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Lecture II:

Hyperbolicity of the near-parabolic renormalization operators
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RNP-b(α⋉ h) = α̌(α⋉ h)⋉ ȟ(α⋉ h)

acting on A(ρ)⋉ F with values in C⋉ F .
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RNP-t preserves vertical fibers, while RNP-b does not preserve them.
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dTeich(f, g) = inf
{

logDil(ψ̂ ◦ ϕ̂−1)
}

where inf is taken over all quasi-conformal extensions ϕ̂ and ψ̂ of ϕ and
ψ onto C.
Here,

Dil(η) = sup
z∈Dom η

|ηz |+ |ηz |

|ηz | − |ηz |
.

is a measure of conformality of h.
dTeich(fn, f) → 0 implies fn → f uniformly on compact sets, but not vice
versa.

A(ρ) is equipped with the Euclidean metric.
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α 7→ ĥ(α, h), α 7→ ȟ(α⋉ h),
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Theorem (Ch. 2015)
There is L > 0 such that for every h ∈ F the maps

α 7→ ĥ(α, h) and α 7→ ȟ(α, h)

are L-Lipschitz with respect to dEucl on A(ρ) and dTeich on F .
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∂ĥ(α⋉h)
∂α

∂α̂

∂h
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What does this imply?
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For k > 0, we say that Υ is k-horizontal, if Υ is continuous on ∆, and for
all s1, s2 ∈ ∆ we have

dTeich(h(s1), h(s2)) ≤ k|α(s1)− α(s2)|.

Theorem
There are ρ′ > 0 and k > 0 such that

for every k-horizontal curve Υ in Aρ′ ⋉ F , the curves RNP-t(Υ) and
RNP-b(Υ) are k-horizontal in A∞ ⋉ F .

In other words, RNP-t and RNP-b map cone-fields of k1-horizontal curves
into themselves.
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Let κ = (κ1, κ2, κ3, . . . ) ∈ {t, b}N. For n ≥ 1, consider

Λ(〈κi〉
n
i=1

) =
{

α⋉ h
∣

∣

∣
RNP-κn

◦ · · · ◦ RNP-κ1
(α⋉ h) is defined

}

.

Example, Λ(κ1) = Aρ ⋉ F

Λ(t, κ2)= “dark grey region” ⋉F ; Λ(b, κ2) ≃ “black region” ⋉F :



The invariance of k-horizontal curves implies that

Theorem (Ch. Shishikura 2015)
For all k-horizontal family of maps Υ : Aρ′ → Aρ′ ⋉ F and all

κ ∈ {t, b}N, every connected component of the set Λ(κ) ∩Υ(Aρ′) is a
single point.
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It follows from the above Theorem and some more work:

Theorem (Ch., Shishikura 2015)
The renormalizations operators RNP-t and RNP-b are uniformly hyperbolic

on Aρ′ ⋉ F0.

Moreover, DRNP-t and DRNP-b at each point in Aρ′ ⋉ F0 have an

invariant one-dimensional expanding direction and an invariant uniformly

contracting co-dimension-one direction.

The above theorem has applications to

• the Feigenbaum-Coullet-Tresser universality of the scaling laws,

• the geometry of the Mandelbrot set (local-connectivity),

• dynamics of infinitely polynomial-like renormalizable quadratic
polynomials with degenerating geometries,


