ ,

where P s is the s-dimensional Packing
Measure
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Methods from Geometric Measure theory

1 Mike Keane’s {0, 1, 3}Problem
2 Methods from Geometric Measure theory
3 An Erdős Problem from 1930’s
4 Pisot Vijayaraghaven (PV) and Garcia numbers
5 Solomyak (1995) Theorem and its generalizations

Absolute cont. measure with Lq densities
6 The proof of Peres Solomyak Theorem

How to find out if there is transversality?
Non-uniform contractions

7 Randomly perturbed IFS
8 Hochman’s fantastic result

Sketch of of the proof of Shmerkin’s Theorem
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Methods from Geometric Measure theory

Radon measure definition
µ is a Radon measure if

(a) Borel measure,
(b) ∀K ⊂ X compact: µ(K ) <∞,
(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }
(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.
Theorem 2.1
A measure µ on Rd is a Radon measure if and only if it
is locally finite and Borel regular

Proof: See Mattila’s book [4, p. 11-12].
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Methods from Geometric Measure theory

Mass Distribution Principle
We say that a Borel measure µ on the set X is a mass
distribution if 0 < µ(X ) <∞.
Lemma 2.2 (Mass Distribution Principle)
If A ⊂ X supports a mass distribution µ such that for a
constant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂
∞⋃

j=1
Aj ⇒

∑
j
|Aj |t ≥ C−1 ∑

j
µ(Aj) ≥

µ(A)
C .
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Károly Simon (TU Budapest) File A October 6, 2015 24 / 125



Methods from Geometric Measure theory

Frostman’s Energy method
Let µ be a mass distribution on Rd . The t-energy of µ
is defined by

Et(µ) :=
∫∫
|x − y |−tdµ(x)dµ(y).

Lemma 2.3 (Frostman (1935))
For a Borel set Λ ⊂ Rd and for a mass distribution µ
supported by Λ we have

Et(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.
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Methods from Geometric Measure theory

Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=
∫ dµ(y)
|x − y |t .

Then Et(µ) = ∫ Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since ∫ Φt(µ, x)dµ(x) = Et(µ) <∞ we have M such
that µ(ΛM) > 0. Fix such an M.
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Methods from Geometric Measure theory

Proof of Frostman Lemma II

Let
ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That is
ν satisfies one of the assumptions of the Mass
Distribution Principle above.) Now we show that for
every bounded set D:

(4) ν(D) < const · |D|t .

If D ∩ ΛM = ∅ then (4) holds obviously. From now we
assume that D is a bounded set such that D ⋃Λm 6= ∅.
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Methods from Geometric Measure theory

Proof of Frostman Lemma III

Pick an arbitrary x ∈ D ⋂ΛM . We define

m := max
{

k ∈ Z : B(x , 2−k) ⊃ D
}
.

Then

(5) |D| ≥ 2−(m+1) and |D| < 2 · 2−m.
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Methods from Geometric Measure theory

Proof of Frostman Lemma IV
Observe that from the right hand side of (5): y ∈ D we
have |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥
∫ dν(y)
|x − y |t ≥

∫
D

dν(y)
|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (5) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions of
the Mass Distribution Principle which completes the
proof of the Lemma.
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Methods from Geometric Measure theory

Radon measures IV

Definition 2.4
Let µ, η be Radon measures on Rd . We define the upper
and lower derivatives of µ with respect to η:

D(µ, η, x) := limr→0
µ(B(x , r))
η(B(x , r)) .

If the limit exists then we write D(µ, η, x) for this
common value and we call it the derivative of the
measure µ with respect to the measure η.
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Methods from Geometric Measure theory

Radon measures V

Theorem 2.5

Let µ, η be Radon measures on Rd .
(i) The derivative D(µ, η, x) exists and is finite

for η almost all x ∈ Rd . [3, Theorem 2.12]
(ii) For all Borel sets B ⊂ Rd we have

(6)
∫
B

D(µ, η, x)dη(x) ≤ µ(B)

with equality if µ� η. [3, Theorem 2.12]
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Methods from Geometric Measure theory

Radon measures VI

Theorem 2.5 (Cont.)
(iii) µ� η if and only if D(µ, η, x) <∞ for µ

almost all x ∈ Rd . [3, Theorem 2.12]
(iv) If µ� η then∫

D(µ, η, x)2dη(x) =
∫

D(µ, η, x)dµ(x).

This is [3, Exercise 6 on p. 43]
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Methods from Geometric Measure theory

Radon measures VII
Theorem 2.5 (Cont.)

(v) Assume that µ� η . Then D(µ, η, x) is a
version of the Radon-Nikodym derivative
dµ(x)
dη(x) . So, we know that∫
R

D(µ, η, x)dη(x) <∞. Further, by (iv)
above, we have:
(7)∫
R

D(µ, η, x)dµ(x) <∞ =⇒ dµ(x)
dη(x) ∈ L2(R).

This argument appears in [7, p.233].
Károly Simon (TU Budapest) File A October 6, 2015 33 / 125



Methods from Geometric Measure theory

Radon measures VII
Theorem 2.5 (Cont.)

(v) Assume that µ� η . Then D(µ, η, x) is a
version of the Radon-Nikodym derivative
dµ(x)
dη(x) . So, we know that∫
R

D(µ, η, x)dη(x) <∞. Further, by (iv)
above, we have:
(7)∫
R

D(µ, η, x)dµ(x) <∞ =⇒ dµ(x)
dη(x) ∈ L2(R).

This argument appears in [7, p.233].
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An Erdős Problem from 1930’s

Infinite Bernoulli convolution I
For a λ ∈ (0, 1) we define the random variable

Yλ :=
∞∑

n=0
±λn.

νλ be the distribution of Yλ. On the other hand νλ is
the self similar measure of the IFS. That is for
λ ∈ (0, 1), x ∈ [0, 1/(1− λ)]

Sλ
1 (x) := λx + 1, Sλ

−1(x) := λx − 1,

with weights 1/2, 1/2
(νλ(A) = 1

2νλ((Sλ
1 )−1(A)) + 1

2νλ((Sλ
−1)−1(A))).
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An Erdős Problem from 1930’s

Infinite Bernoulli convolution II

νλ = (Πλ)∗({1/2, 1/2}N),
Πλ(i0, i1, i2, . . . ) = i0 + i1λ + i2λ2 + · · ·

Let Iλ :=
[
0, 1

1−λ
]
. Yet again we write

Iλi0...ik := Si0...ik (Iλ).

Then
Πλ(i0, i1, . . . ) =

∞⋂
k=0

Iλi0...ik .
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An Erdős Problem from 1930’s

Infinite Bernoulli convolution III
Cylinders for λ ∈ (0.5, 1)

1
1−λ

0

Iλ−1

I1
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An Erdős Problem from 1930’s

Infinite Bernoulli convolution III
Cylinders for λ ∈ (0.5, 1)

1
1−λ

0

Iλ−1

I1I−11
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An Erdős Problem from 1930’s

Law of pure type

Theorem 3.1 (Jensen, Wintner 1935)
Either νλ � Leb or νλ⊥Leb

It was proved by Parry and York that for every λ we have

(8) Either νλ ∼ Leb or νλ⊥Leb.
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An Erdős Problem from 1930’s

Solomyak’s Theorem (1995)

After 60 years after that in 1930’s P. Erdős started to
investigate the infinite Bernoulli convolutions Boris
Solomyak made the following major achievement:
Theorem 3.2 (Solomyak (1995))

1 νλ � Leb with a density in L2(R) for a.e.
λ ∈ (1/2, 1).

2 νλ � Leb with a density in C(R) for a.e.
λ ∈ (2−1/2, 1).
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An Erdős Problem from 1930’s

ν̂λ(x) :=
∫
R

eitx dνλ(t) = ∏∞
n=0 cos(λnx) .

Hence for every k ≥ 2 we have

(9) ν̂λ(x) =
k−1∏
i=0

ν̂λk (λix).

Using this if we have absolute continuity on λ ∈
[

1
2 ,

1√
2

]
then we have absolute continuity for the whole
λ ∈

[1
2 , 1

]
. This and Solomyak theorem implies that

k ≥ 2, then for a.a. λ ∈
(
2−1/k , 1

)
, then ν̂λ ∈ L2/k .

In particular, for λ ∈
(
2−1/2, 1

)
, νλ has bounded density.
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An Erdős Problem from 1930’s

Erdős Results form the 1930’s

Theorem 3.3 (Pál Erdős 1940)
There exists a t < 1 (rather close to 1) such that for a.e.
λ ∈ (t, 1) we have νλ � Leb. More precisely,

∃ak ↑ 1 s.t. dνλ
dx ∈ C

k(R) for λ ∈ (ak , 1).
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An Erdős Problem from 1930’s

Problem 3.4 (Erdős)
Is it true that νλ � Leb holds for a.e. λ ∈ (1/2, 1)?

The only known counter examples are the reciprocals of
the so-called PV number or Pisot or Pisot Vayangard
numbers (they are the same but nobody can pronounce
Vayangard properly so people avoid using his name).
The most beautiful account olf this field was given by
Solomyak [13].
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Pisot Vijayaraghaven (PV) and Garcia numbers

1 Mike Keane’s {0, 1, 3}Problem
2 Methods from Geometric Measure theory
3 An Erdős Problem from 1930’s
4 Pisot Vijayaraghaven (PV) and Garcia numbers
5 Solomyak (1995) Theorem and its generalizations

Absolute cont. measure with Lq densities
6 The proof of Peres Solomyak Theorem

How to find out if there is transversality?
Non-uniform contractions

7 Randomly perturbed IFS
8 Hochman’s fantastic result

Sketch of of the proof of Shmerkin’s Theorem
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Pisot Vijayaraghaven (PV) and Garcia numbers

Definition of PV numbers
Definition 4.1
We say that the algebraic integer θ > 1 is a PV number
if all of the other roots of its minimal polynomials are
less than one in modulus.

We study the distribution of Yλ :=
∞∑

i=0
±λi for a

λ ∈ (0, 1). For such a λ:
We denote #λ(n) the number of distinct points in
n−1∑
k=0
±λk .

We denote by ωλ(n) the minimal distance between
two distinct points in

n−1∑
k=0
±λk .
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Pisot Vijayaraghaven (PV) and Garcia numbers

Properties of PV numbers
1 If θ is a PV number then there exists an η ∈ (0, 1)

such that
‖θn‖Z < ηn.

2 If λ ∈ (0.5, 1) and λ = θ−1 for a PV number θ then

ωλ(n) ≥ C1 · λn and C2 · λ−n ≤ #λ(n) ≤ C3λ
−n

for some constants C1,C2,C3 > 0. The golden ratio 1+
√

5
2

is the only quadratic PV number in (1, 2) and the
smallest limit point of the closed set of PV numbers.
The smallest Pisot number is θ = 1.32478 which is the
root of x 3 − x − 1 = 0.
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Pisot Vijayaraghaven (PV) and Garcia numbers

Theorem 4.2 (Erdős 1939)
If λ 6= 1

2 and 1
λ is a Pisot number then

(a) νλ ⊥ Leb.
(b) lim

ξ→∞
ν̂(ξ) 6→ 0.

Clearly, if νλ was absolute continuous then
lim
ξ→∞

ν̂(ξ)→ 0. So, the second part is stronger.

Theorem 4.3 (Salem 1944)
If λ ∈ (0, 1) and λ−1 is NOT a Pisot number then

lim
ξ→∞

ν̂λ(ξ) = 0.
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Károly Simon (TU Budapest) File A October 6, 2015 46 / 125



Pisot Vijayaraghaven (PV) and Garcia numbers

Theorem 4.2 (Erdős 1939)
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Pisot Vijayaraghaven (PV) and Garcia numbers

The Proof of the previous Erdős Theorem

This sketch of the proof is from Slomyak’s survey paper
[13]. Using a theorem of Pisot, Erdős proved that
(10)
∃γ > 0, ν̂λ(ξ) = O

(
|ξ|−γ

)
for a.a. λ ∈

(1
2 ,

1√
2

)
.

Now we combine formulas (9) and (10) to obtain that

|ν̂λ(ξ)| = O
(
|ξ|−kγ) , for a.e. λ ∈

( 1
21/k ,

1
21/(2k)

)
.
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Pisot Vijayaraghaven (PV) and Garcia numbers

The Proof of the previous Erdős Theorem
(Cont.)

(11) ∃α > 1, |ν̂λ(ξ)| = O
(
|ξ|−α

)
=⇒ ν̂λ ∈ L1(R)

=⇒ νλ � Leb with dνλ
dx ∈ C(R).

If α > k + 1 then in distributional sense

(12)
̂d

dx k

(dνλ
dx

)
= ξk ν̂λ(ξ) ∈ L1(R).
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Pisot Vijayaraghaven (PV) and Garcia numbers

The Proof of the previous Erdős Theorem
(Cont.)

Formula (12) implies that

dνλ
dx ∈ C

k(R)
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Pisot Vijayaraghaven (PV) and Garcia numbers

The definition of Garcia numbers

The largest collection of numbers λ for which νλ � Leb
is the reciprocals of the so called Garcia numbers.
Definition 4.4
Garsia numbers are those algebraic integers in (1, 2) for
which the minimal polynomial has another root out of
the unit circle and the constant coefficient is ±2.
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Pisot Vijayaraghaven (PV) and Garcia numbers

Examples for Garsia numbers

Example 4.5
Examples for the reciprocal of Garsia numbers

2−1/k for k ≥ 1 (with polynomial x k − 2).
≈ .5651977175... (with polynomial x 3 − 2x − 2).
The reciprocal of the largest root of xn+p − xn − 2
such that p, n ≥ 1 and max {p, n} ≥ 2 (e.g.
0.6572981061... with the polynomial x 3 − x − 2).
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Solomyak (1995) Theorem and its generalizations

Solomyak’s Theorem (1995)

After 60 years after that in 1930’s P. Erdős started to
investigate the infinite Bernoulli convolutions Boris
Solomyak made the following major achievement:
Theorem 5.1 (Solomyak (1995))

1 νλ � Leb with a density in L2(R) for a.e.
λ ∈ (1/2, 1).

2 νλ � Leb with a density in C(R) for a.e.
λ ∈ (2−1/2, 1).
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Solomyak (1995) Theorem and its generalizations

A generalization of Solomyak’s Theorem
Let p = (p1, . . . , pm) be a probability vector and
D = {d1, . . . , dm} ⊂ R be the set of digits. Let νλ be the
distribution of the random series

∞∑
n=0

anλ
n, where ai is

chosen from D independently in every steps with
probabilities pi . Then νλ is the self-similar measure for
the IFS {Si(x) = λx + di}m

i=1 with probabilities given by
p. That is

(13) νλ =
m∑

i=1
pi ·

(
νλ ◦ S−1

i
)
.
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Solomyak (1995) Theorem and its generalizations

A generalization II.
Theorem 5.2 (Peres, Solomyak)

Let J ⊂ [0, 1] be a closed interval on which the
transversality condition holds. Then

1 νλ � Leb for a.e. λ ∈ J ⋂ [∏m
i=1 ppi

i , 1] and νλ is
singular for all λ < ∏m

i=1 ppi
i .

2 νλ � Leb with a density in L2(R) for a.e.

λ ∈ J ∩
 m∑

i=1
p2

i , 1
 .

The transversality interval in case of the Bernoulli
convolution J = [0.5, 0.668].
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Solomyak (1995) Theorem and its generalizations

Comments on the theorem
Let µ := (p1, . . . , pn)N the Bernoulli measure on
Σ = {d1, . . . , dm}N. Then it follows from (13) that
νλ = µ ◦ Π−1

λ ,
where Πλ(i0, i1, i2, . . . ) = i0 + i1λ + i2λ2 + · · ·.
Clearly the entropy of µ is

hµ = − log
m∏

i=1
ppi

i .

Thus for λ0 = ∏m
i=1 ppi

i we have

dimH(νλ0) ≤ hµ
log(1/λ0) = 1.
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Solomyak (1995) Theorem and its generalizations

Further comments to Theorem 5.2

Consider the special case in Theorem 5.2 when the IFS is

{S−1(x) = λx − 1, S1(x) = λx + 1}

and the probabilities (p, 1− p). The invariant measure is
νp
λ . We know that νp

λ is the distribution of
∞∑

i=0
±λn,

where the − and + signs are chosen with probability p
and 1− p respectively.

Károly Simon (TU Budapest) File A October 6, 2015 57 / 125



Solomyak (1995) Theorem and its generalizations

Further comments to Theorem 5.2 (Cont.)
Theorem 5.2 gives L2 density only for λ from

Jp :=
(
p2 + (1− p)2, 1

)
in the following way: Let

Jk :=
(
(p2 + (1− p)2)(k−1)/2, (p2 + (1− p)2)k/2)

Assume that for a k ≥ 1 we have

(14) ν̂p
λ ∈ L2, ∀λ ∈ Jk .

We prove that this holds for J1 by transversality
condition then we proceed by induction:
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Solomyak (1995) Theorem and its generalizations

Further comments to Theorem 5.2 (Cont.)

Observe that
∑
±
(√

λ
)n

=
∑
±(λ)n +

√
λ
∑
±(λ)n

Since the random signs are independent we obtain:

(15) ν̂p√
λ
(u) = ν̂p

λ(u) · ν̂p
λ(
√
λ · u) .

So, if νp
λ has L2 density then by Plancherel Theorem,

(ν̂)p
λ ∈ L2(R). Then by (15)
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Solomyak (1995) Theorem and its generalizations

Further comments to Theorem 5.2 (Cont.)

(16) ν̂p√
λ
∈ L1(R) =⇒ νp√

λ
has continouous density.

So, νp√
λ

has L2 density and we can continue the
induction to show that for all k , the measure νp

λ has L2

density for λ ∈ Jk .
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Let µ be an ergodic measure on the symbolic space
Σ := {1, . . . ,m}N.

Definition 5.3 (Lq-dimension of µ)
Let q > 1. We define the Lq-dimension of m by

Dq(µ) := 1
q − 1 lim infn→∞

− log ∑
i∈{1,...,m}n

µ([i])q

n log m

If µ = {p1, . . . , pm}N then

m−Dq(µ) = [pq
1 + · · ·+ pq

m]1/(q−1)
.
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

The following Peres-Solomyak theorem is from:[8,
Theorem 1.3]

Theorem 5.4 (Peres and Solomyak)

Let
Si(x) = λx + di(λ), i = 1, . . . ,m.

and Πλ(i) :=
∞∑

k=0
dikλ

k . Given a probability vector
p = (p1, . . . , pm). Let

µ := {p1, . . . , pm}N

and
νλ := Π∗(µ).
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Theorem (Cont)
Suppose that J ⊂ (0, 1) is an interval such that the
transversality condition holds. Then
(a) νλ is absolute continuous if λ > ∏m

i=1 ppi
i and

singular if λ < ∏m
i=1 ppi

i .
(b) Let q ∈ (1, 2]. then for a.e.
λ > [pq

1 + · · ·+ pq
m]1/(q−1) such that λ ∈ J the measure

νλ � Leb with Lq density
(c) For any q > 1 and all λ ∈ (0, 1), if νλ � Leb with

Lq density then λ > [pq
1 + · · ·+ pq

m]1/(q−1).
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Example
Example 5.5

Let the digit set be D := {−1, 0, 1} and let
p :=

(1
4 ,

1
2 ,

1
4
)
, Let ηλ be the corresponding self similar

measure. That is the measure which corresponds to
these probabilities and the IFS

Fλ = {λx − 1, λx , λx + 1} .

Observe that

(17) ηλ = ν
1/2
λ ∗ ν

1/2
λ ,

where ν1/2
λ was introduced on the slide # 5.4.
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Using that
3∏

i=1
ppi

i = 1
2 ·
√

2 and for q = 2

λ∗q := (2−q + 2 · 4−q)1/(1−q) = 3
8 by Theorem 5.4 we have

(i) For λ < 1
2 ·
√

2 then ηλ⊥Leb.
(ii) For 1

2 ·
√

2 < λ < 3
8 then ηλ � Leb but it has

NOT L2-density
(iii) For λ > 3

8 ηλ � Leb with L2 density.

Károly Simon (TU Budapest) File A October 6, 2015 65 / 125



Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Using that
3∏

i=1
ppi

i = 1
2 ·
√

2 and for q = 2

λ∗q := (2−q + 2 · 4−q)1/(1−q) = 3
8 by Theorem 5.4 we have

(i) For λ < 1
2 ·
√

2 then ηλ⊥Leb.
(ii) For 1

2 ·
√

2 < λ < 3
8 then ηλ � Leb but it has

NOT L2-density
(iii) For λ > 3

8 ηλ � Leb with L2 density.
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Application: the Schilling equation

Because of motivations from physics the functional
equation called Schilling equation was intensively studied:

(18) y(λt) = 1
4λ [y(t + 1) + y(t − 1) + 2y(t)] ,

where 0 < λ < 1. With simple change of variables t 7→ t
λ

we get

(19) y(t) = 1
4λy

( t
λ
− 1

)
+ 1

2λy
( t
λ

)
+ 1

4λy
( t
λ

+ 1
)
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

Equation (19) has a compactly supported solution yλ in
L1 iff

(20) Fλ := {λx − 1, λx , λx + 1}

with probabilities p :=
(1

4 ,
1
2 ,

1
4
)

has an absolute
continuous invariant measure. In this case the density
function of νλ is yλ. This is exactly the measure we
considered previously. Derfel and Schilling [1] pointed
out that for λ > 1

2 the density is actually continuous.
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Solomyak (1995) Theorem and its generalizations Absolute cont. measure with Lq densities

On the exceptional parameters

Theorem 5.6 (Peres-Schlag 2000 [5])
Let J ⊂ [λ0, λ

′
0]
(1

2 , 1
)

be an interval where the
transversality condition holds for the Bernoulli
convolution. Then the dimension of the exceptional
parameters:

dimH

{
λ ∈ J : dνλ

dx 6∈ L2(R)
}
≤ 2− log 2

log(1/λ0)
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The proof of Peres Solomyak Theorem

1 Mike Keane’s {0, 1, 3}Problem
2 Methods from Geometric Measure theory
3 An Erdős Problem from 1930’s
4 Pisot Vijayaraghaven (PV) and Garcia numbers
5 Solomyak (1995) Theorem and its generalizations

Absolute cont. measure with Lq densities
6 The proof of Peres Solomyak Theorem

How to find out if there is transversality?
Non-uniform contractions

7 Randomly perturbed IFS
8 Hochman’s fantastic result

Sketch of of the proof of Shmerkin’s Theorem
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The proof of Peres Solomyak Theorem

Proof: Peres, Solomyak’s Theorem I
We follow: Boris Solomyak, Notes on Bernoulli
convolutions. http://www.math.washington.edu/
˜solomyak/PREPRINTS/mandel2.pdf
We apply the previous theorem for

Dλ(x) := D(νλ,Leb, x) = lim inf
r→0

νλ(x − r , x + r)
2r .

It is enough to prove that

(21) I :=
∫
J

∫
R

Dλ(x)dνλ(x)dλ <∞.
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The proof of Peres Solomyak Theorem

Proof: Peres, Solomyak’s Theorem II
For i, j ∈ Σ we define the function
Φi,j(r) := Leb {λ ∈ J : |Πλ(i)− Πλ(j)| < r}. Using
Fatau Lemma and exchanging the order of integration
yields that

I ≤ lim inf
r→0

1
2r

∫
Σ

∫
Σ

Φi,j(r)dµ(i)dµ(j).

Let J = [λ0, λ1]. From Transversality condition:

(22) Φi,j(r) ≤ const · λ−|i∧j|
0 · r .

I ≤ const
∞∑

k=0
λ−k

0
(
p2

1 + · · ·+ p2
m
)k
<∞ holds since

m∑
k=1

p2
k < λ0.
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(22) Φi,j(r) ≤ const · λ−|i∧j|
0 · r .

I ≤ const
∞∑

k=0
λ−k

0
(
p2

1 + · · ·+ p2
m
)k
<∞ holds since

m∑
k=1

p2
k < λ0.
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Károly Simon (TU Budapest) File A October 6, 2015 71 / 125



The proof of Peres Solomyak Theorem How to find out if there is transversality?

The class Bγ

The methods below are due to Peres and Solomyak [12],
[7] and [8]. Let γ > 0. Peres Solomyak introduced:
(23) Bγ :=

 g(x) = 1 +
∞∑

n=1
anxn : |an| ≤ γ, n ≥ 1

 .
Let J be a closed sub-interval of [0, 1] and let γ, δ > 0.
We say that a Bγ satisfies that
δ-transversality condition on J if:
(24)
∀g ∈ Bγ : (λ ∈ J and g(λ) < δ) =⇒ g ′(λ) < −δ.

That is all ∀g ∈ Bγ whenever the graph of g meets a
horizontal line below the height of δ, it crosses it with a
slope at most −δ.
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The proof of Peres Solomyak Theorem How to find out if there is transversality?

Definition 6.1 (∗-functions)
Let γ > 0. we say that h(x) is a ∗-function for Bγ if for
some k ≥ 1 and ak ∈ R we have

(25) h(x) = 1− γ
k−1∑
i=1

x i + akx k + γ
∞∑

i=k+1
x i .

Lemma 6.2
Assume that h(x) is a ∗-function for Bγ and there exists
x0 ∈ (0, 1) and δ ∈ (0, γ) such that h(x) satisfies:

(26) h(x0) > δ and h′(x0) < −δ.

Then the δ-transversality holds for Bγ on the interval
[0, x0].
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The proof of Peres Solomyak Theorem How to find out if there is transversality?

We write

Bm,I :=
1 + ∑

i∈I\{0}
aix i : |ai | ≤ m − 1

 .
If I = N then we suppress it. Let J ⊂ (0, 1) be a closed
interval and δ > 0.
Definition 6.3
We say that the δ-transversality condition holds for
Bm,I on J if

(27) ∀k ∈ I, k < n,∀g ∈ Bm,σkI ,∀λ ∈ J ,
g(λ) < δ =⇒ g ′(λ) < −δ.
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The proof of Peres Solomyak Theorem Non-uniform contractions

Further generalization of Solomyak
Theorem II
Theorem 6.4 (S.M. Ngai, Y. Wang)
Let µρ1,ρ2,p1,p2 be the self-simlar measure for the IFS (we
are on R) S1(x) := ρ1x S2(x) := ρ2x + 1 , which
corresponds to the probabilities p1, p2. That is for
µ := µρ1,ρ2,p1,p2, µ(A) = p1µ(S−1

1 A) + p2µ(S−1
2 (A)) for a

Borel set A ⊂ R. Then the regions of singularity and
verified absolute continuity are shown or the next slide.
On the figure on the left hand side we assumed that
p1 = p2 = 1

2 . On the figure on the right hand side we
assumed that p1 = 1

3 and p2 = 2
3 .
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The proof of Peres Solomyak Theorem Non-uniform contractions

Further generalization of Solomyak’s
Theorem III
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Randomly perturbed IFS

1 Mike Keane’s {0, 1, 3}Problem
2 Methods from Geometric Measure theory
3 An Erdős Problem from 1930’s
4 Pisot Vijayaraghaven (PV) and Garcia numbers
5 Solomyak (1995) Theorem and its generalizations

Absolute cont. measure with Lq densities
6 The proof of Peres Solomyak Theorem

How to find out if there is transversality?
Non-uniform contractions

7 Randomly perturbed IFS
8 Hochman’s fantastic result

Sketch of of the proof of Shmerkin’s Theorem
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Randomly perturbed IFS

A Sinai’s problem I

Consider the random series

X := 1 + Z1 + Z1Z2 + · · ·+ Z1Z2 · · ·Zn + · · ·

where Zi are i.i.d. taking values in {1− a, 1 + a} for a
fixed 0 < a < 1 with probabilities

(1
2 ,

1
2
)
. The series

converges almost surely since the Lyaponov exponent:

χ := E [log Z ] = 1
2 log(1− a2) < 0.

Let νa be the distribution of X .
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Randomly perturbed IFS

A Sinai’s problem II

Problem 7.1 (Sinai)
For which a ∈ (0, 1) is the measure νa absolute
continuous w.r.t. Leb?
This question was motivated by a statistical version of

the famous 3n + 1 problem.
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Randomly perturbed IFS

Remarks
1 νa is the invariant measure for the IFS

{1 + (1− a)x , 1 + (1 + a)x} ,
with prob. (1/2,1/2).

2 suppνa = [Fix(1 + (1− a)x),∞),
3 If a >

√
3

2 then log 2 < −1
2 log(1− a2). Thus for the

entropy hν of the measure ν we obtain: hν < −χ.
This implies that:
dimH ν

a < 1. Therefore νa ⊥ Leb.
4 Conjecture:

(28) νa � Leb for a.e. 0 < a <
√

3
2 .
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Károly Simon (TU Budapest) File A October 6, 2015 80 / 125



Randomly perturbed IFS

We did not managed to solve this problem but we
answered positively the corresponding problem in the
randomly perturbed case. Namely, Let

Zi := λiY ,

where λi ∈ {1− a, 1 + a} with probability (1/2, 1/2)
and the error Y has absolute continuous distribution on
(1− ε1, 1 + ε2) for small ε1, ε2 > 0 with bounded density
and we assume that E[log Y ] = 0. The error yi at every
steps are i.i.d. with distribution Y and independent on
everything else.
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Randomly perturbed IFS

The randomly perturbed case I

Theorem 7.2 (Peres, S.,Solomyak)
Let νa

y be the conditional distribution for a given
sequence of errors y = (y1, y2, . . . ). Then

1 If 0 < a <
√

3
2 then for a.a. y we have νa

y � Leb;
2 If a ≥

√
3

2 then for a.a. y we have dimH ν
a
y = 2 log 2

log 1
1−a2
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Randomly perturbed IFS

The randomly perturbed case II
Given {Si(x) = λix + di}m

i=1 on R. We assume that
λi > 0 but some λi may be greater than 1.
Let Y be a random variable with an absolute continuous
distribution η on (0,∞), such that

(29) ∃C1 > 0 : dη
dx ≤ C1x−1 , ∀x > 0.

Let µ be an ergodic invariant measure on
Σ := {1, . . . ,m}N. The Lyapunov exponent is

χ(µ, η) := E [log λY ] = E [log Y ] +
∫
Σ

log λi1dµ(i).

Károly Simon (TU Budapest) File A October 6, 2015 83 / 125



Randomly perturbed IFS

The randomly perturbed case II
Given {Si(x) = λix + di}m

i=1 on R. We assume that
λi > 0 but some λi may be greater than 1.
Let Y be a random variable with an absolute continuous
distribution η on (0,∞), such that

(29) ∃C1 > 0 : dη
dx ≤ C1x−1 , ∀x > 0.

Let µ be an ergodic invariant measure on
Σ := {1, . . . ,m}N. The Lyapunov exponent is

χ(µ, η) := E [log λY ] = E [log Y ] +
∫
Σ

log λi1dµ(i).
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Randomly perturbed IFS

The randomly perturbed case III
We assume that our IFS is contracting on average. That
is

(30) χ(µ, χ) < 0 .

The natural projection Π : Σ× RN → R is:

Π(i, y) := di1 + · · ·+ din+1λi1...iny1...n + · · ·

where y1...n := y1 · · · yn and λi1...in := λi1 · · ·λin.

Πy(i) := Π(i, y) and νy := (Πy)∗ µ.
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Randomly perturbed IFS

The randomly perturbed case IV
Theorem 7.3 (Peres, S., Solomyak)

If one of the following two conditions is satisfied:
(a) di 6= dj for all i 6= j
(b) di = 1 and λi 6= λj for all i 6= j

then for η∞ a.a. y we have
1

hµ
|χ(µ, η)| > 1 =⇒ νy � Leb,

2

hµ
|χ(µ, η)| ≤ 1 =⇒ dimH(νy) = hµ

|χ(µ, η)| .
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Hochman’s fantastic result

Consider the self similar IFS on R

(31) F := {ϕi(x) = ri · x + ai} ,

ri ∈ (−1, 1) \ {0}, ai ∈ R. Let Λ be the attractor of F
and s(F) be the similarity dimension of F . For a
p = (p1, . . . pm) probability vector let ν = νp the
corresponding self similar measure and let

dimS(µ) :=
m∑

i=1
pi log pi

m∑
i=1

pi log |ri |
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Hochman’s fantastic result

For an i, j ∈ {1, . . . ,m}n we introduce the distance

(32) d(i, j) :=
 ∞, if ri 6= rj;
|ϕi(0)− ϕj(0)| , if ri = rj.

∆n := min {d(i, j) : |i| = |j| = n, i 6= j}

Exact overlap −→ ∆n = 0
∆n → 0 exponentially. Namely: # {|i| = n} = mn.
On the other hand: # {ri : |i| = n} is polynomially
many. So, there exists distinct i, j of length n with
ri = rj with exponentially small |ϕi(0)− ϕj(0)|. In
case the OSC holds, we have ∆n → 0 exponentially.
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Hochman’s fantastic result

Main Theorem of Hochman

For any probability vector p
(33)

dimH(µ) < min {1, dimS(µ)} ⇒ limn→∞−
1
n log ∆n =∞

That is ∆n tends to 0 super-exponentially.
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Hochman’s fantastic result

IFS with algebraic parameters

Theorem 8.1 (Hochman)
For an IFS with algebraic parameters we have

Either there are exact overlaps, or
dimH Λ = min {1, dimS Λ}

Proof
In the proof we assume that fi(x) = rx + ai ,
i = 1, . . . ,m with ri ∈ (0, 1). Then

fi = r nx + fi(0).
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Hochman’s fantastic result

Proof (Cont.)
Let

r = p
q and ai = pi

qi
.

Let
Q :=

m∏
i=1

qi

Then for every i ∈ {1, . . . ,m}n exists N(i) ∈ N s.t.

fi(0) =
n∑

k=1
aik r n−k = N(i)

Q · qn ∈ Q.

Károly Simon (TU Budapest) File A October 6, 2015 91 / 125



Hochman’s fantastic result

Proof (Cont.)
Suppose that for ∀n, we have ∆n > 0. Then chose
i, j ∈ {1, . . . ,m}n s.t.

∆n = fi(0)− fj(0) = N(i)− N(j)
Q · qn > 0.

Then
∆n ≥

1
Q · qn .

So, ∆n → 0 exponentially fast, so there is no dimension
drop.

Károly Simon (TU Budapest) File A October 6, 2015 92 / 125



Hochman’s fantastic result

Right angle Sierpinski triangle with
contraction 1/3

Figure: Figure is stolen from a talk of Hocham
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Hochman’s fantastic result

F :=
{
∞∑

n=1
(in, jn) · 3−n : (in, jn) ∈ {(0, 0), (1, 0), (0, 1)}

}

The orthogonal projection to a line with slope −1/t is up
to a linear coordinate change is

pt(x , y) = tx + y

Under this projection the projected IFS on the line is

Ft :=
{

f1(x) = 1
3x , f2(x) = 1

3(x + 1), f3(x) = 1
3(x + t).

}
Let Λt be the attractor of Ft .
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Hochman’s fantastic result

Clearly the similarity dimension s(Ft) = 1. By a
Theorem of Marstrand dimH(Λt) = 1 holds for Lebesgue
almost all t. Kenyon proved that the same holds for a Gδ

and dense subset of t and also described the set of
rational t for which dimH(Λt) = 1 .
It has been an open conjecture of Frurstenberg sinse
1970s if

t irrational ⇒ dimH(Λt) = 1?
Using his theorem above Hochman proved this
conjecture.
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Hochman’s fantastic result

Hochman I
Let I ⊂ R be a compact parameter interval and m ≥ 2.
For every parameter t ∈ I given a self-similar IFS on the
line:

Φt := {ϕi ,t(x) = ri(t) · (x − ai(t))}m
i=1 ,

where

ri : I → (−1, 1) \ {0} and ai : I → R

are real analytic functions. Let Πt be the natural
projection from Σ := {1, . . . ,m}N to the attractor Λt of
Φt .
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Hochman’s fantastic result

Hochman II

For every probability vector p := (p1, . . . , pm) the
associated self-similar measure is

νp,t := (Πt)∗(pN).

Its similarity dimension is defined by

dimS(νp,t) :=

m∑
i=1

pi log pi
m∑

i=1
pi log ri(t)
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Hochman’s fantastic result

Hochman III

The similarity dimension of Λt is the solution s(t) of

r s(t)
1 (t) + · · ·+ r s(t)

m (t) = 1.

We say that a parameter t ∈ I is exceptional if either
dimH Λt < min {1, s(t)} or there exists a probability
vector p := (p1, . . . , pm) such that
dimH(νp,t) < min {1, dimS(νp,t)}
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Hochman’s fantastic result

Hochman IV

Theorem 8.2 (Hochman)

Assume that

if Πt(i) = Πt(j) holds for all t ∈ I then i = j.

Then both the Hausdorff and the packing dimension of
the set of exceptional parameters are equal to 0.
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Hochman’s fantastic result

Built on Hochman’s theorem Pablo Shmerkin has proved
very recently a theorem which implies that
Theorem 8.3 (Shmerkin)
The set of exceptional parameters in Solomyak’s theorem
is has Hausdorff dimension zero.
I will give the sketch of the proof below.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Notation
Let P be the set of probability measures on R. We write

Pm :=
(p1, . . . , pm) : pi > 0,

m∑
i=1

pi = 1
 .

Given a self-similar IFS F = {f1, . . . , fm} on R. The
contraction ratios are r1, . . . , rm. We write Λ = Λ(F ) for
the attractor. We know that

∀p ∈ Pm, ∃!µ = µ(F ,p) s.t. µ =
m∑

i=1
pi · (fi)∗µ,

where (fi)∗µ(B) := µ(f −1
i (B)).
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Notation (Cont.)
We have defined the similarity dimension s(F) of F as
the solution of

m∑
i=1

r s
i = 1. The similarity dimension of

the measure µ = µ(F ,p) is defined by

s(F ,p) :=

m∑
i=1

pi log pi
m∑

i=1
pi log ri

.

The lower Hausdorff dimension of the measure µ

(34) dimH µ := dimHµ = inf {dimH(B) : µ(B) > 0}

= essinfx∼µ lim inf
r↓0

log µ(B(x , r))
log r .
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Notation (Cont.)

Clearly,

dimH Λ(F) ≤ s(F) and dimH µ(F ,p) ≤ s(F ,p).

with equality under SSC. The lower correlation dimension
of µ is

dim2 µ := lim inf
r↓0

log ∫ µ(B(x , r))dµ(x)
log r

It was proved by Yorke that
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Notation (Cont.)

(35) dim2 µ = sup {s > 0 : Is(µ) <∞} ,

where we remind that the s-energy Is(µ) was defined as

(36) Is(µ) :=
∫∫
|x − y |−sdµ(x)dµ(y)

We can express Is(µ) with the Fourier transform

(37) µ̂(ξ) :=
∫

eiξx dµ(x)

of the measure µ as follows:
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Notation (Cont.)

(38) Is(µ) = C(s) ·
∫
|ξ|s−1|µ̂(ξ)|2dξ.

(39)
If s < dim2 µ,

s
2 < β then |µ̂(ξ)| < |ξ|−β, at ”average”.

The following Shmerkin Theorem is an improvement of
Solomyak’s Theorem and it is a very nice application of
Hochman’s Theorem.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Theorem 8.4 (Shmerkin 2013)

Let a1, . . . , am be distinct numbers and for a λ ∈ (0, 1)
let

Fλ := {λx + a1, . . . , λx + am} .
then there exists an exceptional set E s.t.

dimH(E ) = 0 and
for every λ ∈ (0, 1) \ E and for every p ∈ Pm:

s(Fλ,p) > 0 =⇒ µ(Fλ,p)� Leb.

Note that the exceptional set of λ is the same for all
probability vector p.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Definition 8.5 (Power decay of the Fourier transform)
Let

(40) D :=
{
ν : |ν̂(ξ)| ≤ C · |ξ|−s for some C , s > 0

}
.

If ν ∈ D then we say that the Fourier transform of µ has
a power decay at infinity.

Lemma 8.6

Let ν ∈ D and µ ∈ P .
(a) If dim2 µ = 1 then ν ∗ µ� Leb with

L2-density.
(b) If dimH µ = 1 then ν ∗ µ� Leb.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof.
Proof of the Lemma Part (a) By assumption there is an
s > 0 such that

(41) ν̂(ξ) = O
(
|ξ|−s) .

Using that dim2 µ = 1 we get by (38)

(42) 1 = sup {t ≥ 0 : It(µ) <∞}
= sup

{
t ≥ 0 :

∫
|ξ|t−1 · |µ̂|2dξ <∞

}
.

Let s be as in (41). Chose 1− s
2 < t < 1. That is

− s
2 < t − 1. Using this and (42) we get
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof of the Lemma Part (a) (Cont.)∫
|ξ|−s/2 · |µ̂(ξ)|2 dξ <∞.

We apply this and (41) to get that ∃K > s.t.

(43)∫
|ξ|s/2·|ν̂ ∗ µ(ξ)|2dξ =

∫
|ξ|s · |ν̂(ξ)|2︸ ︷︷ ︸
≤K by (41)

·|µ̂(ξ)|2·|ξ|−s/2dx

≤ K ·
∫
|µ̂(ξ)|2 · |ξ|−s/2dξ <∞.

That is ν̂ ∗ µ ∈ L2(R) that is ν ∗ µ� Leb with L2

density. This completes the proof of part (a).
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof of the Lemma Part (b)
We use Egorov Theorem for the second line of (34).
This yields that ∀ε > 0, ∃ a constant Cε > 0 and set Aε

with µ(Aε) > 1− ε s.t. for

µε := µ|Aε
µ(Aε)

we have

µε(B(x , r)) ≤ Cε · r 1−s/4, ∀x ∈ Aε.

In this way dim2 ≥ 1− s
4 . (s is from (41)). Then the

same argument as above shows that ν ∗ µε � Leb.
Letting ε ↓ 0 finishes the proof of part (b).
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

It was known known already by Erdős and Kahane that
the Bernoulli convolutions are in D apart from a
zero-dimensional set of parameters. Now we prove a
little bit more than that. First we start with a
proposition which is proved in [6, Proposition 6.1]
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proposition 8.7

Let

(44) G` :=
{
θ > 1 : lim inf

N→∞
1
N min

t∈[1,θ]

∣∣∣∣{n ∈ {0, . . . ,N − 1} : ‖tθn‖ ≥ 1
`

}∣∣∣∣ > 1
`

}
,

where ‖x‖ is the distance of x from the closest integer.
Then for any 1 < Θ1 < Θ2 <∞ there is a
C = C(Θ1,Θ2) > 0 s.t.

(45) dimH([Θ1,Θ2] \ G`) ≤
C log(C`)

`
.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

The following result is due to T. Watenabe:
Proposition 8.8

∃E ⊂ (0, 1), with dimH E = 0 s.t.

∀λ ∈ (0, 1) \ E , ∀p ∈ Pm, ∀ distinct a1, . . . , am ∈ R

if F := (λx + a1, . . . , λx + am) then µ(F ,p) ∈ D .

Proof of the Proposition 8.8 .
Let G` be as in formula (44). We write

E :=
{
λ : λ−1 ∈

(
(1,∞) \ ⋃

`∈N
G`

)}
.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof of the Proposition 8.8 (Cont.)
Then by Proposition 8.7 we have dimH E = 0. Fix an
λ ∈ (0, 1) \ E and we also fix distinct a1, . . . , am ∈ R and
a p ∈ Pm. WLOG we may assume that a1 = 0 and
a2 = 1. Let F := (λx + a1, . . . , λx + am) and
µ = µ(F ,p).
It is easy to see that

µ̂(ξ) =
∞∏

n=0
Φ (λnξ) ,

where
Φ(ζ) =

m∑
i=1

pj · exp (iπajζ) .
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof of the Proposition 8.8 (Cont.)
By assumption ∃` s.t.
(46)
lim inf
N→∞

1
N min

t∈[1,λ−1]

∣∣∣∣∣
{

n ∈ {0, . . . ,N − 1} :
∥∥∥∥∥ t
λn

∥∥∥∥∥ ≥ 1
`

}∣∣∣∣∣ > 1
`
.

Using the definition of Φ and the normalization
(a1 = 0, a2 = 1) we obtain that there is δ > 0 s.t.

‖ζ‖ > 1
`

=⇒ |Φ(ζ)| ≤ 1− δ.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Proof of the Proposition 8.8 (Cont.)
For ξ = t

λN and N large enough, for s := log(1−δ)
` log λ > 0 we

have

|µ̂(ξ)| ≤
N−1∏
i=1

∣∣∣∣∣Φ
( t
λn

)∣∣∣∣∣ ≤ (1− δ)N/` = O(|ξ|−s). �
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Now we are ready to prove Theorem 8.4. Recall that by
Hochman Theorem:

(47) dimH µ(Fλ,p) = min {1, s(Fλ,p)}

The attractor of Fλ is

(48) Λλ =

∞∑

i=0
aiλ

i , ai ∈ {1, . . . ,m}
 .

We can think of this for a moment as a formal collection
of countably many infinite sums. Assume that we cancel
every k-th term of all of these sums.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Then we get a collection of infinite sums which
corresponds in the same way to anther IFS. Namely it
corresponds to

(49) F (k)
λ :=

λkx +
k−2∑
j=0

aij+1λ
j


(i1,...,ik−1)∈{1,...,m}k−1
.

The corresponding probability vector is

(50) p(k) = (pi1 · · · pik−1)(i1,...,ik−1)∈{1,...,m}k−1.

The weighted IFS
(
F (k),p(k)

)
is called ”skipping every

k-th digit IFS”.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Properties of
(
F (k),p(k))

(a) s
(
F (k),p(k)

)
=
(
1− 1

k
)

s(F ,p).

(b) The family
{
F (k)
λ

}
satisfies the

non-degeneracy condition of Hochman’s
theorem. This is so because for i, j ∈ Σ, i 6= j
we have:

Π(k)(i)− Π(k)(j)
is a non-trivial power series with bounded
coefficients.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Properties of
(
F (k),p(k)) (Cont.)

(c)

µ(Fλ,p) = µ(Fλk ,p) ∗ µ
(
F (k)
λ ,p(k)

)
.

This follows from the fact that the power
series which appear in (48) consist of
summands corresponding to i which are
divisible with k and i which are not divisible
with k . The sum can be considered as the
sum of independent andom variables and
therefore the distribution of the sum is the
convolution of tghe distributions.
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Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

It follows from (a) and (b) above and from Hochman
Theorem that ∃Ek with dimH Ek = 0, s.t. if
λ ∈ (0, 1) \ Ek and s(Fλ,p) > k

k−1
(so by (a), s

(
F (k),p(k)

)
> 1) then

(51) dimH µ
(
F (k)
λ ,p(k)

)
= 1.

Let Ẽ be the exceptional set in Proposition 8.8. Put

E ′k :=
{
λ : λk ∈ Ẽ

}
.

Clearly, dimH E ′k = 0.
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From (c) above and Lema 8.6 we obtain that

λ ∈ ((0, 1) \ (E ′k ∪ Ek)) & s(Fλ,p) > 1 + 1
k

=⇒ µ(Fλ,p)� Leb .

This yields the assertion of Shmerkin theorem, where the
exceptional set is

E :=
∞⋃

k=1
(Ek ∪ E ′k) .

Károly Simon (TU Budapest) File A October 6, 2015 122 / 125



Hochman’s fantastic result Sketch of of the proof of Shmerkin’s Theorem

Shmerkin-Solomyak Theorem (2014)
Let u 7→ (Λu, au) be real-analitic from
R` ⊃ U → (0, 1)× Rm. such that the following
non-degeneracy condition holds:

∀i 6= j, i, j ∈ Σ ∃u, s.t. Πu(i) 6= Πu(j),
where Πu is the natural proj. that corresponds to
Fu := (λux + au,i)i=1,...,m. Assume that p = (p1, . . . , pm)
is a probability measure such that the similarity
dimension is grater than 1. Then for all but a set
Hausdorff dimension zero parameters the self-similar
meausre associated to (Fu,p) is absolute continuous
w.r.t. the Lebesgue measure with Lq , q = q(u,p) > 1
density.
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