Near-Parabolic renormalization; hyperbolicity and rigidity

Davoud Cheraghi
Imperial College London

Simons semester at IMPAN, Sept 2015

There are several notions of renormalization in complex dynamics:

- Polynomial-like renormalization
- Commuting-pair renormalization
- Cylinder renormalization
- Sector renormalization
- Near-parabolic renormalization

On circle:

- renormalization of critical circle maps
- renormalization of critical circle covers
- renormalization of Henon maps

There are several notions of renormalization in complex dynamics:

- Polynomial-like renormalization
- Commuting-pair renormalization
- Cylinder renormalization
- Sector renormalization
- Near-parabolic renormalization

On circle:

- renormalization of critical circle maps
- renormalization of critical circle covers
- renormalization of Henon maps

Here, we focus on near-parabolic renormalizations!

There is an explicit Jordan domain $U \subset \mathbb{C}$ bounded by an analytic curve:

$$
0 \in U,-1 \notin U,-8 / 9 \in U
$$

There is an explicit Jordan domain $U \subset \mathbb{C}$ bounded by an analytic curve:

$$
0 \in U,-1 \notin U,-8 / 9 \in U
$$

Let

$$
P(z)=z(1+z)^{2} .
$$

- $P(0)=0$ and $P^{\prime}(0)=1$,
- $P^{\prime}(-1)=P^{\prime}(-1 / 3)=0 ; P(-1)=0$ and $P(-1 / 3)=-4 / 27 \in U$.
$P: U \rightarrow P(U)$ has a particular covering structure.

Let \mathcal{F} be the set of maps

$$
h=P \circ \psi^{-1}
$$

where

- $\psi: U \rightarrow \mathbb{C}$ is univalent and has quasi-conformal extension onto \mathbb{C},
- $\psi(0)=0$ and $\psi^{\prime}(0)=1$.

Let \mathcal{F} be the set of maps

$$
h=P \circ \psi^{-1}
$$

where

- $\psi: U \rightarrow \mathbb{C}$ is univalent and has quasi-conformal extension onto \mathbb{C},
- $\psi(0)=0$ and $\psi^{\prime}(0)=1$.

It follows that

- h is defined on $\psi(U)$,
- $h(0)=0, h^{\prime}(0)=1$,
- h has a critical point at c.p. $=\psi(-1 / 3)$ which is mapped to $-4 / 27$,
- $h: \psi(U) \rightarrow P(U)$ has the same covering structure as the one of P.

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

For $\alpha \in A_{\rho}$ and $h \in \mathcal{F}$, let

$$
(\alpha \ltimes h)(z)=h\left(e^{2 \pi i \alpha} z\right) .
$$

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

For $\alpha \in A_{\rho}$ and $h \in \mathcal{F}$, let

$$
(\alpha \ltimes h)(z)=h\left(e^{2 \pi i \alpha} z\right) .
$$

Set

$$
A_{\rho} \ltimes \mathcal{F}=\left\{(\alpha \ltimes h) \mid \alpha \in A_{\rho}, h \in \mathcal{F}\right\}
$$

We equip $A_{\rho} \ltimes \mathcal{F}$ with the topology of uniform convergence on compact sets.

We equip $A_{\rho} \ltimes \mathcal{F}$ with the topology of uniform convergence on compact sets.

Since

$$
\mathcal{F} \hookrightarrow\left\{\phi: \mathbb{D} \rightarrow \mathbb{C} \mid \phi(0)=0, \phi^{\prime}(0)=1\right\}
$$

by Koebe distortion theorem, \mathcal{F} forms a pre-compact class of maps.

Dynamics of a map $h \in \mathcal{F}$;
h has a parabolic fixed point at 0 ; the orbit of c.p. tends to 0 .

If ρ is small enough, $\alpha \ltimes h$ has two preferred fixed points at 0 and $\sigma=\sigma(\alpha \ltimes h) .|\sigma|=O(|\alpha|)$.

We have

$$
(\alpha \ltimes h)^{\prime}(0)=e^{2 \pi i \alpha}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta}
$$

where β is a complex number with $-1 / 2<\operatorname{Re} \beta \leq 1 / 2$.

If ρ is small enough, $\alpha \ltimes h$ has two preferred fixed points at 0 and $\sigma=\sigma(\alpha \ltimes h) .|\sigma|=O(|\alpha|)$.

We have

$$
(\alpha \ltimes h)^{\prime}(0)=e^{2 \pi i \alpha}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta}
$$

where β is a complex number with $-1 / 2<\operatorname{Re} \beta \leq 1 / 2$.

There is a simply connected region

$$
\mathcal{P}_{\alpha \ltimes h} \subset \operatorname{Dom}(h)
$$

which is bounded by analytic curves landing at $0, \sigma$, and c.p., as well as a univalent map

$$
\Phi_{\alpha \ltimes h}: \mathcal{P}_{\alpha \ltimes h} \rightarrow \mathbb{C}
$$

such that

$$
\Phi_{\alpha \ltimes h}((\alpha \ltimes h)(z))=\Phi_{\alpha \ltimes h}(z)+1, \text { on } \mathcal{P}_{\alpha \ltimes h}, \quad \Phi_{\alpha \ltimes h}(\text { с.p. })=0 .
$$

Proposition (Ch. 2009)

One may choose $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}$ such that

$$
\Phi_{\alpha \ltimes h}\left(\mathcal{P}_{\alpha \ltimes h}\right)=\left\{z \in \mathbb{C} \left\lvert\, 0<\operatorname{Re} z \leq \operatorname{Re} \frac{1}{\alpha}-k_{1}\right.\right\}
$$

and for $y \geq 0$,

$$
\arg \Phi_{\alpha \ltimes h}^{-1}(i y) \simeq-2 \pi y \operatorname{Im} \alpha+\arg \sigma+C_{\alpha \ltimes h} .
$$

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h, \ldots}$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}, \ldots$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

It follows from the work of Inou-Shishikura that there are chains

$$
A^{k} \xrightarrow[1-1]{\alpha \ltimes h} A^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} A^{1} \xrightarrow[1-1]{\alpha \ltimes h} A
$$

and

$$
C^{k} \xrightarrow[1-1]{\alpha \ltimes h} C^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} C^{1} \xrightarrow[2-1]{\alpha \ltimes h} C
$$

where A^{k} and C^{k} are contained in \mathcal{P}.

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}, \ldots$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

It follows from the work of Inou-Shishikura that there are chains

$$
A^{k} \xrightarrow[1-1]{\alpha \ltimes h} A^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\alpha \ltimes h} A^{1} \xrightarrow[1-1]{\alpha \ltimes h} A
$$

and

$$
C^{k} \xrightarrow[1-1]{\alpha \ltimes h} C^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} C^{1} \xrightarrow[2-1]{\alpha \ltimes h} C
$$

where A^{k} and C^{k} are contained in \mathcal{P}.
Prop. (Ch.) k is uniformly bounded from above independent of α and h.

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

We have $E(\zeta+1)=E(\zeta)+1$ on the boundary of $\Phi\left(A^{k} \cup C^{k}\right)$.

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

We have $E(\zeta+1)=E(\zeta)+1$ on the boundary of $\Phi\left(A^{k} \cup C^{k}\right)$.
E projects under $\operatorname{Exp}(\zeta)=\frac{-4}{27} e^{2 \pi i \zeta}$ to a holomorphic map defined on a punctured neighborhood of 0 . That is, there is a map $\mathcal{R}_{\text {NP-t }}(\alpha \ltimes h)$ with

$$
\mathcal{R}_{\mathrm{NP-t}}(\alpha \ltimes h) \circ \mathbb{E} \operatorname{xp}(\zeta)=\mathbb{E x p} \circ E(\zeta)
$$

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?
Key point: while the return map may require large number of iterates, renormalization is defined using the composition of $k+2$ maps?

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?
Key point: while the return map may require large number of iterates, renormalization is defined using the composition of $k+2$ maps?

Inou-Shishikura: The above map has the same covering structure as the one of P on U ! That is,

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h) \in\left\{\frac{-1}{\alpha} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
$$

There is a similar process to define a "return map" near σ-fixed point: It gives us

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{b}}(\alpha \ltimes h) \in\left\{\frac{-1}{\beta} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
$$

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2}
$$

so that its critical value lies at $-4 / 27$.

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2},
$$

so that its critical value lies at $-4 / 27$.
Then

$$
\alpha \ltimes Q_{0}=e^{2 \pi i \alpha} z+\frac{27}{16} e^{4 \pi i \alpha} z^{2}
$$

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2}
$$

so that its critical value lies at $-4 / 27$.
Then

$$
\alpha \ltimes Q_{0}=e^{2 \pi i \alpha} z+\frac{27}{16} e^{4 \pi i \alpha} z^{2}
$$

$\alpha \ltimes Q_{0}$ does not belong to $\alpha \ltimes \mathcal{F}$!
However, $\mathcal{R}_{\text {NP-t }}\left(\alpha \ltimes Q_{0}\right)$ and $\mathcal{R}_{\text {NP-b }}\left(\alpha \ltimes Q_{0}\right)$ are defined in the same fashion, and

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{NP-t}}\left(\alpha \ltimes Q_{0}\right) \in\left\{\frac{-1}{\alpha} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F}, \\
& \mathcal{R}_{\mathrm{NP-b}}\left(\alpha \ltimes Q_{0}\right) \in\left\{\frac{-1}{\beta} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
\end{aligned}
$$

