Bedford-McMullen carpets - an example in dimension theory of
self-affine sets

In this note we study the dimension of the classical Bedford-McMullen carpets. We apply the
learned methods from the mini-course of Kéroly Simon on ”Dimension Theory of self-affine and al-
most self-affine sets and measures” during Simons Semester in Banach Center, October 2015.

Let n > m > 2 be integers and let A C {0,...,m — 1} x {0,...,n —1}. We consider the following
subset of [0, 1]2
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A::{( %’glg >:(ik,jk)€Aforeveryk21}.
k=1 nk

It is easy to see that A is a self-affine set on the plane, i.e.
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Introduce some notations:

M :=tA

Q:={i:3jst. (i,5) € A}
N :=1Q

L= {: (id) € 4)

ti ==4T;

First, let us observe that the projection of A to the vertical axes is a self-similar set on the line.
Precisely, projA is the attractor of the IFS

T +1
{gi:x»—> } , (1)
m)icq

where proj denotes the orthogonal projection to the x-axes.
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Falconer showed that the Hausdorff and box dimension of any self-similar set are equal, moreover,

since {gi DT %ﬂ}z’eQ satisfies the open set condition w.r.t the interval (0,1) we get
log N
dimg projA = dimp projA = 8% (2)
logm

Our first approach is to calculate the root of the subadditive pressure, i.e. the affinity dimension.
Let us recall the definition of the pressure function. Let

ai(A)? if0<s<1,
P*(A) =4 ar(A)azx(A)1 if1<s<2,
(a1 (A)ag(A))*/2 if s > 2,

where «;(A) denotes the ith singular value of the matrix A. Then let sp be the unique root of the
strictly monotone decreasing and continuous function s — P(s), where

P(S) = nh_>120 % log Z ¢° (f(/il,ﬁ) T f&nvin))

(i17j1)7"'7(in7jn)eA

the subadditive pressure function. Because of the special form of our matrices, one can show that
log M log M — 1
sozmin{ BT 148 ogm}. (3)

logm’ logn
Falconer showed that this is an upper bound for the box counting dimension for every self-affine
set.

Box counting dimension. First, let us define the lower and upper box counting dimension of a
bounded set A C R2.

dimpA = limint 25N ) 4 FimpA = limsup B2
6—0+ —logd im0 —logd

b

where Ns(A) = min {N c3wy, ..,y ERZst. AC Ufil Bg(gi)} and Bs(z) denotes the closed ball
with radius 0 and centered at z. If the limit exists then we denote it by dimpg A.
Let us observe that in the liminf and limsup d can be replaced by any exponential sequence. That
is,
log N- A _ log N- A
dimp A = lim inf M and dimpA = lim sup M
l—oc0 llogn =00 llogn

Now, we construct an optimal cover for A. Note that for every [ > 1 and every (i1, 1), - -, (i1, 71)
the rectangles f(;, ;) © - o f,.4)((0, 1)?) are disjoint. Let k& > 1 the smallest integer such that

1/mF < 1/nl, ie. k = [1:%8™]. Divide the horizontal side (which has length m~!) of the rectangle

logm

fli oo f(im)((o, 1)?) into m*~! equal parts. Denote these ”approximate squares” from left to
right by R, R}, .. .,R:nk,l, where i = (i1,71),...,(i,7;). Thus, any of the rectangles has vertical
side length n~! and horizontal side length m~*.




In the general case, for the definition of subadditive pressure we used all of the approximate squares
to cover the set. In the case of Bedford-McMullen carpet, because of the spemal structure, we
do not need all of them. By applying the inverse function f(;zljz) 0o---0 f(; i) for the rectangle

ftirgn) © 0 fain (0, 1)2) we get the following picture:

._
=]
=13

(SR
=5]
m

I_1
w k

where Ei = f(;zljz f(Zl jl)(Rk) So we see that we may choose only those Rk columns for which

R‘ N A # (). The number of such R‘ columns is equal to the number of non—empty columns in the
k — lth iteration. Or in other words, the number of intervals with lenght m!~* needed to cover projA.
So by (2), for every i € Al

(Bl BN #0for k=1, mb'} = N+
Therefore
:{R}c5i€Al &R}CQA#QfOIk=1,...,mk4} and N, = M'N*.

Since every rectangle Ri € N can be extended to a ball with radius 1 /nt. Thus, iN; > Nijpi(A) and

— log M! Nk
dimpA < limsup k- e M
l—o00 llogn
logn
log M l logN  log M 1 log N
lim sup 8 + [logmw _p )2t 9% + <1— 0gm> o8
oo lOgN l logn logn logn ) logm

On the other hand, let B; := {Bl/nl (1), Bijw (:UN (A))} be the set of balls which covers

optimally the set A. Then for every R}C € Nl intersects at least one B € B;, moreover, any ball
B € B; may intersect at most 3m approximate squares from N;. Hence,

§N; < 3mN, 0 (A)

and therefore,

1 —lMlNk—l 1 M ] 1 N
dimpA > lim inf 28" _ logM (1_ 0gm> og

100 llogn logn logn ) logm’

In summary, we get that the box counting dimension exists and

log M 1 log N
dimp A = 08 +(1- 08T ) 08 X
logn logn / logm
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Remark 1. By using the formulas (3) and (4), simple algebraic calculations show that
so=dimpA & N =M or N=m.
In other words, by (2), the box dimension is equal to the affinity dimension if and only if
dimp projA = min {1,dimp A}.
Lower bound for Hausdorff dimension. Now, we turn to the case of Hausdorff dimension. Let u

be a self-affine measure with probability vector p = (p(; ;))(ij)ea- That is, u is the unique compactly
supported measure, for which

[ r@aut) = 3 gy [ fane)duta),
(3,5)€A
for any continuous test function h on A.

Let us observe again, that the projection of the measure p onto the x-axes is a self-similar measure
(like in the case of the set). That is,

proju =Y | > pij | proj.puog;
€@ \jeT;

where proj, i = p o proj~! and g;s are from the IFS (1).
By the Feng-Hu formula, we are able to calculate the Hausdorff dimension of the measure p, i.e.

— 2 (ij)eA Pij log pij (1 losm = >icQ 2jer, Piglog ) ier, Piy )
logn logn logm '

dimpg p =

For simplicity, let us denote ) ety Piyj by g;.

Remark 2. The formulas (4) and (5) are very similar to each other. By the definition of the entropy,
1
log M = — Z pijlogpij < pij = 77
(i.5)€A
and )
log N = —Zqﬂog% S 6= 5
1€Q
Thus, dimp A = dimy pu for a probability vector p = (pg ;)) (i j)ea if and only if p;j = 1/M for every
(i,j) € A and t; = M/N for everyi € Q.
By definition, dimg A > dimpy p therefore to get a lower bound, we maximize the value of (5).
Use the method of Lagrange-multipliers! That is, we maximize the function

d(p, ) = dimp p+ A Y pij—1).
(i,4)eA
It is easy to see that d(p, \) is concave. By taking the derivative w.r.t p; ; we get

—logpij —1 (1 10%7”) —log ) jer, Pij — 1

— +A=0.
logn logn logm

Thus, p; j = ¢;/t; for every (i,7) € A (for fixed 4 it the value is independent of j.) Thus, it is enough
to maximize the function

- Zie@ qilog qi /t; c(1- logm\ — Zie@ qilog q;
logn

(gv >‘) = + )\(Z q; — 1).

logm e

logn



By taking the derivative w.r.t g; we get

logq;/t; — 1 + (1 logm\ —loggq; — 1
logn logn logm
Thus,
logm logm _
tllogn t.logn
G = —— g WA pij = —
Yocoti™" Sieqti®"
Hence, we get
logm
) t'logn
dimg A > Zze#
logm

(7)

Upper bound for Hausdorff dimension. Our claim is that the lower bound in (7) is sharp. One
way to show that is to find an optimal cover for the set A. However, our natural cover, which was
constructed to calculate the box dimension, is not optimal if there is an i € @ such that ¢; # M/N,

see Remark 2. Therefore, we use here a mass distribution principle.

Lemma 1. Let v be a probability measure on a set B C R? such that v(B) = 1 and

lim inf logv(B,(z)) V(B (z))
r—0+ logr

where By(x) denotes the ball centered at x with radius r. Then dimy B < a.

Proof. Let us recall here the definition of Hausdorff measure, i.e.

H3(B) = inf {Z uil* - B C|JUi & |UH| < 5} and H°(B)

By our assumption, for every ¢, > 0 and every = € B there exists § > R(z) > 0 such that

V(Br)(z)) = R(z)*".

< «a for every x € B,

= sup H;i(B).

Since U,ep Br(z)(7) is a cover of B, by Besicovitch’s covering theorem we get that there exists a

¢ > 0 and countable subsets Bj, j = 1,...,c, of the family of balls {BR(I) (x)}

c

U U UDBand UNU' =0 for every U # U’ € B;.

7j=1 UGBj
Thus,

HETE(B) < Z Z |U|*te < Z Z v(U) = ¢ and therefore H*T(B) < c.

Jj=1 UEB]‘ 7j=1 UEBj
Since € > 0 was arbitrary, the statement follows.

We apply Lemma 1 for the self-affine measure p with probability vector defined in (6).

k
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. \T
=1, %, Pt if) € A and let [ > 1 integer. Denote by Cj(x) the following approximate

square
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where k = [I1%™]. In other words, Cj(z) is the union of all kth level cylinder sets Cj, such that

logm

proj(z) € proj (f(iy 1) © -+ © feinjn(A) NCr).

m

n’ Ci(x)

m-

Like during the calculations of box dimension, f(;lljl) o f(Zl i )(Cl( x)) is the k — [th level cylinder
set of the IFS {g; : @ — ZHt} which contains proj(f(z.l oo f(illjl)(x)) =3 irl,fb’,f. That is,

i€Q’

- .
f(i17j1) O-++0 f(il’jl) (prOJ [Z o Z l+ ]) = Cl(x)

Therefore, by using the definition of u

logm 1 logm logm logm
tillog” e tillog" . tilchln .. -t;}:g"
(B g i (2)) = p(Ci(a) = .
(Ei’eQ tz‘l’ogn >
Thus,
logn llogm [l 110gn]
log w(Bygy (@) _ [ligmllogm logTieqti™”  —1 Z log £ Z log t;
—llogn - llogn logm logn lggg;; S ] & b
Hence, if
logn
[ l:))gr";"l 1/[llogm-‘
(Hr 11g tlr)
lim sup 7 >1 (8)
l—00 (Hl L ) /
r=1 "tr
then 1
ogm
log (B 5/, (%)) logdicoty™"
lim inf v2/n! < s ZZGQ ! for every x € A
I—00 —llogn logm
and by Lemma 1
log m
log ZZEQ tilogn

dimH A <

(9)

logm
To show (8) holds, we need the following simple lemma:

Lemma 2. Let {a,} be a sequence of positive real numbers and let ¢ > 1. If limsup,,_, LC"W <1
then liminf, .., a, = 0.

But for every sequence i1,49,...,%.,... and every [ > 1

. 1/1
(H t) > 1,
r=1



thus (9) holds.

Remark 3. Since we have shown that the self-affine measure p with probabilities defined in (6) has
maximal dimension, i.e.

dimyg p = dimg A,
by Remark 2 we get

M
dimg A =dimg A & t; = N for every i € Q.

logm

Togn
logd .cots . . . o .
711“2 ! -dimensional Hausdorff measure is positive and finite.
ogm

In particular, in that case the



