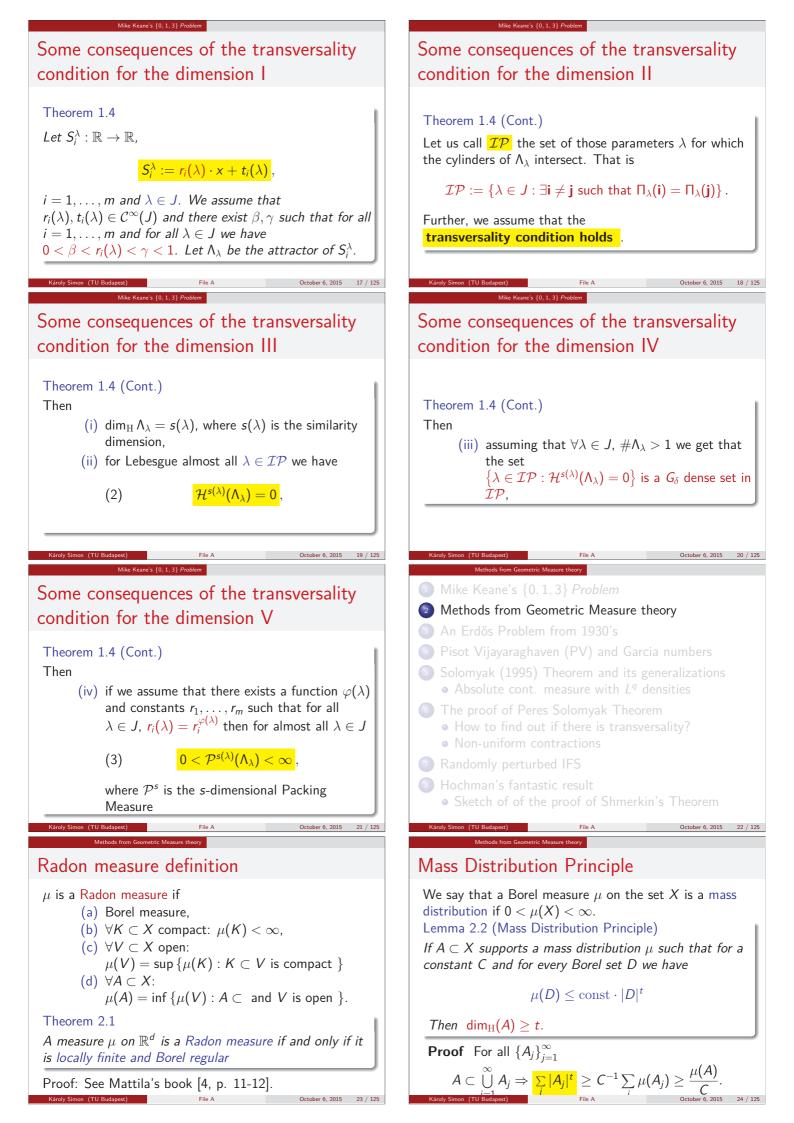


October 6, 2015 16 / 125



Frostman's Energy method

Let μ be a mass distribution on $\mathbb{R}^d.$ The t-energy of μ is defined by

$$\mathcal{E}_t(\mu) := \iint |x-y|^{-t} d\mu(x) d\mu(y)$$

Lemma 2.3 (Frostman (1935)) For a Borel set $\Lambda \subset \mathbb{R}^d$ and for a mass distribution μ supported by Λ we have

 $\mathcal{E}_t(\mu) < \infty \Longrightarrow \dim_{\mathrm{H}}(\Lambda) \geq t.$

October 6, 2015

In this case $\mathcal{H}^t(\Lambda) = \infty$.

Károly Simon (TU Budapest)

Proof of Frostman Lemma II

Let

$$\nu := \mu|_{\Lambda_M}$$

Then ν is a mass distribution supported by Λ . (That is ν satisfies one of the assumptions of the Mass Distribution Principle above.) Now we show that for every bounded set *D*:

(4) $\nu(D) < \operatorname{const} \cdot |D|^t$.

If $D \cap \Lambda_M = \emptyset$ then (4) holds obviously. From now we assume that D is a bounded set such that $D \cup \Lambda_m \neq \emptyset$.

Proof of Frostman Lemma IV

Observe that from the right hand side of (5): $y \in D$ we have $|x - y|^{-t} \ge |D|^{-t} \ge 2^{-t} \cdot 2^{mt}$. So,

$$M \geq \int rac{d
u(y)}{|x-y|^t} \geq \int_D rac{d
u(y)}{|x-y|^t} \geq
u(D) \cdot 2^{-t} \cdot 2^{m \cdot t}.$$

Using this and the left hand side of (5) we obtain

 $\nu(D) \leq M \cdot 2^t \cdot 2^t \cdot 2^{-(m+1)t} \leq M \cdot 2^{2t} \cdot |D|^t.$

So, the mass distribution ν satisfies the assumptions of the Mass Distribution Principle which completes the proof of the Lemma.

Radon measures V

Theorem 2.5

Let μ, η be Radon measures on \mathbb{R}^d .

- (i) The derivative D(μ, η, x) exists and is finite for η almost all x ∈ ℝ^d. [3, Theorem 2.12]
- (ii) For all Borel sets $B \subset \mathbb{R}^d$ we have

(6)
$$\int_{B} D(\mu,\eta,x) d\eta(x) \leq \mu(B)$$

with equality if $\mu \ll \eta$. [3, Theorem 2.12]

October 6, 2015 31 / 125

Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

$$\Phi_t(\mu, x) := \int \frac{d\mu(y)}{|x-y|^t}.$$

Then $\mathcal{E}_t(\mu) = \int \Phi_t(\mu, x) d\mu(x)$. Let

$$\Lambda_M := \{ x \in \Lambda : \Phi_t(\mu, x) \le M \} .$$

October 6, 2015 26 / 125

Since $\int \Phi_t(\mu, x) d\mu(x) = \mathcal{E}_t(\mu) < \infty$ we have M such that $\mu(\Lambda_M) > 0$. Fix such an M.

Proof of Frostman Lemma III

Pick an arbitrary $x \in D \cap \Lambda_M$. We define

$$m := \max\left\{k \in \mathbb{Z} : B(x, 2^{-k}) \supset D\right\}.$$

Then

 $\geq 2^{-(m+1)}$ and $|D| < 2 \cdot 2^{-m}$.

Radon measures IV

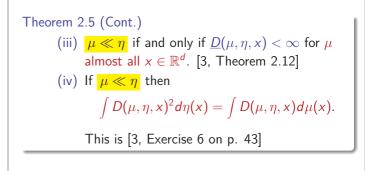
Definition 2.4

Let μ, η be Radon measures on \mathbb{R}^d . We define the upper and lower derivatives of μ with respect to η :

$$\overline{\underline{D}}(\mu,\eta,x) := \overline{\underline{\lim}}_{r \to 0} \frac{\mu(B(x,r))}{\eta(B(x,r))}$$

If the limit exists then we write $D(\mu, \eta, x)$ for this common value and we call it the derivative of the measure μ with respect to the measure η .

Radon measures VI



October 6, 2015 32 / 125

Radon measures VII

Theorem 2.5 (Cont.) (v) Assume that $\mu \ll \eta$. Then $\underline{D}(\mu, \eta, x)$ is a version of the Radon-Nikodym derivative $\frac{d\mu(x)}{d\eta(x)}$. So, we know that $\int \underline{D}(\mu, \eta, x) d\eta(x) < \infty$. Further, by (iv) above, we have: (7) $\int_{\mathbb{R}} \underline{D}(\mu, \eta, x) d\mu(x) < \infty \Longrightarrow \frac{d\mu(x)}{d\eta(x)} \in L^2(\mathbb{R}).$ This argument appears in [7, p.233].

Infinite Bernoulli convolution I

For a $\lambda \in (0,1)$ we define the random variable

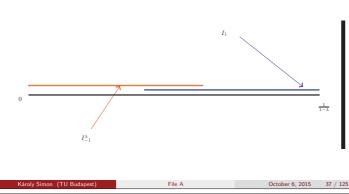
$$Y_{\lambda} := \sum_{n=0}^{\infty} \pm \lambda^n$$

 ν_{λ} be the distribution of Y_{λ} . On the other hand ν_{λ} is the self similar measure of the IFS. That is for $\lambda \in (0, 1)$, $x \in [0, 1/(1 - \lambda)]$

$$S_1^\lambda(x) := \lambda x + 1, S_{-1}^\lambda(x) := \lambda x - 1,$$

with weights 1/2, 1/2 $(\nu_{\lambda}(A) = \frac{1}{2}\nu_{\lambda}((S_{1}^{\lambda})^{-1}(A)) + \frac{1}{2}\nu_{\lambda}((S_{-1}^{\lambda})^{-1}(A))).$

Infinite Bernoulli convolution III Cylinders for $\lambda \in (0.5, 1)$



Solomyak's Theorem (1995)

After 60 years after that in 1930's P. Erdős started to investigate the infinite Bernoulli convolutions Boris Solomyak made the following major achievement:

Theorem 3.2 (Solomyak (1995))

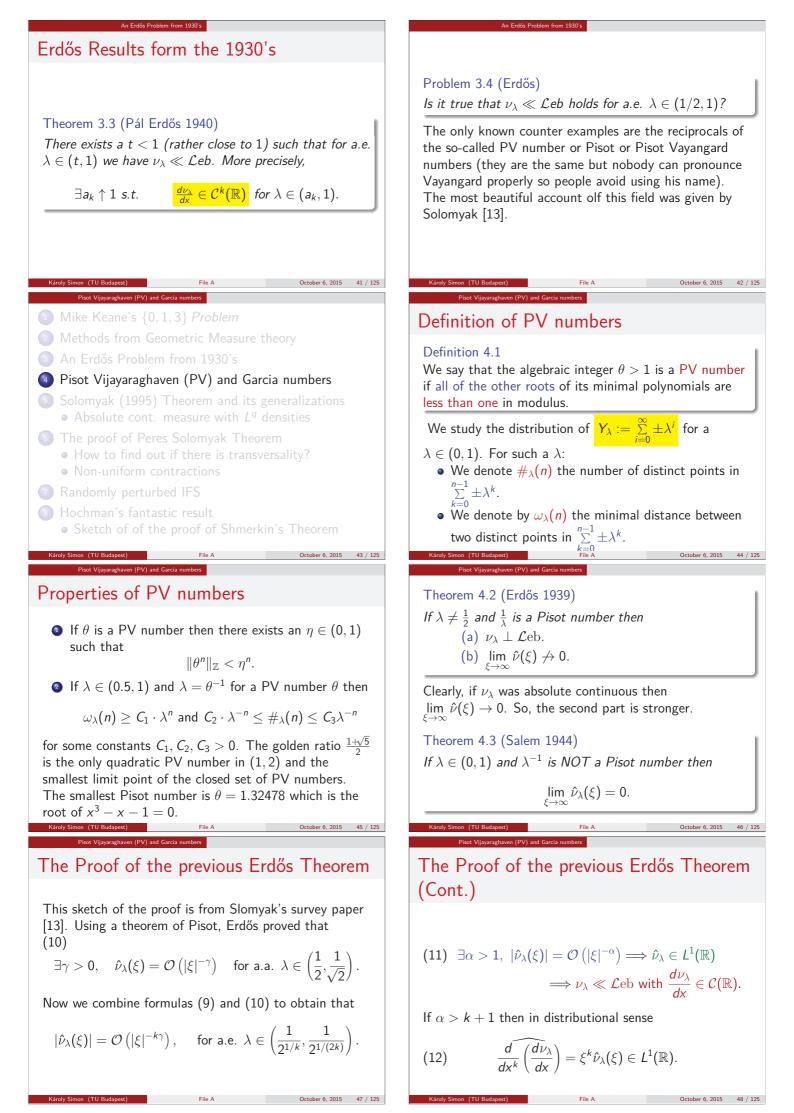
- $\nu_{\lambda} \ll \mathcal{L}eb$ with a density in $L^{2}(\mathbb{R})$ for a.e. $\lambda \in (1/2, 1)$.
- *ν_λ* ≪ *Leb* with a density in C(ℝ) for a.e. λ ∈ (2^{-1/2}, 1).

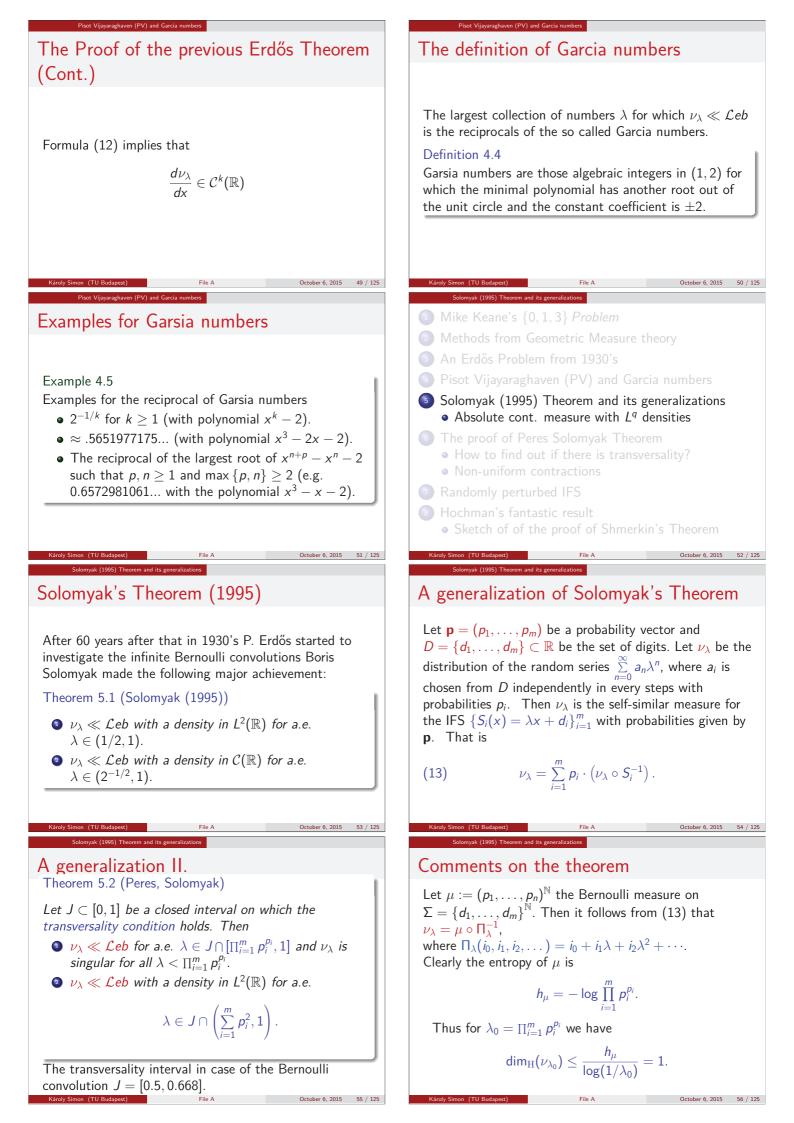
October 6, 2015 39 / 125

An Erdős Problen		
-		
 Mike Keane's {0,1 Mathematical frame Control 		
	metric Measure theory	
An Erdős Problem		
-	en (PV) and Garcia numbers	
	Theorem and its generalizations	
	measure with L ^q densities	
6 The proof of Peres		
	if there is transversality?	
Non-uniform cor		
Randomly perturbe		
Hochman's fantast		
Sketch of of the	proof of Shmerkin's Theorem	
Károly Simon (TU Budapest)	File A October 6, 2015	34 / 12
An Erdős Problen		
Infinite Bernoulli	convolution II	
	$(\square) ((1/2, 1/2)^{\mathbb{N}})$	
	$(\Pi_{\lambda})_{*}(\{1/2,1/2\}^{\mathbb{N}}),$	
$\Pi_{\lambda}(i_0,i_1,i_2,.$	$\dots) = i_0 + i_1\lambda + i_2\lambda^2 + \cdots$	
Let $I_{\lambda} := \left[0, \frac{1}{1-\lambda}\right]$. Yet	t again we write	
$I_{i_0}^{\lambda}$	$i_k := S_{i_0i_k}(I^{\lambda}).$	
Then		
	$(i, j) = \bigcap_{i=1}^{\infty} I^{\lambda}$	
$\Pi_{\lambda}(I_0)$	$(i_1,\ldots)=igcap_{k=0}^\infty I_{i_0\ldots i_k}^\lambda.$	
Károly Simon (TU Budapest)	File A October 6, 2015	36 / 12
An Erdös Problen	n from 1930's	36 / 12
	n from 1930's	36 / 12
An Erdös Problen	n from 1930's	36 / 12
An Erdös Problen	n from 1930's	36 / 12
An Erdes Problem	n from 1930's	36 / 12
An Erdes Problem Law of pure type Theorem 3.1 (Jensen,	n from 1990's e Wintner 1935)	36 / 12
An Erdes Problem	n from 1990's e Wintner 1935)	36 / 12
Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}\mathrm{eb}$ or ν	n from 1990's e Wintner 1935)	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	e Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} \mathrm{eb}$ y and York that for every λ we	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L} eb$ or ν It was proved by Parry	h from 1990's E Wintner 1935) $v_\lambda \perp {\cal L} { m eb}$	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	e Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} \mathrm{eb}$ y and York that for every λ we	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	e Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} \mathrm{eb}$ y and York that for every λ we	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	e Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} \mathrm{eb}$ y and York that for every λ we	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	e Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} \mathrm{eb}$ y and York that for every λ we	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, Either $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry	The from 1930's \mathbf{e} Wintner 1935) $\gamma_{\lambda} \perp \mathcal{L} eb$ by and York that for every λ we have $\gamma_{\lambda} \sim \mathcal{L} eb$ or $\nu_{\lambda} \perp \mathcal{L} eb$. File A October 6, 2015	
An Erds Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ Karoly Simon (TU Budapes)	The from 1930's the form 1935 the form 1930's the form 1930's the form $\nu_{\lambda} \perp \mathcal{L}eb$ is the form $\nu_{\lambda} \perp \mathcal{L}eb$.	
An Erds Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ Karoly Simon (TU Budapes)	The from 1930's the form 1935 the form 1930's the form 1930's the form $\nu_{\lambda} \perp \mathcal{L}eb$ is the form $\nu_{\lambda} \perp \mathcal{L}eb$.	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either ν_{λ} (8) Either ν_{λ} Karoly Simon (TU Budapest) An Erdös Problem $\widehat{\nu}_{\lambda}(\mathbf{x}) := \int_{\mathbb{R}} e^{i \mathbf{x}}$	The form 1930's form 1930's form 1930's form 1930's $\nu_{\lambda} \perp \mathcal{L}eb$ by and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$.	
An Erds Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ Karoly Simon (TU Budapes)	The form 1930's form 1930's form 1930's form 1930's $\nu_{\lambda} \perp \mathcal{L}eb$ by and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$.	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ_{λ} (8) Either μ_{λ} Karoly Simon (TU Budapest) Ma Erdős Problem $\hat{\nu}_{\lambda}(\mathbf{x}) := \int_{\mathbb{R}} e$ Hence for every $k \geq 2$	$\begin{array}{l} \begin{array}{l} \text{from 1930's} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \end{array} \end{array}$	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ_{λ} (8) Either μ_{λ} Karoly Simon (TU Budapest) Ma Erdős Problem $\hat{\nu}_{\lambda}(\mathbf{x}) := \int_{\mathbb{R}} e$ Hence for every $k \geq 2$	The form 1930's form 1930's form 1930's form 1930's $\nu_{\lambda} \perp \mathcal{L}eb$ by and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$.	
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ Marked Sproblem $\widehat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{2x}$ Hence for every $k \ge 2$ (9) $\widehat{\nu}_{\lambda}(x)$	from 1930: $(P) = (P) = (P)$	have
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ (8) Either μ (9) $\hat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{i\theta}$ Hence for every $k \ge 2$ (9) $\hat{\nu}_{\lambda}(x)$	Prior 1930's Wintner 1935) $\nu_{\lambda} \perp \mathcal{L}eb$ y and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Fie A October 6, 2015 it $d\nu_{\lambda}(t) = \prod_{n=0}^{\infty} \cos(\lambda^{n}x)$. 2 we have $x) = \prod_{i=0}^{k-1} \hat{\nu}_{\lambda^{k}}(\lambda^{i}x)$. absolute continuity on $\lambda \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$	have
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ (8) Either μ (9) $\hat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{-\frac{1}{2}}$ Using this if we have then we have absolute	Price 1930: Wintner 1935) $\nu_{\lambda} \perp \mathcal{L}eb$ y and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Frice $\lambda \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Frice $\lambda \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. $\mu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. A constrained on $\lambda \sim 10^{11}$ $\mu_{n=0}^{itx} \cos(\lambda^n x)$. We have $\lambda = \prod_{i=0}^{k-1} \hat{\nu}_{\lambda^k}(\lambda^i x)$. absolute continuity on $\lambda \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$	have
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ (8) Either μ (9) $\hat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{-\frac{1}{2}}$ Using this if we have then we have absolute	Prior 1930's Wintner 1935) $\nu_{\lambda} \perp \mathcal{L}eb$ y and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Fie A October 6, 2015 it $d\nu_{\lambda}(t) = \prod_{n=0}^{\infty} \cos(\lambda^{n}x)$. 2 we have $x) = \prod_{i=0}^{k-1} \hat{\nu}_{\lambda^{k}}(\lambda^{i}x)$. absolute continuity on $\lambda \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$	have
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ (8) Either μ (9) $\hat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{i\theta}$ Hence for every $k \ge 2$ (9) $\hat{\nu}_{\lambda}(x)$	Prime 1930: Wintner 1935) $\nu_{\lambda} \perp \mathcal{L}eb$ y and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. File λ October 6, 2015 from 1930's $i^{tx} d\nu_{\lambda}(t) = \prod_{n=0}^{\infty} \cos(\lambda^{n}x)$. 2 we have $x) = \prod_{i=0}^{k-1} \hat{\nu}_{\lambda^{k}}(\lambda^{i}x)$. absolute continuity on $\lambda \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$ is continuity for the whole Solomyak theorem implies that	1/2]
An Erdos Problem Law of pure type Theorem 3.1 (Jensen, <i>Either</i> $\nu_{\lambda} \ll \mathcal{L}eb$ or ν It was proved by Parry (8) Either μ (8) Either μ (8) Either μ (8) Either μ (9) $\hat{\nu}_{\lambda}(x) := \int_{\mathbb{R}} e^{i\theta}$ Hence for every $k \ge 2$ (9) $\hat{\nu}_{\lambda}(x)$	Price 1930: Wintner 1935) $\nu_{\lambda} \perp \mathcal{L}eb$ y and York that for every λ we have $\nu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Frice $\lambda \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. Frice $\lambda \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. $\mu_{\lambda} \sim \mathcal{L}eb$ or $\nu_{\lambda} \perp \mathcal{L}eb$. A constrained on $\lambda \sim 10^{11}$ $\mu_{n=0}^{itx} \cos(\lambda^n x)$. We have $\lambda = \prod_{i=0}^{k-1} \hat{\nu}_{\lambda^k}(\lambda^i x)$. absolute continuity on $\lambda \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$	1/2]

In particular, for $\lambda \in (2^{-1/2}, 1)$, ν_{λ} has bounded density.

October 6, 2015 40 / 125





Further comments to Theorem 5.2

Consider the special case in Theorem 5.2 when the IFS is

$$\{S_{-1}(x)=\lambda x-1,S_1(x)=\lambda x+1\}$$

and the probabilities (p, 1 - p). The invariant measure is ν_{λ}^{p} . We know that ν_{λ}^{p} is the distribution of

$$\sum_{i=0}^{\infty} \pm \lambda^n,$$

where the - and + signs are chosen with probability p and 1 - p respectively.

October 6, 2015 57 / 125

Further comments to Theorem 5.2 (Cont.)

Observe that

$$\sum \pm \left(\sqrt{\lambda}\right)^n = \sum \pm (\lambda)^n + \sqrt{\lambda} \sum \pm (\lambda)^n$$

Since the random signs are independent we obtain:

(15)
$$\hat{\nu}^{p}_{\sqrt{\lambda}}(u) = \hat{\nu}^{p}_{\lambda}(u) \cdot \hat{\nu}^{p}_{\lambda}(\sqrt{\lambda} \cdot u).$$

So, if ν_{λ}^{p} has L^{2} density then by Plancherel Theorem, $(\hat{\nu})_{\lambda}^{p} \in L^{2}(\mathbb{R})$. Then by (15)

Let μ be an ergodic measure on the symbolic space $\Sigma := \{1, \ldots, m\}^{\mathbb{N}}.$

Definition 5.3 (L^q -dimension of μ)

Let q > 1. We define the L^q -dimension of m by

$$D_q(\mu) := \frac{1}{q-1} \liminf_{n \to \infty} \frac{-\log \sum_{\mathbf{i} \in \{1, \dots, m\}^n} \mu([\mathbf{i}])}{n \log m}$$

If $\mu = \{p_1, \ldots, p_m\}^{\mathbb{N}}$ then

$$m^{-D_q(\mu)} = \left[p_1^q + \cdots + p_m^q\right]^{1/(q-1)}.$$

Theorem (Cont)

Suppose that $J \subset (0,1)$ is an interval such that the transversality condition holds. Then (a) ν_{λ} is absolute continuous if $\lambda > \prod_{i=1}^{m} p_{i}^{p_{i}}$ and singular if $\lambda < \prod_{i=1}^{m} p_{i}^{p_{i}}$. (b) Let $q \in (1,2]$. then for a.e. $\lambda > [p_{1}^{q} + \cdots + p_{m}^{q}]^{1/(q-1)}$ such that $\lambda \in J$ the measure $\nu_{\lambda} \ll \mathcal{L}eb$ with \mathcal{L}^{q} density (c) For any q > 1 and all $\lambda \in (0,1)$, if $\nu_{\lambda} \ll \mathcal{L}eb$ with \mathcal{L}^{q} density then $\lambda > [p_{1}^{q} + \cdots + p_{m}^{q}]^{1/(q-1)}$.

Further comments to Theorem 5.2 (Cont.)

Theorem 5.2 gives L^2 density only for λ from

$$J_p := (p^2 + (1 - p)^2, 1)$$

in the following way: Let

$$J_k := \left((p^2 + (1-p)^2)^{(k-1)/2}, (p^2 + (1-p)^2)^{k/2}
ight)$$

Assume that for a $k \ge 1$ we have

(14)
$$\hat{\nu}_{\lambda}^{p} \in L^{2}, \quad \forall \lambda \in J_{k}.$$

We prove that this holds for J_1 by transversality condition then we proceed by induction:

October 6, 2015 58 / 125

Further comments to Theorem 5.2 (Cont.)

File A

(16)
$$\hat{\nu}^{p}_{\sqrt{\lambda}} \in L^{1}(\mathbb{R}) \Longrightarrow \nu^{p}_{\sqrt{\lambda}}$$
 has continouous density.

So, $\nu_{\sqrt{\lambda}}^{p}$ has L^{2} density and we can continue the induction to show that for all k, the measure ν_{λ}^{p} has L^{2} density for $\lambda \in J_{k}$.

The following Peres-Solomyak theorem is from:[8, Theorem 1.3]

Theorem 5.4 (Peres and Solomyak)

Let

$$S_i(x) = \lambda x + d_i(\lambda), i = 1, \dots, m.$$

 $\nu_{\lambda} := \Pi_*(\mu).$

and $\Pi_{\lambda}(\mathbf{i}) := \sum_{k=0}^{\infty} d_{i_k} \lambda^k$. Given a probability vector $\mathbf{p} = (p_1, \dots, p_m)$. Let

$$\mu := \{\boldsymbol{p}_1, \ldots, \boldsymbol{p}_m\}^{\mathbb{N}}$$

and

File A Octob

Absolute cont. measure with L^q der

Example

Example 5.5

Let the digit set be $D := \{-1, 0, 1\}$ and let $\mathbf{p} := (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$, Let η_{λ} be the corresponding self similar measure. That is the measure which corresponds to these probabilities and the IFS

$$\mathcal{F}_{\lambda} = \{\lambda x - 1, \lambda x, \lambda x + 1\}.$$

October 6, 2015 64 / 125

Observe that

(17)

$$\eta_{\lambda} = \nu_{\lambda}^{1/2} * \nu_{\lambda}^{1/2},$$

where $\nu_{\lambda}^{1/2}$ was introduced on the slide # 5.4.

Using that
$$\prod_{i=1}^{3} p_i^{p_i} = \frac{1}{2 \cdot \sqrt{2}}$$
 and for $q = 2$
 $\lambda_q^* := (2^{-q} + 2 \cdot 4^{-q})^{1/(1-q)} = \frac{3}{8}$ by Theorem 5.4 we have

- (i) For $\lambda < \frac{1}{2 \cdot \sqrt{2}}$ then $\eta_{\lambda} \perp \mathcal{L}eb$.
- (ii) For $\frac{1}{2 \cdot \sqrt{2}} < \lambda < \frac{3}{8}$ then $\eta_{\lambda} \ll \mathcal{L}eb$ but it has NOT \mathcal{L}^2 -density

October 6, 2015 65 / 125

(iii) For $\lambda > \frac{3}{8} \eta_{\lambda} \ll \mathcal{L}eb$ with L^2 density.

Equation (19) has a compactly supported solution y_{λ} in L^1 iff

(20)
$$\mathcal{F}_{\lambda} := \{\lambda x - 1, \lambda x, \lambda x + 1\}$$

with probabilities $\mathbf{p} := \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$ has an absolute continuous invariant measure. In this case the density function of ν_{λ} is y_{λ} . This is exactly the measure we considered previously. Derfel and Schilling [1] pointed out that for $\lambda > \frac{1}{2}$ the density is actually continuous.

- Mike Keane's {0,1,3} *Problem*
- 2 Methods from Geometric Measure theory
- An Erdős Problem from 1930's
- Pisot Vijayaraghaven (PV) and Garcia numbers
- Solomyak (1995) Theorem and its generalizations
 Absolute cont. measure with L^q densities
- The proof of Peres Solomyak TheoremHow to find out if there is transversality?
 - Non-uniform contractions
- Randomly perturbed IFS
- 8 Hochman's fantastic result
 - Sketch of of the proof of Shmerkin's Theorem

Proof: Peres, Solomyak's Theorem II

For $\mathbf{i}, \mathbf{j} \in \Sigma$ we define the function $\Phi_{\mathbf{i},\mathbf{j}}(r) := \mathcal{L}eb \{\lambda \in J : |\Pi_{\lambda}(\mathbf{i}) - \Pi_{\lambda}(\mathbf{j})| < r\}$. Using Fatau Lemma and exchanging the order of integration yields that

$$\mathcal{I} \leq \liminf_{r \to 0} \frac{1}{2r} \int_{\Sigma} \int_{\Sigma} \Phi_{\mathbf{i},\mathbf{j}}(r) d\mu(\mathbf{i}) d\mu(\mathbf{j}).$$

Let $J = [\lambda_0, \lambda_1]$. From Transversality condition:

(22)
$$\Phi_{\mathbf{i},\mathbf{j}}(r) \leq \operatorname{const} \cdot \lambda_0^{-|\mathbf{i} \wedge \mathbf{j}|} \cdot r$$

 $\begin{aligned} \mathcal{I} &\leq \mathrm{const} \sum_{k=0}^{\infty} \lambda_0^{-k} \left(p_1^2 + \dots + p_m^2 \right)^k < \infty \text{ holds since} \\ \sum_{k=1}^{m} p_k^2 < \lambda_0. \end{aligned}$

Application: the Schilling equation

Because of motivations from physics the functional equation called Schilling equation was intensively studied:

m and its generalizations Absolute cont. measure with L^q densitie

(18)
$$y(\lambda t) = \frac{1}{4\lambda} [y(t+1) + y(t-1) + 2y(t)],$$

where 0 < λ < 1. With simple change of variables $t \mapsto \frac{t}{\lambda}$ we get

(19)
$$y(t) = \frac{1}{4\lambda} y\left(\frac{t}{\lambda} - 1\right) + \frac{1}{2\lambda} y\left(\frac{t}{\lambda}\right) + \frac{1}{4\lambda} y\left(\frac{t}{\lambda} + 1\right)$$

October 6, 2015 66 / 125

Absolute cont. measure with L^q densities

On the exceptional parameters

Theorem 5.6 (Peres-Schlag 2000 [5])

Let $J \subset [\lambda_0, \lambda'_0](\frac{1}{2}, 1)$ be an interval where the transversality condition holds for the Bernoulli convolution. Then the dimension of the exceptional parameters:

$$\mathsf{dim}_{\mathrm{H}}\left\{\lambda\in J: \frac{d\nu_{\lambda}}{dx}\not\in L^2(\mathbb{R})\right\}\leq 2-\frac{\log 2}{\log(1/\lambda_0)}$$

Proof: Peres, Solomyak's Theorem I

We follow: Boris Solomyak, Notes on Bernoulli convolutions. http://www.math.washington.edu/ ~solomyak/PREPRINTS/mandel2.pdf We apply the previous theorem for

$$\underline{D}_{\lambda}(x) := \underline{D}(\nu_{\lambda}, \mathcal{L}eb, x) = \liminf_{r \to 0} \frac{\nu_{\lambda}(x - r, x + r)}{2r}.$$

It is enough to prove that

(21)
$$\mathcal{I} := \int_{J} \int_{\mathbb{R}} \underline{D}_{\lambda}(x) d\nu_{\lambda}(x) d\lambda < \infty.$$

The class B_{γ}

The methods below are due to Peres and Solomyak [12], [7] and [8]. Let $\gamma > 0$. Peres Solomyak introduced:

How to find out if there is

(23)
$$B_{\gamma} := \left\{ g(x) = 1 + \sum_{n=1}^{\infty} a_n x^n : |a_n| \leq \gamma, \ n \geq 1 \right\}.$$

Let J be a closed sub-interval of [0,1] and let $\gamma, \delta > 0$. We say that a B_{γ} satisfies that

$$\forall g \in B_{\gamma}: (\lambda \in J \text{ and } g(\lambda) < \delta) \Longrightarrow g'(\lambda) < -\delta.$$

That is all $\forall g \in B_{\gamma}$ whenever the graph of g meets a horizontal line below the height of δ , it crosses it with a slope at most $-\delta$. Kardy since (TU Budgest) File A October 6, 2015 72 / 125

Definition 6.1 (*-functions)

Let $\gamma > 0$. we say that h(x) is a *-function for B_{γ} if for some $k \ge 1$ and $a_k \in \mathbb{R}$ we have

The proof of Peres Solomyak Theorem How to find out if there is transversa

(25)
$$h(x) = 1 - \gamma \sum_{i=1}^{k-1} x^i + a_k x^k + \gamma \sum_{i=k+1}^{\infty} x^i.$$

Lemma 6.2

Assume that h(x) is a *-function for B_{γ} and there exists $x_0 \in (0,1)$ and $\delta \in (0,\gamma)$ such that h(x) satisfies:

(26)
$$h(x_0) > \delta \text{ and } h'(x_0) < -\delta.$$

Then the δ -transversality holds for B_{γ} on the interval $[0, x_0]$.Kardy Simon (TU Budapest)File AOctober 6, 201573 / 125

Theorem Non-uniform co

Further generalization of Solomyak Theorem II

Theorem 6.4 (S.M. Ngai, Y. Wang)

Let $\mu_{\rho_1,\rho_2,p_1,\rho_2}$ be the self-simlar measure for the IFS (we are on \mathbb{R}) $S_1(x) := \rho_1 x$ $S_2(x) := \rho_2 x + 1$, which corresponds to the probabilities p_1, p_2 . That is for $\mu := \mu_{\rho_1,\rho_2,p_1,p_2}$, $\mu(A) = p_1\mu(S_1^{-1}A) + p_2\mu(S_2^{-1}(A))$ for a Borel set $A \subset \mathbb{R}$. Then the regions of singularity and verified absolute continuity are shown or the next slide. On the figure on the left hand side we assumed that $p_1 = p_2 = \frac{1}{2}$. On the figure on the right hand side we assumed that $p_1 = \frac{1}{3}$ and $p_2 = \frac{2}{3}$.

- 1 Mike Keane's {0,1,3} Problem
- 2 Methods from Geometric Measure theory
- An Erdős Problem from 1930's
- Pisot Vijayaraghaven (PV) and Garcia numbers
- Solomyak (1995) Theorem and its generalizations
 Absolute cont. measure with L^q densities
- The proof of Peres Solomvak Theorem
 - How to find out if there is transversality?
 - Non-uniform contractions

Randomly perturbed IFS

Hochman's fantastic result
Sketch of of the proof of Shmerkin's Theorem

File A

A Sinai's problem II

Problem 7.1 (Sinai)

For which $a \in (0, 1)$ is the measure ν^a absolute continuous w.r.t. Leb?

This question was motivated by a statistical version of the famous 3n + 1 problem.

October 6, 2015 79 / 125

We write

$$\mathcal{B}_{m,\mathcal{I}} := \left\{ 1 + \sum_{i \in \mathcal{I} \setminus \{0\}} a_i x^i : |a_i| \le m - 1
ight\}.$$

The proof of Peres Solomyak Theorem How to find out if there is transversali

If $\mathcal{I} = \mathbb{N}$ then we suppress it. Let $J \subset (0, 1)$ be a closed interval and $\delta > 0$.

Definition 6.3

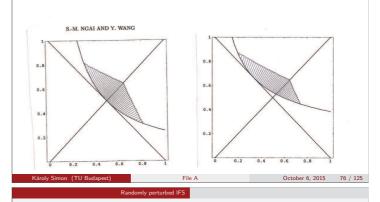
We say that the δ -transversality condition holds for $\mathcal{B}_{m,\mathcal{I}}$ on J if

$$\begin{array}{ll} (27) & \forall k \in \mathcal{I}, \ k < n, \forall g \in \mathcal{B}_{m,\sigma^{k}\mathcal{I}}, \forall \lambda \in J, \\ & g(\lambda) < \delta \Longrightarrow g'(\lambda) < -\delta. \end{array}$$

File A

Octo

Further generalization of Solomyak's Theorem III



A Sinai's problem I

Consider the random series

$$X:=1+Z_1+Z_1Z_2+\cdots+Z_1Z_2\cdots Z_n+\cdots$$

where Z_i are i.i.d. taking values in $\{1 - a, 1 + a\}$ for a fixed 0 < a < 1 with probabilities $(\frac{1}{2}, \frac{1}{2})$. The series converges almost surely since the Lyaponov exponent:

$$\chi:=\mathbb{E}\left[\log Z
ight]=rac{1}{2}\log(1-a^2)<0.$$

Let ν^a be the distribution of *X*.

Remarks

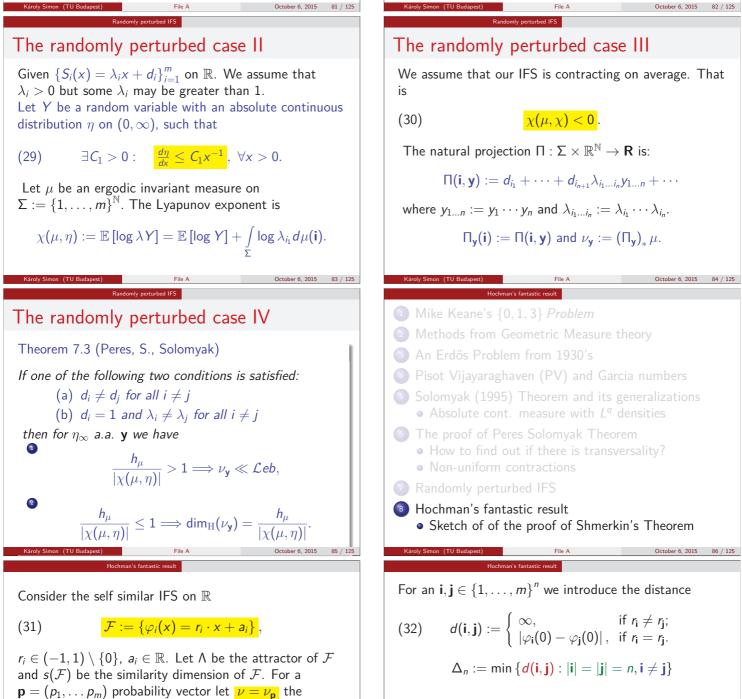
Károly Simon (TU Budapest

ν^a is the invariant measure for the IFS
{1 + (1 - a)x, 1 + (1 + a)x},
with prob. (1/2,1/2).
suppν^a = [Fix(1 + (1 - a)x), ∞),
If a > √3/2 then log 2 < -1/2 log(1 - a²). Thus for the entropy h_ν of the measure ν we obtain: h_ν < -χ.
This implies that:
dim_H ν^a < 1. Therefore ν^a ⊥ Leb.
Conjecture:
(28) ν^a ≪ Leb for a.e. 0 < a < √3/2.

We did not managed to solve this problem but we answered positively the corresponding problem in the randomly perturbed case. Namely, Let

 $Z_i := \lambda_i Y,$

where $\lambda_i \in \{1 - a, 1 + a\}$ with probability (1/2, 1/2)and the error Y has absolute continuous distribution on $(1 - \varepsilon_1, 1 + \varepsilon_2)$ for small $\varepsilon_1, \varepsilon_2 > 0$ with bounded density and we assume that $\mathbb{E}[\log Y] = 0$. The error y_i at every steps are i.i.d. with distribution Y and independent on everything else.



The randomly perturbed case I

Let $\nu_{\mathbf{y}}^{a}$ be the conditional distribution for a given sequence of errors $\mathbf{y} = (y_1, y_2, ...)$. Then

If $0 < a < \frac{\sqrt{3}}{2}$ then for a.a. **y** we have $\nu_{\mathbf{y}}^{a} \ll \mathcal{L}eb$;

a If $a \ge \frac{\sqrt{3}}{2}$ then for a.a. **y** we have dim_H $\nu_{\mathbf{y}}^{a} = \frac{2\log 2}{\log \frac{1}{1-2}}$

Theorem 7.2 (Peres, S., Solomyak)

• Exact overlap $\longrightarrow \Delta_n = 0$

• $\Delta_n \to 0$ exponentially. Namely: $\# \{ |\mathbf{i}| = n \} = m^n$. On the other hand: $\# \{ r_{\mathbf{i}} : |\mathbf{i}| = n \}$ is polynomially many. So, there exists distinct \mathbf{i}, \mathbf{j} of length n with $r_{\mathbf{i}} = r_{\mathbf{j}}$ with exponentially small $|\varphi_{\mathbf{i}}(0) - \varphi_{\mathbf{j}}(0)|$. In case the OSC holds, we have $\Delta_n \to 0$ exponentially.

October 6, 2015 88 / 125

corresponding self similar measure and let

$$\mathsf{dim}_{\mathrm{S}}(\mu) := \frac{\sum\limits_{i=1}^{m} p_i \log p_i}{\sum\limits_{i=1}^{m} p_i \log |r_i|}$$

October 6, 2015

87 / 125

Main Theorem of Hochman

For any probability vector **p** (33) $\dim_{\mathrm{H}}(\mu) < \min \{1, \dim_{\mathrm{S}}(\mu)\} \Rightarrow \lim_{n \to \infty} -\frac{1}{n} \log \Delta_{n} = \infty$

That is Δ_n tends to 0 super-exponentially.

Proof (Cont.)

Károly Simon (TU Budapest)

Let

$$r=rac{p}{q}$$
 and $a_i=rac{p_i}{q_i}$.

October 6, 2015 89 / 125

Let

$$Q := \prod_{i=1}^m q_i$$

Then for every $\mathbf{i} \in \{1, \ldots, m\}^n$ exists $N(\mathbf{i}) \in \mathbb{N}$ s.t.

$$f_{\mathbf{i}}(0) = \sum_{k=1}^{n} a_{i_k} r^{n-k} = \frac{N(\mathbf{i})}{Q \cdot q^n} \in \mathbb{Q}.$$

Right angle Sierpinski triangle with contraction 1/3

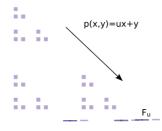


Figure: Figure is stolen from a talk of Hocham

Clearly the similarity dimension $s(\mathcal{F}_t) = 1$. By a Theorem of Marstrand $\dim_{\mathrm{H}}(\Lambda_t) = 1$ holds for Lebesgue almost all t. Kenyon proved that the same holds for a G_{δ} and dense subset of t and also described the set of rational t for which $\dim_{\mathrm{H}}(\Lambda_t) = 1$. It has been an open conjecture of Frurstenberg sinse 1970s if

t irrational $\Rightarrow \dim_{\mathrm{H}}(\Lambda_t) = 1$?

Using his theorem above Hochman proved this conjecture.

IFS with algebraic parameters Theorem 8.1 (Hochman)

For an IFS with algebraic parameters we have

- Either there are exact overlaps, or
- dim_H Λ = min {1, dim_S Λ }

Proof

In the proof we assume that $f_i(x) = rx + a_i$, i = 1, ..., m with $r_i \in (0, 1)$. Then

$$f_{\mathbf{i}} = r^n x + f_{\mathbf{i}}(0).$$

October 6, 2015 90 / 125

Proof (Cont.)

Suppose that for $\forall n$, we have $\Delta_n > 0$. Then chose $\mathbf{i}, \mathbf{j} \in \{1, \dots, m\}^n$ s.t.

$$\Delta_n = f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0) = \frac{N(\mathbf{i}) - N(\mathbf{j})}{Q \cdot q^n} > 0.$$

Then

$$\Delta_n \geq rac{1}{Q \cdot q^n}$$

So, $\Delta_n \to 0$ exponentially fast, so there is no dimension drop.

 $\mathcal{F} := \left\{ \sum_{n=1}^{\infty} (i_n, j_n) \cdot 3^{-n} : (i_n, j_n) \in \{(0, 0), (1, 0), (0, 1)\} \right\}$

The orthogonal projection to a line with slope -1/t is up to a linear coordinate change is

$$p_t(x,y) = tx + y$$

Under this projection the projected IFS on the line is

$$\mathcal{F}_t := \left\{ f_1(x) = \frac{1}{3}x, f_2(x) = \frac{1}{3}(x+1), f_3(x) = \frac{1}{3}(x+t). \right\}$$

Let Λ_t be the attractor of \mathcal{F}_t .

Hochman I

Károly Simon (TH Budanest)

Let $I \subset \mathbb{R}$ be a compact parameter interval and $m \geq 2$. For every parameter $t \in I$ given a self-similar IFS on the line:

$$\Phi_t := \{\varphi_{i,t}(x) = r_i(t) \cdot (x - a_i(t))\}_{i=1}^m,$$

where

October 6, 2015 95 / 125

$$r_i: I
ightarrow (-1,1) \setminus \{0\}$$
 and $a_i: I
ightarrow \mathbb{R}$

are real analytic functions. Let Π_t be the natural projection from $\Sigma := \{1, \ldots, m\}^{\mathbb{N}}$ to the attractor Λ_t of Φ_t .

October 6, 2015 96 / 125

Hochman II

For every probability vector $\mathbf{p} := (p_1, \dots, p_m)$ the associated self-similar measure is

 $\nu_{\mathbf{p},t} := (\Pi_t)_*(\mathbf{p}^{\mathbb{N}}).$

Its similarity dimension is defined by

$$\dim_{\mathrm{S}}(\nu_{\mathbf{p},t}) := \frac{\sum\limits_{i=1}^{m} p_i \log p_i}{\sum\limits_{i=1}^{m} p_i \log r_i(t)}$$

October 6, 2015 97 / 125

October 6, 2015

October 6, 2015 103 / 125

Sketch of of the proof of Shmerkin's T

Hochman IV

Theorem 8.2 (Hochman)

Assume that

if $\Pi_t(\mathbf{i}) = \Pi_t(\mathbf{j})$ holds for all $t \in I$ then $\mathbf{i} = \mathbf{j}$.

Then both the Hausdorff and the packing dimension of the set of exceptional parameters are equal to 0.

Notation

Let $\mathcal P$ be the set of probability measures on $\mathbb R.$ We write

$$\mathbb{P}_m := \left\{ \left(p_1, \ldots, p_m
ight) : p_i > 0, \sum_{i=1}^m p_i = 1
ight\}.$$

Given a self-similar IFS $\mathcal{F} = \{f_1, \ldots, f_m\}$ on \mathbb{R} . The contraction ratios are r_1, \ldots, r_m . We write $\Lambda = \Lambda(F)$ for the attractor. We know that

$$\forall \mathbf{p} \in \mathbb{P}_m, \ \exists ! \mu = \mu(\mathcal{F}, \mathbf{p}) \text{ s.t. } \mu = \sum_{i=1}^m p_i \cdot (f_i)_* \mu,$$

tch of of the proof of SI

where $(f_i)_*\mu(B) := \mu(f_i^{-1}(B)).$ Károly Simon (TU Budapest) File A

Notation (Cont.)

Clearly,

$$\dim_{\mathrm{H}} \Lambda(\mathcal{F}) \leq s(\mathcal{F}) \text{ and } \dim_{\mathrm{H}} \mu(\mathcal{F}, \mathbf{p}) \leq s(\mathcal{F}, \mathbf{p}).$$

with equality under SSC. The lower correlation dimension of $\boldsymbol{\mu}$ is

$$\dim_2 \mu := \liminf_{r \downarrow 0} \frac{\log \int \mu(B(x,r)) d\mu(x)}{\log r}$$

It was proved by Yorke that

Hochman III

The similarity dimension of Λ_t is the solution s(t) of

$$r_1^{s(t)}(t) + \cdots + r_m^{s(t)}(t) = 1.$$

We say that a parameter $t \in I$ is exceptional if either $\dim_{\mathrm{H}} \Lambda_t < \min \{1, s(t)\}$ or there exists a probability vector $\mathbf{p} := (p_1, \ldots, p_m)$ such that $\dim_{\mathrm{H}}(\nu_{\mathbf{p},t}) < \min \{1, \dim_{\mathrm{S}}(\nu_{\mathbf{p},t})\}$

Built on Hochman's theorem Pablo Shmerkin has proved very recently a theorem which implies that

October 6, 2015 98 / 125

October 6, 2015 100 / 125

October 6, 2015 104 / 125

Theorem 8.3 (Shmerkin)

The set of exceptional parameters in Solomyak's theorem is has Hausdorff dimension zero.

I will give the sketch of the proof below.

Notation (Cont.)

We have defined the similarity dimension $s(\mathcal{F})$ of \mathcal{F} as the solution of $\sum_{i=1}^{m} r_i^s = 1$. The similarity dimension of the measure $\mu = \mu(\mathcal{F}, \mathbf{p})$ is defined by

$$f(\mathcal{F}, \mathbf{p}) := rac{\sum\limits_{i=1}^{m} p_i \log p_i}{\sum\limits_{i=1}^{m} p_i \log r_i}$$

The lower Hausdorff dimension of the measure $\boldsymbol{\mu}$

(34) $\dim_{\mathrm{H}} \mu := \underline{\dim}_{\mathrm{H}} \mu = \inf \left\{ \dim_{\mathrm{H}}(B) : \mu(B) > 0 \right\}$ $= \operatorname{essinf}_{x \sim \mu} \liminf_{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r}.$

esult Sketch of of the proof of Shmerkin's Theore

It Sketch of of the proof of Shmerkin's Theo

Notation (Cont.)

$$(35) \qquad \operatorname{dim}_{2} \mu = \sup\left\{s > 0 : I_{s}(\mu) < \infty\right\},$$

where we remind that the s-energy $I_s(\mu)$ was defined as

(36)
$$I_s(\mu) := \iint |x - y|^{-s} d\mu(x) d\mu(y)$$

We can express $I_s(\mu)$ with the Fourier transform

(37)
$$\hat{\mu}(\xi) := \int e^{i\xi x} d\mu(x)$$

of the measure μ as follows:

Notation (Cont.)

(38)
$$I_{s}(\mu) = C(s) \cdot \int |\xi|^{s-1} |\hat{\mu}(\xi)|^{2} d\xi$$

(39)

If $s < \dim_2 \mu$, $\frac{s}{2} < \beta$ then $|\hat{\mu}(\xi)| < |\xi|^{-\beta}$, at "average".

ic result Sketch of of the proof of Shmerkin's

It Sketch of of the proof of Shmerkin's

The following Shmerkin Theorem is an improvement of Solomyak's Theorem and it is a very nice application of Hochman's Theorem.

Definition 8.5 (Power decay of the Fourier transform) Let

(40) $\mathcal{D} := \{ \nu : |\hat{\nu}(\xi)| \le C \cdot |\xi|^{-s} \text{ for some } C, s > 0 \}.$

If $\nu \in \mathcal{D}$ then we say that the Fourier transform of μ has a power decay at infinity.

Lemma 8.6

Károly Simon (TU Budapest)

Let $\nu \in \mathcal{D}$ and $\mu \in \mathcal{P}$.

- (a) If $\dim_2 \mu = 1$ then $\nu * \mu \ll \mathcal{L}eb$ with L^2 -density.
- (b) If dim_H $\mu = 1$ then $\nu * \mu \ll \mathcal{L}eb$.

Proof of the Lemma Part (a) (Cont.)

ly Simon (TU Budapest) File A

$$\int |\xi|^{-s/2} \cdot |\hat{\mu}(\xi)|^2 d\xi < \infty.$$

chman's fantastic result Sketch of of the proof of Shmerkin's Th

We apply this and (41) to get that $\exists K > s.t.$

(43)

$$\int |\xi|^{s/2} \cdot |\widehat{\nu * \mu}(\xi)|^2 d\xi = \int \underbrace{|\xi|^s \cdot |\widehat{\nu}(\xi)|^2}_{\leq \kappa \text{ by } (41)} \cdot |\widehat{\mu}(\xi)|^2 \cdot |\xi|^{-s/2} dx$$

$$\leq K \cdot \int |\widehat{\mu}(\xi)|^2 \cdot |\xi|^{-s/2} d\xi < \infty.$$

That is $\widehat{\nu * \mu} \in L^2(\mathbb{R})$ that is $\nu * \mu \ll \mathcal{L}eb$ with L^2 density. This completes the proof of part (a).

File A

's fantastic result Sketch of of the proof of Shmerkin's

It was known known already by Erdős and Kahane that the Bernoulli convolutions are in \mathcal{D} apart from a zero-dimensional set of parameters. Now we prove a little bit more than that. First we start with a proposition which is proved in [6, Proposition 6.1]

Theorem 8.4 (Shmerkin 2013)

Let a_1, \ldots, a_m be distinct numbers and for a $\lambda \in (0, 1)$ let

$$\mathcal{F}_{\lambda} := \{\lambda x + a_1, \ldots, \lambda x + a_m\}$$

then there exists an exceptional set E s.t.

- $\dim_{\mathrm{H}}(E) = 0$ and
- for every $\lambda \in (0,1) \setminus E$ and for every $\mathbf{p} \in \mathbb{P}_m$:

$$s(\mathcal{F}_{\lambda},\mathbf{p}) > 0 \Longrightarrow \mu(\mathcal{F}_{\lambda},\mathbf{p}) \ll \mathcal{L} ext{eb.}$$

Hochman's fantastic result Sketch of of the proof of Shmerkin's The

Note that the exceptional set of λ is the same for all probability vector **p**.

October 6, 2015 106 / 125

Proof.

(42)

October 6, 2015 105 / 125

Károly Simon (TU Budapest)

Proof of the Lemma Part (a) By assumption there is an s > 0 such that

(41)
$$\hat{\nu}(\xi) = \mathcal{O}\left(|\xi|^{-s}\right).$$

Using that dim₂ $\mu = 1$ we get by (38)

$$\begin{split} 1 &= \sup\left\{t \geq 0: I_t(\mu) < \infty\right\} \\ &= \sup\left\{t \geq 0: \int |\xi|^{t-1} \cdot |\hat{\mu}|^2 d\xi < \infty\right\}. \end{split}$$

Hochman's fantastic result Sketch of of the proof of Shmerkin's Theorem

Let s be as in (41). Chose $1 - \frac{s}{2} < t < 1$. That is $-\frac{s}{2} < t - 1$. Using this and (42) we get

File A

October 6, 2015

Proof of the Lemma Part (b)

We use Egorov Theorem for the second line of (34). This yields that $\forall \varepsilon > 0$, \exists a constant $C_{\varepsilon} > 0$ and set A_{ε} with $\mu(A_{\varepsilon}) > 1 - \varepsilon$ s.t. for

$$\mu_{arepsilon} := rac{\mu|_{\mathcal{A}_{arepsilon}}}{\mu(\mathcal{A}_{arepsilon})}$$

we have

$$\mu_{\varepsilon}(B(x,r)) \leq C_{\varepsilon} \cdot r^{1-s/4}, \quad \forall x \in A_{\varepsilon}.$$

In this way dim₂ $\geq 1 - \frac{s}{4}$. (s is from (41)). Then the same argument as above shows that $\nu * \mu_{\varepsilon} \ll \mathcal{L}eb$. Letting $\varepsilon \downarrow 0$ finishes the proof of part (b).

Proposition 8.7

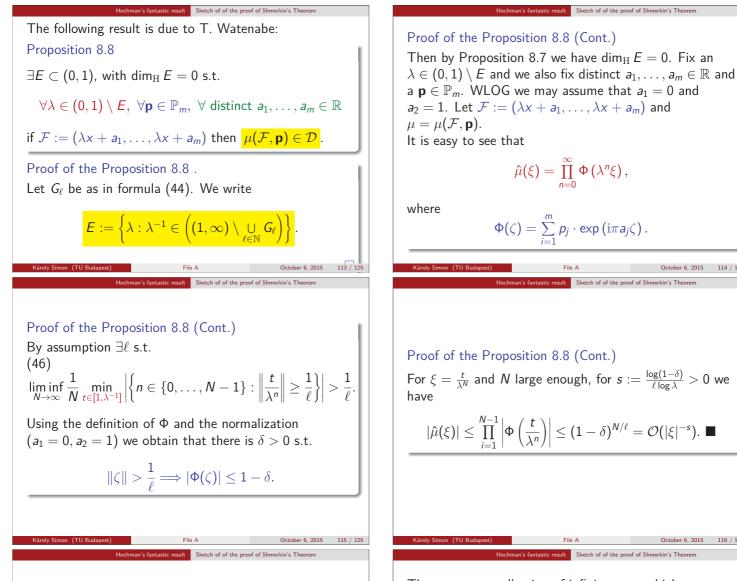
Let

October 6, 2015 111 / 125

(44)
$$G_{\ell} := \left\{ \theta > 1 : \liminf_{N \to \infty} \left\{ \frac{1}{N} \min_{t \in [1, \theta]} \left| \left\{ n \in \{0, \dots, N-1\} : \frac{\|t\theta^n\| \ge \frac{1}{\ell}}{\ell} \right\} \right| > \frac{1}{\ell} \right\} \right\}$$

where ||x|| is the distance of x from the closest integer. Then for any $1 < \Theta_1 < \Theta_2 < \infty$ there is a $C = C(\Theta_1, \Theta_2) > 0$ s.t.

$$\mathsf{45}) \qquad \mathsf{dim}_{\mathrm{H}}([\Theta_1, \Theta_2] \setminus G_{\ell}) \leq \frac{C \log(C\ell)}{\ell}$$



Now we are ready to prove Theorem 8.4. Recall that by Hochman Theorem:

(47)
$$\dim_{\mathrm{H}} \mu(\mathcal{F}_{\lambda}, \mathbf{p}) = \min \{1, s(\mathcal{F}_{\lambda}, \mathbf{p})\}$$

The attractor of \mathcal{F}_{λ} is

(48)
$$\Lambda_{\lambda} = \left\{ \sum_{i=0}^{\infty} a_i \lambda^i, \ a_i \in \{1, \ldots, m\} \right\}.$$

We can think of this for a moment as a formal collection of countably many infinite sums. Assume that we cancel every k-th term of all of these sums.

Properties of $(\mathcal{F}^{(k)}, \mathbf{p}^{(k)})$

(a)
$$s\left(\mathcal{F}^{(k)}, \mathbf{p}^{(k)}\right) = \left(1 - \frac{1}{k}\right)s(\mathcal{F}, \mathbf{p}).$$

(b) The family $\int \mathcal{F}^{(k)}_{k}$ satisfies the

(b) The family $\{\mathcal{F}_{\lambda}^{(n)}\}$ satisfies the non-degeneracy condition of Hochman's theorem. This is so because for $i,j\in\Sigma,\,i\neq j$ we have:

 $\Pi^{(k)}(\mathbf{i}) - \Pi^{(k)}(\mathbf{i})$

October 6, 2015

119 / 125

Sketch of of the proof of Shme

is a non-trivial power series with bounded coefficients.

Then we get a collection of infinite sums which corresponds in the same way to anther IFS. Namely it corresponds to

October 6, 2015 114 / 125

October 6, 2015 116 / 125

October 6, 2015 120 / 125

(49)
$$\mathcal{F}_{\lambda}^{(k)} := \left\{ \lambda^{k} x + \sum_{j=0}^{k-2} a_{i_{j+1}} \lambda^{j} \right\}_{(i_{1},...,i_{k-1}) \in \{1,...,m\}^{k-1}}.$$

The corresponding probability vector is

50)
$$\mathbf{p}^{(k)} = (p_{i_1} \cdots p_{i_{k-1}})_{(i_1, \dots, i_{k-1}) \in \{1, \dots, m\}^{k-1}}$$

The weighted IFS $(\mathcal{F}^{(k)}, \mathbf{p}^{(k)})$ is called "skipping every k-th digit IFS".

Properties of $(\mathcal{F}^{(k)}, \mathbf{p}^{(k)})$ (Cont.)

(c)

$$\mu(\mathcal{F}_{\lambda},\mathbf{p}) = \mu(\mathcal{F}_{\lambda^{k}},\mathbf{p}) * \mu\left(\mathcal{F}_{\lambda}^{(k)},\mathbf{p}^{(k)}\right)$$

This follows from the fact that the power series which appear in (48) consist of summands corresponding to *i* which are divisible with k and i which are not divisible with k. The sum can be considered as the sum of independent andom variables and therefore the distribution of the sum is the convolution of tghe distributions.

Hochman's fantastic result Sketch of of the proof of Shmerkin's Theorem

It follows from (a) and (b) above and from Hochman Theorem that $\exists E_k$ with dim_H $E_k = 0$, s.t. if $\lambda \in (0,1) \setminus E_k$ and $s(\mathcal{F}_{\lambda},\mathbf{p}) > \frac{k}{k-1}$ (so by (a), $s(\mathcal{F}^{(k)}, \mathbf{p}^{(k)}) > 1$) then

(51)
$$\dim_{\mathrm{H}} \mu\left(\mathcal{F}_{\lambda}^{(k)}, \mathbf{p}^{(k)}\right) = 1.$$

Let \widetilde{E} be the exceptional set in Proposition 8.8. Put

$$E'_k := \{\lambda : \lambda^k \in \widetilde{E}\}.$$

Károly Simon (TU Budapest) File A October 6, 2015 121 / 125

Clearly, dim_H $E'_k = 0$.

Hochman's fantastic result Sketch of of the proof of Shmerkin's Theorem

Shmerkin-Solomyak Theorem (2014)

Let $\mathbf{u} \mapsto (\Lambda_{\mathbf{u}}, a_{\mathbf{u}})$ be real-analitic from $\mathbb{R}^\ell \supset U
ightarrow (0,1) imes \mathbb{R}^m$. such that the following non-degeneracy condition holds:

 $\forall \mathbf{i} \neq \mathbf{j}, \mathbf{i}, \mathbf{j} \in \Sigma \exists u, \text{ s.t. } \Pi^{\mathbf{u}}(\mathbf{i}) \neq \Pi^{\mathbf{u}}(\mathbf{j}),$

where $\Pi^{\mathbf{u}}$ is the natural proj. that corresponds to $\mathcal{F}_{\mathbf{u}} := (\lambda_{\mathbf{u}} x + a_{\mathbf{u},i})_{i=1,\dots,m}$. Assume that $\mathbf{p} = (p_1, \dots, p_m)$ is a probability measure such that the similarity dimension is grater than 1. Then for all but a set Hausdorff dimension zero parameters the self-similar meausre associated to $(\mathcal{F}_u, \mathbf{p})$ is absolute continuous w.r.t. the Lebesgue measure with L^q , $q = q(\mathbf{u}, \mathbf{p}) > 1$ density. (TIL Budapest) File A October 6, 2015 123 / 125

hman's fantastic result Sketch of of the proof of Shmerkin's Theo

References (cont.)

- Y. Peres and B. Solomyak. Self-similar measures and intersections of Cantor sets Trans. Amer. Math. Soc., 350(10):4065–4087, 1998. [8]
- M. Pollicott and K. Simon. The Hausdorff dimension of λ -expansions with deleted digits. Trans. Amer. Math. Soc., 347(3):967–983, 1995. [10]
- K. Simon, B. Solomyak, and M. Urbański. Hausdorff dimension of limit sets for parabolic IFS with overlaps. Pacific J. Math., 201(2):441–478, 2001.
- [11] K. Simon, B. Solomyak, and M. Urbański. Invariant measures for parabolic IFS with overlaps and random continued fractions *Trans. Amer. Math. Soc.*, 353(12):5145–5164 (electronic), 2001.
- [12] B. Solomyak.
- B. Solomyak. On the random series $\sum \pm \lambda^n$ (an Erdős problem). Ann. of Math. (2), 142(3):611–625, 1995.

[13] B. Solomyak. Notes on Bernoulli convolutions

In Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, volume 72 of Proc. Sympos. Pure Math. pages 207–230. Amer. Math. Soc., Providence, RI, 2004.

 Károly Simon (TU Budapest)
 File A
 October 6, 2015
 125 / 125

```
From (c) above and Lema 8.6 we obtain that
```

$$\lambda \in ((0,1) \setminus (E'_k \cup E_k)) \& s(\mathcal{F}_{\lambda}, \mathbf{p}) > 1 + \frac{1}{k}$$

 $\Longrightarrow \mu(\mathcal{F}_{\lambda}, \mathbf{p}) \ll \mathcal{L}eb$

Hochman's fantastic result Sketch of of the proof of Shmerkin's Theorem

This yields the assertion of Shmerkin theorem, where the exceptional set is

$$E:=\bigcup_{k=1}^{\infty}\left(E_k\cup E_k'\right).$$

ton (TU Budapest) File A October 6, 2015 122 / 125 ochman's fantastic result Sketch of of the proof of Shmerkin's Theorem

October 6, 2015 124 / 125

References

- G. Derfel and R. Schilling. Spatially chaotic configurations and functional equations with rescaling Journal of Physics A: Mathematical and General, 29(15):4537, 1996.
- [2] Lyons.
 ingularity of some random continued fractions.
 lournal of Theoretical Probability. 13(2):535–545, 2000
- P. Mattila Orthogonal projections, Riesz capacities, and Minkowski contr Indiana Univ. Math. J., 39(1):185–198, 1990.
- [4] P. Mattila Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995.
- [5] Y. Peres and W. Schlag. Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Duke Math. J., 102(2):193-251, 2000.
- (*) Peres, W. Schlag, and B. Solomyak. ikity years of Bernoulli convolutions. * Ersetal enometry and stochastics, II (Greifswald/Koserow, 1998), volume 46 of Progr. Probab., pages 39–65. [6] In Fractal geometry and Birkhäuser, Basel, 2000

File A

[7] Y. Peres and B. Solomyak Absolute continuity of bernoulli convolutions, a simple proof Mathathematics Research Letters, 3:231–239, 1996.

Károly Simon (TU Budapest)