Bedford-McMullen carpets - an example in dimension theory of self-affine sets

In this note we study the dimension of the classical Bedford-McMullen carpets. We apply the learned methods from the mini-course of Károly Simon on "Dimension Theory of self-affine and almost self-affine sets and measures" during Simons Semester in Banach Center, October 2015.

Let $n > m \ge 2$ be integers and let $A \subseteq \{0, \ldots, m-1\} \times \{0, \ldots, n-1\}$. We consider the following subset of $[0, 1]^2$

$$\Lambda := \left\{ \left(\begin{array}{c} \sum_{k=1}^{\infty} \frac{i_k}{m^k} \\ \sum_{k=1}^{\infty} \frac{j_k}{n^k} \end{array} \right) : (i_k, j_k) \in A \text{ for every } k \ge 1 \right\}.$$

It is easy to see that Λ is a self-affine set on the plane, i.e.

$$\Lambda = \bigcup_{(i,j)\in A} f_{(i,j)}(\Lambda), \text{ where } f_{(i,j)}\left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} \frac{1}{m} & 0\\ 0 & \frac{1}{n} \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right) + \left(\begin{array}{c} \frac{i}{m}\\ \frac{j}{n} \end{array}\right).$$

Introduce some notations:

$$M := \sharp A$$

$$Q := \{i : \exists j \text{ s.t. } (i, j) \in A\}$$

$$N := \sharp Q$$

$$T_i := \{j : (i, j) \in A\}$$

$$t_i := \sharp T_i$$

First, let us observe that the projection of Λ to the vertical axes is a self-similar set on the line. Precisely, proj Λ is the attractor of the IFS

$$\left\{g_i: x \mapsto \frac{x+i}{m}\right\}_{i \in Q},\tag{1}$$

where proj denotes the orthogonal projection to the x-axes.

Falconer showed that the Hausdorff and box dimension of any self-similar set are equal, moreover, since $\{g_i : x \mapsto \frac{x+i}{m}\}_{i \in O}$ satisfies the open set condition w.r.t the interval (0, 1) we get

$$\dim_H \operatorname{proj} \Lambda = \dim_B \operatorname{proj} \Lambda = \frac{\log N}{\log m}.$$
(2)

Our first approach is to calculate the root of the subadditive pressure, i.e. the affinity dimension. Let us recall the definition of the pressure function. Let

$$\phi^{s}(A) := \begin{cases} \alpha_{1}(A)^{s} & \text{if } 0 \leq s < 1, \\ \alpha_{1}(A)\alpha_{2}(A)^{s-1} & \text{if } 1 \leq s < 2, \\ (\alpha_{1}(A)\alpha_{2}(A))^{s/2} & \text{if } s \geq 2, \end{cases}$$

where $\alpha_i(A)$ denotes the *i*th singular value of the matrix A. Then let s_0 be the unique root of the strictly monotone decreasing and continuous function $s \mapsto P(s)$, where

$$P(s) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{(i_1, j_1), \dots, (i_n, j_n) \in A} \phi^s \left(f'_{(i_1, j_1)} \cdots f'_{(i_n, j_n)} \right)$$

the subadditive pressure function. Because of the special form of our matrices, one can show that

$$s_0 = \min\left\{\frac{\log M}{\log m}, 1 + \frac{\log M - \log m}{\log n}\right\}.$$
(3)

Falconer showed that this is an upper bound for the box counting dimension for every self-affine set.

Box counting dimension. First, let us define the lower and upper box counting dimension of a bounded set $A \subset \mathbb{R}^2$.

$$\underline{\dim}_B A = \liminf_{\delta \to 0+} \frac{\log N_{\delta}(A)}{-\log \delta} \text{ and } \overline{\dim}_B A = \limsup_{\delta \to 0+} \frac{\log N_{\delta}(A)}{-\log \delta},$$

where $N_{\delta}(A) = \min \left\{ N : \exists \underline{x}_1, \dots, \underline{x}_N \in \mathbb{R}^2 \text{ s.t. } A \subseteq \bigcup_{i=1}^N B_{\delta}(\underline{x}_i) \right\}$ and $B_{\delta}(\underline{x})$ denotes the closed ball with radius δ and centered at \underline{x} . If the limit exists then we denote it by dim_B A.

Let us observe that in the limit and limsup δ can be replaced by any exponential sequence. That is,

$$\underline{\dim}_B A = \liminf_{l \to \infty} \frac{\log N_{1/n^l}(A)}{l \log n} \text{ and } \overline{\dim}_B A = \limsup_{l \to \infty} \frac{\log N_{1/n^l}(A)}{l \log n}$$

Now, we construct an optimal cover for Λ . Note that for every $l \ge 1$ and every $(i_1, j_1), \ldots, (i_l, j_l)$ the rectangles $f_{(i_1,j_1)} \circ \cdots \circ f_{(i_l,j_l)}((0,1)^2)$ are disjoint. Let $k \ge 1$ the smallest integer such that $1/m^k \le 1/n^l$, i.e. $k = \lceil l \frac{\log n}{\log m} \rceil$. Divide the horizontal side (which has length m^{-l}) of the rectangle $f_{(i_1,j_1)} \circ \cdots \circ f_{(i_l,j_l)}((0,1)^2)$ into m^{k-l} equal parts. Denote these "approximate squares" from left to right by $R_1^{\mathbf{i}}, R_2^{\mathbf{i}}, \ldots, R_{m^{k-l}}^{\mathbf{i}}$, where $\mathbf{i} = (i_1, j_1), \ldots, (i_l, j_l)$. Thus, any of the rectangles has vertical side length n^{-l} and horizontal side length m^{-k} .

In the general case, for the definition of subadditive pressure we used all of the approximate squares to cover the set. In the case of Bedford-McMullen carpet, because of the special structure, we do not need all of them. By applying the inverse function $f_{(i_l,j_l)}^{-1} \circ \cdots \circ f_{(i_1,j_1)}^{-1}$ for the rectangle $f_{(i_1,j_1)} \circ \cdots \circ f_{(i_l,j_l)}((0,1)^2)$ we get the following picture:

where $\widetilde{R}_{k}^{\mathbf{i}} = f_{(i_{l},j_{l})}^{-1} \circ \cdots \circ f_{(i_{1},j_{1})}^{-1}(R_{k}^{\mathbf{i}})$. So we see that we may choose only those $\widetilde{R}_{k}^{\mathbf{i}}$ columns for which $\widetilde{R}_{k}^{\mathbf{i}} \cap \Lambda \neq \emptyset$. The number of such $\widetilde{R}_{k}^{\mathbf{i}}$ columns is equal to the number of non-empty columns in the k-lth iteration. Or in other words, the number of intervals with lenght m^{l-k} needed to cover proj Λ . So by (2), for every $\mathbf{i} \in A^{l}$

$$\sharp \left\{ R_k^{\mathbf{i}} : R_k^{\mathbf{i}} \cap \Lambda \neq \emptyset \text{ for } k = 1, \dots, m^{k-l} \right\} = N^{k-l}.$$

Therefore

$$\widetilde{N}_l := \left\{ R_k^{\mathbf{i}} : \mathbf{i} \in A^l \& R_k^{\mathbf{i}} \cap \Lambda \neq \emptyset \text{ for } k = 1, \dots, m^{k-l} \right\} \text{ and } \sharp \widetilde{N}_l = M^l N^{k-l}.$$

Since every rectangle $R_k^{\mathbf{i}} \in \widetilde{N}_l$ can be extended to a ball with radius $1/n^l$. Thus, $\sharp \widetilde{N}_l \ge N_{1/n^l}(\Lambda)$ and

$$\overline{\dim}_B \Lambda \leq \limsup_{l \to \infty} \frac{\log M^l N^{k-l}}{l \log n} = \lim_{l \to \infty} \sup_{l \to \infty} \frac{\log M}{\log n} + \left(\frac{\lceil l \frac{\log n}{\log m} \rceil}{l} - 1\right) \frac{\log N}{\log n} = \frac{\log M}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{\log N}{\log m}.$$

On the other hand, let $\mathcal{B}_l := \left\{ B_{1/n^l}(\underline{x}_1), \ldots, B_{1/n^l}(\underline{x}_{N_{1/n^l}}(\Lambda)) \right\}$ be the set of balls which covers optimally the set Λ . Then for every $R_k^{\mathbf{i}} \in \widetilde{N}_l$ intersects at least one $B \in \mathcal{B}_l$, moreover, any ball $B \in \mathcal{B}_l$ may intersect at most 3m approximate squares from \widetilde{N}_l . Hence,

$$\#N_l \le 3mN_{1/n^l}(\Lambda)$$

and therefore,

$$\underline{\dim}_B \Lambda \ge \liminf_{l \to \infty} \frac{\log(3m)^{-1} M^l N^{k-l}}{l \log n} = \frac{\log M}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{\log N}{\log m}.$$

In summary, we get that the box counting dimension exists and

$$\dim_B \Lambda = \frac{\log M}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{\log N}{\log m}.$$
(4)

Remark 1. By using the formulas (3) and (4), simple algebraic calculations show that

$$s_0 = \dim_B \Lambda \iff N = M \text{ or } N = m.$$

In other words, by (2), the box dimension is equal to the affinity dimension if and only if $\dim_B \operatorname{proj} \Lambda = \min \{1, \dim_B \Lambda\}.$

Lower bound for Hausdorff dimension. Now, we turn to the case of Hausdorff dimension. Let μ be a self-affine measure with probability vector $\underline{p} = (p_{(i,j)})_{(i,j) \in A}$. That is, μ is the unique compactly supported measure, for which

$$\int h(x)d\mu(x) = \sum_{(i,j)\in A} p_{(i,j)} \int h(f_{(i,j)}(x))d\mu(x),$$

for any continuous test function h on Λ .

Let us observe again, that the projection of the measure μ onto the x-axes is a self-similar measure (like in the case of the set). That is,

$$\operatorname{proj}_{*} \mu = \sum_{i \in Q} \left(\sum_{j \in T_{i}} p_{i,j} \right) \operatorname{proj}_{*} \mu \circ g_{i}^{-1},$$

where $\operatorname{proj}_* \mu = \mu \circ \operatorname{proj}^{-1}$ and g_i s are from the IFS (1).

By the Feng-Hu formula, we are able to calculate the Hausdorff dimension of the measure μ , i.e.

$$\dim_{H} \mu = \frac{-\sum_{(i,j)\in A} p_{i,j} \log p_{i,j}}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{-\sum_{i\in Q} \sum_{j\in T_{i}} p_{i,j} \log \sum_{j\in T_{i}} p_{i,j}}{\log m}.$$
 (5)

For simplicity, let us denote $\sum_{j \in T_i} p_{i,j}$ by q_i .

Remark 2. The formulas (4) and (5) are very similar to each other. By the definition of the entropy,

$$\log M = -\sum_{(i,j)\in A} p_{i,j} \log p_{i,j} \Leftrightarrow p_{i,j} = \frac{1}{M}$$

and

$$\log N = -\sum_{i \in Q} q_i \log q_i \Leftrightarrow q_i = \frac{1}{N}.$$

Thus, $\dim_B \Lambda = \dim_H \mu$ for a probability vector $\underline{p} = (p_{(i,j)})_{(i,j) \in A}$ if and only if $p_{i,j} = 1/M$ for every $(i, j) \in A$ and $t_i = M/N$ for every $i \in Q$.

By definition, $\dim_H \Lambda \ge \dim_H \mu$ therefore to get a lower bound, we maximize the value of (5). Use the method of Lagrange-multipliers! That is, we maximize the function

$$d(\underline{p}, \lambda) = \dim_{H} \mu + \lambda(\sum_{(i,j) \in A} p_{i,j} - 1).$$

It is easy to see that $d(p, \lambda)$ is concave. By taking the derivative w.r.t $p_{i,j}$ we get

$$\frac{-\log p_{i,j}-1}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{-\log \sum_{j \in T_i} p_{i,j}-1}{\log m} + \lambda = 0.$$

Thus, $p_{i,j} = q_i/t_i$ for every $(i, j) \in A$ (for fixed *i* it the value is independent of *j*.) Thus, it is enough to maximize the function

$$(\underline{q},\lambda) \mapsto \frac{-\sum_{i \in Q} q_i \log q_i/t_i}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{-\sum_{i \in Q} q_i \log q_i}{\log m} + \lambda(\sum_{i \in Q} q_i - 1).$$

5

By taking the derivative w.r.t q_i we get

$$\frac{\log q_i/t_i - 1}{\log n} + \left(1 - \frac{\log m}{\log n}\right) \frac{-\log q_i - 1}{\log m} + \lambda = 0,$$

Thus,

$$q_i = \frac{t_i^{\frac{\log m}{\log n}}}{\sum_{i' \in Q} t_{i'}^{\frac{\log m}{\log n}}} \text{ and } p_{i,j} = \frac{t_i^{\frac{\log m}{\log n} - 1}}{\sum_{i' \in Q} t_{i'}^{\frac{\log m}{\log n}}}.$$
(6)

Hence, we get

$$\dim_{H} \Lambda \ge \frac{\sum_{i \in Q} t_{i}^{\frac{\log m}{\log n}}}{\log m}.$$
(7)

Upper bound for Hausdorff dimension. Our claim is that the lower bound in (7) is sharp. One way to show that is to find an optimal cover for the set Λ . However, our natural cover, which was constructed to calculate the box dimension, is not optimal if there is an $i \in Q$ such that $t_i \neq M/N$, see Remark 2. Therefore, we use here a mass distribution principle.

Lemma 1. Let ν be a probability measure on a set $B \subset \mathbb{R}^d$ such that $\nu(B) = 1$ and

$$\liminf_{r \to 0+} \frac{\log \nu(B_r(x))}{\log r} \le \alpha \text{ for every } x \in B,$$

where $B_r(x)$ denotes the ball centered at x with radius r. Then $\dim_H B \leq \alpha$.

Proof. Let us recall here the definition of Hausdorff measure, i.e.

$$\mathcal{H}^{s}_{\delta}(B) = \inf\left\{\sum_{i} |U_{i}|^{s} : B \subseteq \bigcup_{i} U_{i} \& |U_{i}| < \delta\right\} \text{ and } \mathcal{H}^{s}(B) = \sup_{\delta > 0} \mathcal{H}^{s}_{\delta}(B).$$

By our assumption, for every $\varepsilon, \delta > 0$ and every $x \in B$ there exists $\delta > R(x) > 0$ such that

$$\nu(B_{R(x)}(x)) \ge R(x)^{\alpha + \varepsilon}.$$

Since $\bigcup_{x \in B} B_{R(x)}(x)$ is a cover of B, by Besicovitch's covering theorem we get that there exists a c > 0 and countable subsets \mathcal{B}_j , j = 1, ..., c, of the family of balls $\{B_{R(x)}(x)\}_{x \in B}$ such that

$$\bigcup_{j=1} \bigcup_{U \in \mathcal{B}_j} U \supseteq B \text{ and } U \cap U' = \emptyset \text{ for every } U \neq U' \in \mathcal{B}_j.$$

Thus,

$$\mathcal{H}^{\alpha+\varepsilon}_{\delta}(B) \leq \sum_{j=1}^{c} \sum_{U \in \mathcal{B}_{j}} |U|^{\alpha+\varepsilon} \leq \sum_{j=1}^{c} \sum_{U \in \mathcal{B}_{j}} \nu(U) = c \text{ and therefore } \mathcal{H}^{\alpha+\varepsilon}(B) \leq c.$$

Since $\varepsilon > 0$ was arbitrary, the statement follows.

We apply Lemma 1 for the self-affine measure μ with probability vector defined in (6). Let $x = \left(\sum_{k=1}^{\infty} \frac{i_k}{m^k}, \sum_{k=1}^{\infty} \frac{j_k}{n^k}\right)^T \in \Lambda$ and let $l \ge 1$ integer. Denote by $C_l(x)$ the following approximate square

$$C_l(x) = \left\{ \begin{pmatrix} \sum_{r=1}^{\infty} \frac{i'_r}{m^r} \\ \sum_{r=1}^{\infty} \frac{j'_r}{n^r} \end{pmatrix} \in \Lambda : i_p = i'_p \text{ for } p = 1, \dots, k \text{ and } j_q = j'_q \text{ for } q = 1, \dots, l \right\},$$

where $k = \lceil l \frac{\log n}{\log m} \rceil$. In other words, $C_l(x)$ is the union of all kth level cylinder sets C_k such that $\operatorname{proj}(x) \in \operatorname{proj}(f_{(i_1,j_1)} \circ \cdots \circ f_{(i_l,j_l)}(\Lambda) \cap C_k)$.

Like during the calculations of box dimension, $f_{(i_l,j_l)}^{-1} \circ \cdots \circ f_{(i_1,j_1)}^{-1}(C_l(x))$ is the k-lth level cylinder set of the IFS $\{g_i : x \mapsto \frac{x+i}{m}\}_{i \in Q}$, which contains $\operatorname{proj}(f_{(i_l,j_l)}^{-1} \circ \cdots \circ f_{(i_1,j_1)}^{-1}(x)) = \sum_{r=1}^{\infty} \frac{i_{l+r}}{m^r}$. That is,

$$f_{(i_1,j_1)} \circ \dots \circ f_{(i_l,j_l)} \left(\text{proj}^{-1} \left[\sum_{r=1}^{k-l} \frac{i_{l+r}}{m^r}, \sum_{r=1}^{k-l} \frac{i_{l+r}}{m^r} + \frac{1}{m^{k-l}} \right] \right) = C_l(x).$$

Therefore, by using the definition of μ

$$\mu(B_{\sqrt{2}/n^{l}}(x)) \ge \mu(C_{l}(x)) = \frac{t_{i_{1}}^{\frac{\log m}{\log n} - 1} \cdots t_{i_{l}}^{\frac{\log m}{\log n} - 1} \cdot t_{i_{l+1}}^{\frac{\log m}{\log n}} \cdots t_{i_{k}}^{\frac{\log m}{\log n}}}{\left(\sum_{i' \in Q} t_{i'}^{\frac{\log m}{\log n}}\right)^{k}}$$

Thus,

$$\frac{\log \mu(B_{\sqrt{2}/n^l}(x))}{-l\log n} \leq \frac{\lceil l \frac{\log n}{\log m} \rceil \log m}{l\log n} \cdot \frac{\log \sum_{i' \in Q} t_{i'}^{\frac{\log m}{\log n}}}{\log m} + \frac{-1}{\log n} \left(\frac{1}{\lceil l \frac{\log n}{\log m} \rceil} \sum_{r=1}^{\lceil l \frac{\log n}{\log m} \rceil} \log t_{i_r} - \frac{1}{l} \sum_{r=1}^{l} \log t_{i_r} \right).$$

Hence, if

$$\limsup_{l \to \infty} \frac{\left(\prod_{r=1}^{\left\lceil l \frac{\log n}{\log m} \right\rceil} t_{i_r}\right)^{1/\left\lceil l \frac{\log n}{\log m} \right\rceil}}{\left(\prod_{r=1}^{l} t_{i_r}\right)^{1/l}} \ge 1$$
(8)

then

$$\liminf_{l \to \infty} \frac{\log \mu(B_{\sqrt{2}/n^l}(x))}{-l \log n} \leq \frac{\log \sum_{i \in Q} t_i^{\frac{\log m}{\log n}}}{\log m} \text{ for every } x \in \Lambda$$

and by Lemma 1

$$\dim_{H} \Lambda \leq \frac{\log \sum_{i \in Q} t_{i}^{\frac{\log m}{\log n}}}{\log m}.$$
(9)

To show (8) holds, we need the following simple lemma:

Lemma 2. Let $\{a_n\}$ be a sequence of positive real numbers and let c > 1. If $\limsup_{n \to \infty} \frac{a_{\lfloor cn \rfloor}}{a_n} < 1$ then $\liminf_{n \to \infty} a_n = 0$.

But for every sequence $i_1, i_2, \ldots, i_r, \ldots$ and every $l \ge 1$

$$\left(\prod_{r=1}^{l} t_{i_r}\right)^{1/l} \ge 1,$$

thus (9) holds.

Remark 3. Since we have shown that the self-affine measure μ with probabilities defined in (6) has maximal dimension, i.e.

$$\dim_H \mu = \dim_H \Lambda,$$

by Remark 2 we get

$$\dim_B \Lambda = \dim_H \Lambda \Leftrightarrow t_i = \frac{M}{N} \text{ for every } i \in Q.$$

In particular, in that case the $\frac{\log \sum_{i \in Q} t_i^{\frac{\log m}{\log n}}}{\log m}$ -dimensional Hausdorff measure is positive and finite.