## Mandelbrot percolations

#### Károly Simon

Department of Stochastics Institute of Mathematics Budapest University of Technolugy and Economics www.math.bme.hu/~simonk visiting IMPAN until 20 December, 2015

#### IMPAN File A

# 1 History

- Formal definition of the Mandelbrot Percolation
- A little bit of Probability Theory
  - Generator functions
  - Branching processes
- 3 Application for the intersection of Brownian traces
- Percolation phenomenon

# Fractal percolation, introduced by Mandelbrot early 1970's:

We partition the unit square into  $M^2$  congruent sub squares each of them are independently retained with probability p and discarded with probability 1 - p. In the squares retained after the previous step we repeat the same process at infinitum.





Figure: The Figure is from [3]. The first 5 approximation M = 3, p = 0.85

Károly Simon

#### History

Let  $\mathcal{E}_n$  be the set of retained level *n* squares. We write

$$\Lambda_n:=\bigcup_{Q\in\mathcal{E}_n}Q.$$

Then the statistically self-similar set of interest is:

$$\Lambda:=\bigcap_{n=1}^{\infty}\Lambda_n.$$

#### Definition 1.1

Officially: The process  $\mathcal{E}_n$  is called Fractal percolation or Mandelbrot percolation (and it has a number of other names) and  $\Lambda$  is its limit sets. However, in practice many people call the limit set  $\Lambda$ Mandelbrot (or fractal) percolation.

# The formal definition

The following formal definition of the Mandelbrot percolation in  $\mathbb{R}^d$  was given by M. Dekking [2]. Let  $\mathcal{I} := \{1, \ldots, M^2\}$ . We define  $\mathcal{I}^0 := \emptyset$ . Let  $\mathcal{T} := \bigcup_{n=1}^{\infty} \mathcal{I}^n$ be the  $M^d$ -array tree. The probability space is  $\Omega := \{0,1\}^{\mathcal{T}}$  the set of labeled  $M^d$ -array trees.

The probability measure  $\mathbb{P}_{\mathbf{p}}$  on  $\Omega$  is define in such a way that the family of labels  $X_{\mathbf{i}} \in \{0, 1\}$  of nodes  $\mathbf{i} \in \mathcal{T}$  satisfy:

• 
$$\mathbb{P}_{\mathbf{p}}(X_{\emptyset}=1)=1$$

• 
$$\mathbb{P}_{\mathbf{p}}(X_{i_1,\ldots,i_n}) = p_{i_n}$$

•  $\{X_i\}_{i \in \mathcal{T}}$  are independent.

Following [2] we define the survival set of level n by

$$S_n := \left\{ \mathbf{i} \in \mathcal{I}^n : X_{i_1...,i_k} = 1, \ \forall 1 \leq k \leq n 
ight\}.$$

Then

$$\Lambda_n=\bigcup_{\mathbf{i}\in S_n}Q_{\mathbf{i}},\quad \Lambda=\bigcap_{n=1}^\infty\Lambda_n,$$

00

where  $Q_i$  are defined for finite words  $i \in$  by the following Figure:

Károly Simon

# The formal definition



Figure: Definition of level *n* squares

It was proved by Falconer and independently Mauldin, Williams that conditioned on non-extinction:

(1) 
$$\dim_{\mathrm{H}} \Lambda = \dim_{\mathrm{B}} \Lambda = \frac{\log(M^2 \cdot p)}{\log M}$$
 a.s.

The meaning of the nominator of (1):

$$M^2 \cdot p = \mathbb{E}\left[\#\mathcal{E}_1
ight].$$

Therefore

(2)

$$M^2 \cdot p < 1 \Longrightarrow \Lambda = \emptyset$$
 a.s.

Another consequence of (1) is:

(3)  $\dim_{\mathrm{H}} \Lambda > 1$  a.s. conditioned on nonextinction  $\iff p > \frac{1}{M}$ .

Observe that  $\#\mathcal{E}_n$  is a Galton-Watson Branching process with offspring distribution  $\operatorname{Bin}(M^2, p)$ . So, now we recall couple of things from Probability Theory about such processes.

# History Formal definition of the Mandelbrot Percolation

- A little bit of Probability Theory
  - Generator functions
  - Branching processes
  - 3 Application for the intersection of Brownian traces
- Percolation phenomenon

# Notation used throughout this chapter

- In this chapter we always assume that X is a r.v., whose values can only be non-negative integers.
- $\forall k \in \mathbb{N}$  let  $p_k := \mathbb{P}(X = k)$ .
- Probability Generator Function (p.g.f.) for r.v. X:

$$g_X(s)$$
 :=  $\mathbb{E}\left[s^X\right] = \sum_{k=0}^{\infty} p_k \cdot s^k$ .

The probability generator function (in short p.g.f.) have the following three basic properties:

# p.g.f.

- (a) The p.g.f. uniquely defines the distribution function,
- (b) p.g.f. of sums of independent, non-negative r.v. is equal to the product of their p.g.f.
- (c)  $\mathbb{E}[X(X-1)\cdots(X-k)] = g^{(k+1)}(1)$ , where  $g^{(k+1)}$  is the  $k+1^{st}$  derivative of g.f. g. So (4)  $\mathbb{E}[X] = g'(1)$  and  $\mathbb{E}[X^2] = g''(1) + g'(1)$ .

#### Lemma 2.1

Let X and N be independent, non-negative r.v., the generator functions:  $g_X$  and  $g_N$ . Let  $\{X_i\}$  be independent,  $X_i \stackrel{d}{=} X$ .

 $R := X_1 + \cdots + X_N$  and then:

(5) 
$$g_R(s) = g_N(g_X(s)).$$

From here: (6)  $\mathbb{E}[R] = g'_R(1) = g'_N(\underbrace{g_X(1)}_1) \cdot g'_X(1) = \mathbb{E}[N] \cdot \mathbb{E}[X].$  Galton -Watson branching process  $\{X_k\}_{k=0}^{\infty}$  is defined as follows: Given numbers  $p_k \in [0, 1]$  such that  $\sum_{k=0}^{\infty} p_k = 1$ .

We start with one individual.  $X_0 := 1$ . It has k offsprings with probability  $p_k$ . Then each of these offsprings (if there are any) has the same offspring distribution  $\{p_k\}$ . More formally: let Y be a r.v. with

$$\mathbb{P}(Y=k)=p_k, \quad k\geq 0.$$

Let

 $\left\{ \frac{Y_{i}^{(n)}}{Y_{i}} \right\}_{n,i\geq 1}$  be independent copies of Y.

The size of *n*-th generation is:

(7) 
$$X_{n+1} := \sum_{i=1}^{X_n} Y_i^{(n+1)}.$$

That is  $Y_i^{(n+1)}$  is the number of offsprings of the *i*-th individual on level *n*. Let

$$g(s) := g_1(s) =: \mathbb{E}\left[e^Y\right] = \sum_{n=0}^{\infty} p_n \cdot s^n$$
.

# Branching processes

#### Let

$$g_n:=\mathbb{E}\left[s^{X_n}\right],$$

so  $g_n$  is the generator function of number  $X_n$  of individuals in the  $n^{th}$  generation. It follows from Lemma 2.1

$$g_{n+1}=g_n(g(s)).$$

From here we get by induction, that

(8) 
$$g_n(s) = \underbrace{g \circ \cdots \circ g}_n(s) =: \underbrace{g^n}_n(s).$$

Branching processes (cont.)

Applying this for s = 0:

(9)  $\mathbb{P}(X_n=0)=g^n(0).$ 

Hence,

 $\mathbb{P}$  (the probability of extinction) =  $\lim_{n \to \infty} \mathbb{P}(X_n = 0)$ .

#### The event:

$$\{\exists n, X_n = 0\} = \{X_n \to 0\}$$

is called extinction .

#### Proposition 2.2

Assume that  $p_1 \neq 1$ . Then on the event of nonextinction we have

$$Z_n \to \infty$$
.

We write q for the extinction probability.

# $\mathbb{E}[Y] = g'(1) < 1 \Longrightarrow \lim_{n \to \infty} \mathbb{P}(X_n = 0) = 1$



 $0 \le g'(q) < 1$ . So if So, the probability of one individual  $g^n := g \circ \cdots \circ g$ , then has *n* children is *p<sub>n</sub>*. Then the expected value of number of children  $g^n(x) \rightarrow q, \ \forall x < 1$ . is  $\underline{m} := \sum_{n=1}^{\infty} p_n \cdot n$ . We have defined From the previous slide generator function and from the graph: q  $g(s) := \sum_{n=0}^{\infty} p_n \cdot s^n$ . The function g is the probability of extinction. goes over point (1,1). Let  $\ell$  be the tangent line of g in s = 1. Then gradient of  $\ell$ : g'(1) = m. If m > 1, 0.6 then part of  $\ell$  which goes in  $[0,1]^2$ lies under y = x so there exists S "another" fix point q < 1 of g in [0, 1]. From the graph: 0.6

We say that the branching process is subcritical, critical or supercritical if the expected number of offsprings m < 1, m = 1 or m > 1 respectively. Clearly

$$\mathbb{E}[X_n] = (g^n)'(1) = (g'(1))^n = m^n$$

It is easy to prove that

Lemma 2.3

The sequence



is a martingale.

| 127  |      | <b>~</b> . |    |
|------|------|------------|----|
| Karo | IV Y | Sime       | n  |
|      | ·, · |            | ٠. |

Since  $\frac{X_n}{m^n}$  is non-negative, it converges. We call the limit W.

$$\lim_{n\to\infty}\frac{X_n}{m^n}=:W.$$

Theorem 2.4 (Kesten-Stigum)

Assume that m > 1. then the following are equivalent (i)  $\mathbb{P}(W = 0) = q$ , (probability of extinction). (ii)  $\mathbb{E}[W] = 1$ . (iii)  $\mathbb{E}[Y \cdot \log Y] < \infty$ .

That is, if (iii) holds then W > 0 a.s. conditioned on nonextinction. This follows from a general zero-one property for the Galton-Watson branching process:

#### Definition 2.5 (inherited property)

We say that a property of trees is inherited if

- whenever the tree has this property so do all the descendent trees of the offspring of the root and
- every finite tree has this property.

The proof of the following Proposition is available in [4, Proposition 5.6].

Proposition 2.6

Every inherited property has probability either 0 or 1 conditioned on nonextinction.

Let  $\tau(d)$  be the probability that a Galton- Watson tree contain a *d*-ary sub-tree begging at the root (initial individual). (In particular  $\tau(1)$  is the survival probability.) Dekking and Pakes [5] proved that

Proposition 2.7 (Dekking, Pakes)

Let g be the p.g.f. of a super critical Galton-Watson process. Put

$$D_d(s) := \sum_{j=1}^{d-1} (1-s)^j \frac{(D^j g)(s)}{j!}$$

Then  $1 - \tau(d)$  is the smallest fixed point of  $G_d$  in [0, 1].

Using the previous proposition and the fact that for a Bin(N, p) distribution the p.g.f. is:

(10) 
$$g(s) = (p \cdot s + (1-p))^N$$

one can show as a homework exercise that Corollary 2.8

If the offspring distribution in a Galton-Watson tree is Bin(d+1, p), then for p < 1 large enough we have  $\tau(d) > 0$ .

In the case of Mandelbrot percolation with parameters (M, p), the offspring distribution is  $\frac{\text{Bin}(M^2, p)}{\text{Bin}(M^2, p)}$ .

#### Definition 2.9

We say that a deterministic set  $E \subset [0, 1]^2$  is SC-like if it can be presented as

$$E:=\bigcap_{n=1}^{\infty}E_n,$$

where  $E_n$  is the union of  $(M^2 - 1)^n$  level *n* squares in such a uniform way that any  $Q \subset E_n$  level *n* square contains exactly  $M^2 - 1$  level n + 1 squares which are contained in  $E_{n+1}$ . Similarly to the Sierpinski Carpet we deleted one level *n* square in every step of the construction. However, as oppose to the Sierpiński-Carpet we do not require that the only deleted square assume in each step the same position.

Károly Simon

Mandelbrot percolations

#### Corollary 2.10

# If we choose p < 1 sufficiently close to 1 then $\Lambda(p)$ contains an SC-like set with positive probability.

History

• Formal definition of the Mandelbrot Percolation

- 2 A little bit of Probability Theory
  - Generator functions
  - Branching processes

#### 3 Application for the intersection of Brownian traces

Percolation phenomenon

The following theorem is due to Dvoretzky, Erdős , Kakutani, Taylor. Consider the *d*-dimensional Brownian trace:

## $[B_d] := \{B_d(t) : t \in [0,1]\}$

where  $B_d(t)$  is the *d*-dimensional Brownian motion started from a point in  $\mathbb{R}^d$  or the distribution of the initial point has bounded density on  $[0, 1]^d$ .

#### Theorem 3.1 (Intersection of Brownian traces)

 (i) *d* ≥ 4: Two independent Brownian traces which started from different points are disjoint.

(ii) 
$$d = 3$$
:

Two independent Brownian traces intersect a.s.

Three independent Brownian traces started from different points, have no mutual points of intersection. Theorem 3.1 cont. (iii) d = 2: any finite number of Brownian motions have mutual points of intersections.

Actually more is true. Hawkes proved in 1971 that for every k, if we consider k independent Brownian traces on the plane and  $H \subset \mathbb{R}^2$  is an arbitrary Borel set then the Hausdorff dimension of those points of H which are mutual intersection points of these k Brownian traces is gual to the Hausdorff dimension of H.

# Definition

Consider the Mandelbrot Percolation on  $\mathbb{R}^d$  for M = 2and for a given  $p \in (0, 1)$ . Since we always choose here M = 2 the resulted random set is denoted by  $\Lambda_d(p)$ .

Yuval Peres provided a simpler proof in [6] using Mandelbrot percolations. We sketch some ideas of this way of verifying Theorem 3.1 above.

# Preliminaries

The following Theorem were proved by Hawkes 1981 and Lyons 1990.

Theorem 3.2

Let  $p = 2^{-\beta} < 1$ . For any set  $H \subset [0,1]^d$  we have (i) If dim<sub>H</sub>(H)  $< \beta$  then  $H \cap \Lambda_d(p) = \emptyset$  a.s.. (ii) If dim<sub>H</sub>(H)  $> \beta$  then  $H \cap \Lambda_d(p) \neq \emptyset$  with positive probability.

# An important tool

Let  $\mu$  be a Borel measure on  $\mathbb{R}^d$ . The  $\beta$ -energy of  $\mu$  is

$$\mathcal{E}_eta := \int \int |x-y|^{-eta} d\mu(x) d\mu(y).$$

Given a Borel set  $H \subset \mathbb{R}^d$ . We define

$$\mathrm{Cap}_eta(\mathcal{H}) := \left[\inf_{\mathsf{spt}(\mu)\subset \mathcal{H}}\mathcal{E}_eta(\mu)
ight]^{-1},$$

where the infinum is taken for probability measures with the convention  $1/\infty=0.$ 

## Frostman 1935

#### Theorem 3.3

For  $K \subset \mathbb{R}^d$  we have

(11) 
$$\dim_{\mathrm{H}}(\mathcal{K}) = \inf \left\{ \beta > 0 : \operatorname{Cap}_{\beta}(\mathcal{K}) = 0 \right\}.$$

The following Proposition was stated in [6, Corllary 4.3] and it follows from theorems due to Benjamini, Lyons, Pemantle, Peres

#### Proposition 3.4

Let  $\beta \ge 0$  and  $d \ge 1$ . then for any closed  $K \subset [0,1]^d$  we have

$$\mathbb{P}\left( \mathcal{Q}_{d}\left(2^{-eta}
ight)\cap\mathcal{K}
eq\emptyset
ight) symp \operatorname{Cap}_{eta}(\mathcal{K}).$$

#### Definition 3.5

Two random Borel set A and B in  $\mathbb{R}^d$  are intersection-equivalent  $A \sim_i B$  in the open set U, if for any closed set  $H \subset U$ , we have

(12)  $\mathbb{P}(A \cap H \neq \emptyset) \asymp \mathbb{P}(B \cap H \neq \emptyset),$ 

where  $\asymp$  means that the ratio of the two sides are in between two positive constants. In this case (3.5) holds for every Borel set *H*.

This section is about the intersection equivalence between some Mandelbrot percolation sets and Brownian traces. The following theorem was proved by Yuval Peres [6] in 1996.

Theorem 3.6

(i) If d ≥ 3 then [B<sub>d</sub>] is intersection-equivalent to Λ<sub>d</sub> (2<sup>2-d</sup>) in the unit cube.
(ii) Let d = 2. For any Borel set H

 $\exists p < 1 \text{ s.t. } \mathbb{P}(\Lambda_2(p) \cap H) > 0$  $\Longrightarrow \mathbb{P}([B_2] \cap H) = 1.$ 

#### Lemma 3.7

Let  $A_1, \ldots, A_k$  and  $F_1, \ldots, F_k$  be random Borel sets in  $\mathbb{R}^d$  for some d, s.t.  $A_j \sim_i B_j$  for all  $j = 1, \ldots, k$ . Then

(13) 
$$A_1 \cap \cdots \cap A_k \sim_i F_1 \cap \cdots F_k.$$

#### proof

It is enough to prove for k = 2 (induction). Further, it is enough to prove that

$$(14) A_1 \cap A_2 \sim_i F_1 \cap A_2.$$

This is done by conditioning on  $A_2$ :

proof cont.

$$\mathbb{P}(A_1 \cap A_2 \cap H \neq \emptyset) = \mathbb{E}\left[\mathbb{P}(A_1 \cap A_2 \cap H \neq \emptyset | A_2)\right]$$
$$\approx \mathbb{E}\left[\mathbb{P}(F_1 \cap A_2 \cap H \neq \emptyset | A_2)\right]$$
$$\mathbb{P}(F_1 \cap A_2 \cap H \neq \emptyset).\Box$$

#### Lemma 3.8

(15)

For any 0 < p, g < 1, if  $\Lambda_d(p)$  and  $\Lambda'_d(q)$  are independent, then

$$\Lambda_d(p) \cap \Lambda'_d(q) \stackrel{d}{=} \Lambda_d(pq)$$
.

The proof is immediate from the construction.

Károly Simon

Mandelbrot percolations

# Proof of Thm 3.1 (i) Let d = 4. Then

$$\Lambda_4\left(\frac{1}{4}\right)\sim_i \left\{B_4(t):t\geq \varepsilon\right\},$$

and

$$\Lambda_4\left(rac{1}{4}
ight)\sim_i \{B_4'(s):s\geqarepsilon\}$$

So, by Lemma 3.7, we have

# Proof of Thm 3.1 (i) cont. $\{B_4(t): t \ge \varepsilon\} \cap \{B'_4(s): s \ge \varepsilon\} \cap [0,1]^4$ $\sim_i \Lambda_4\left(\frac{1}{4}\right) \cap \tilde{\Lambda}_4\left(\frac{1}{4}\right) \cap [0,1]^4.$

# $\mathbb{P}\left(\{B_4(t):t\geq arepsilon\}\cap \{B'_4(s):s\geq arepsilon\}\cap [0,1]^4 eq \emptyset ight)\ simes \mathbb{P}\left(\Lambda_4\left(rac{1}{4} ight)\cap ilde{\Lambda}_4\left(rac{1}{4} ight) eq \emptyset ight)\ =\mathbb{P}\left(\Lambda_4\left(rac{1}{16} ight) eq \emptyset ight)=0.$

Hence, there are no intersections apart from possibly the initial points.

Károly Simon

# Proof of Thm 3.1 (ii) $\{B_3(t):t\geq\varepsilon\}\sim_i \Lambda_3\left(\frac{1}{2}\right)$ $\{B'_3(s):s\geq\varepsilon\}\sim_i \Lambda'_3\left(\frac{1}{2}\right)$ Hence (16) $(\{B_3(t):t\geq\varepsilon\}\cap\{B'_3(s):s\geq\varepsilon\}\cap[0,1]^3)\sim_i\Lambda_3(\frac{1}{4}).$

#### Proof of Thm 3.1 (ii) cont.

In case of  $\Lambda_3\left(\frac{1}{4}\right)$  every individual has maximum 8 children independently each with probability 1/4 that is

expected number of offsprings is 
$$= 8 \cdot \frac{1}{4} = 2 > 1$$

This implies that with positive probability  $\Lambda_3\left(\frac{1}{4}\right) \neq \emptyset$ . So, from (16) we obtain that two independent copies of Brownian traces in  $\mathbb{R}^3$  intersect with positive probability.

#### Proof of Thm 3.1 (ii) cont.

The mutual intersection of three independent Brownian traces is intersection equivalent to

$$\Lambda_{3}\left(\frac{1}{2}\right) \cap \tilde{\Lambda}_{3}\left(\frac{1}{2}\right) \cap \tilde{\Lambda}_{3}\left(\frac{1}{2}\right) \sim_{i} \Lambda_{3}\left(\frac{1}{8}\right)$$

(processes of different color are independent). Then

expected number of offsprings is 
$$= 8 \cdot \frac{1}{8} = 1$$
.

It is well known from the theory of Branching processes that this implies that  $\Lambda_3\left(\frac{1}{8}\right) = \emptyset$  a.s.. So, the same holds for the mutual intersection of three Borwnian traces started from different points.

Károly Simon

Mandelbrot percolations

#### History

• Formal definition of the Mandelbrot Percolation

- 2 A little bit of Probability Theory
  - Generator functions
  - Branching processes

3 Application for the intersection of Brownian traces

#### Percolation phenomenon

# $\Lambda$ percolates

Let  $\Lambda(\omega)$  be a realization of the Mandelbrot percolation random Cantor set. We say that  $\Lambda(\omega)$  percolates if there is a connected component of  $\Lambda(\omega)$  which connects the left and the right walls of the square  $[0, 1]^2$ .

Let us write  $\Lambda_{|\leftrightarrow|}$  for the event that the random self-similar set  $\Lambda$  percolates.

# Theorem [J.T Chayes, L. Chayes, R. Durrett] [1]

Let TD be the event that  $\Lambda$  is totally disconnected. That is all connected components are singletons. Let

$$p_{c}:=\inf\left\{ p:\mathbb{P}_{p}\left( \mathcal{E}_{|\!
ightarrowec}
ight) >0
ight\}$$

Then  $0 < p_c < 1$  and

$$p_c = \sup \left\{ p : \mathbb{P}_p(TD) = 1 \right\}.$$

If  $p < p_c < 1$  then all connected components of  $\Lambda$  are singletons. If  $p \ge p_c$  then  $\Lambda$  percolates with positive probability. (As opposed to the usual percolation, which percolates at  $p_c$  with zero probability.)

Károly Simon

- Henk Don [3] in 2013 published some ne bounds on the crfitical probability for different values of M.
- lower bounds:  $p_c(2) > 0.881$  and  $p_c(3) > 0.784$ . upper bounds :  $p_c(2) < 0.993$ ,  $p_c(3) < 0.94$  and  $p_c(4) < 0.972$ .

### The weaker assertion that we prove

In what follows we prove that following weaker assertion: Let  $M \ge 3$  be fixed. We consider the Mandelbrot percolation on the plane which corresponds to probability p. Let us denote it by  $\Lambda(p)$ . We prove that

(17) 
$$\exists p_c < 1$$
, s.t.  $p > p_c$ ,  $\mathbb{P}(\Lambda(p) \text{ percolates.}) > 0$ .

That is  $\Lambda(p)$  contains a continuous path  $t \mapsto (x(t), y(t)), t \in [0, 1]$  such that x(0) = 0 and x(1) = 1. Sometimes we express this as  $\Lambda(p)$  has a left-right crossing.

#### Lemma 4.1

Assume that  $M \ge 3$ . Assume that each level n square gives birth to at least  $M^2 - 1$  level n + 1 squares. Then there is a left-to-right crossing at all levels n. More precisely:

For every n, there is a sequence

 $Q_1,\ldots,Q_k\in\mathcal{E}_n$ 

of level n retained squares such that any two consecutive squares share a common side and  $Q_1$  has a common side with the Eastern and  $Q_k$  has a common side with the Western wall of  $[0, 1]^2$ .

#### Proof

Recall that we write  $\mathcal{E}_n$  for the collection of retained level n squares. Observe that

(18) 
$$\forall Q \in \mathcal{E}_n, \ \forall C, D \in \mathcal{E}_{n+1}, C, D \subset Q,$$
  
C side connected to D.

Assume that there is a left-to-right crossing

$$Q_1,\ldots,Q_r\in\mathcal{E}_n$$
.

We define

$$Q_0 = Q_{r+1} := [0, 1]^2.$$



#### Figure: Figure for the proof of Lemma 4.1

#### Proof cont.

For every i = 0, ..., r, let  $S_i$  be the common side of  $Q_i$ and  $Q_{i+1}$  for i = 0, ..., r. We define

 $C_i, D_i \in \mathcal{E}_{n+1}, C_i \subset Q_i$ , and  $D_i \subset Q_{i+1}$  share a side.

By (18)  $D_i$  is side connected to  $C_{i+1}$ . This implies that there is a left-to-right crossing from  $D_0$  to  $C_r$ .  $\Box$ 

So, what we prove it the following special case of Theorem 49

Theorem 4.2

For  $M \ge 3$  the left-right crossing probability  $\theta_{\infty}(p)$  is positive.

The same is true for M = 2 but it requires extra steps in the proof.

Proof.

By Corollary 2.10  $\Lambda(p)$  contains an SC-like set with positive probability. However, in Lemma 4.1 we have proved that in an SC-like set we can always find a left-to-right crossing.

# Preparation for the case of M = 2

Let  $\Lambda_{n,M}(p)$  be the *n*-th approximation of the Mandelbrot percolation set on the plane when we divide the square into  $M^2$  congruent sub-squares of size  $M^{-1}$  and the probability of retaining them is *p*. We need the definition of stochastic ordering:

#### Definition 4.3 (Stochastic domination)

Let X, Y be r.v. not necessarily living on the same probability space. We say that Ystochastically dominates  $X, (Y \succeq X)$  if

$$\forall x, \mathbb{P}(X \leq x) \geq \mathbb{P}(Y \leq x).$$

19)

## The case of M = 2

Our aim is the sketch why Lemma 4.1 holds for M = 2.

For every p ∈ (0,1) there is a q ∈ (0,1) such that if Y ~ Bernoulli(q) and X<sub>1</sub>,..., X<sub>M<sup>2</sup></sub> are independent and X<sub>i</sub> ~ Bernoulli(√p) then

$$Y \succeq \max\left\{X_1, \dots, X_{M^2}
ight\}$$

- Then  $\mathcal{E}_{2,M}(q) \succeq \mathcal{E}_{1,M^2}(p)$
- In case of M = 2 we can apply Lemma 4.1 for  $\mathcal{E}_{1,4}(p)$  which completes the proof.

## References

 J. Chayes, L. Chayes, and R. Durrett. Connectivity properties of mandelbrot's percolation process. Probability theory and related fields, 77(3):307–324, 1988.

- M. Dekking. Random cantor sets and their projections. Fractal Geometry and Stochastics IV, pages 269–284, 2009.
- [3] H. Don. New methods to bound the critical probability in fractal percolation. Random Structures & Algorithms, 2014.
- [4] R. Lyons and Y. Peres. Probability on trees and networks, 2005.
- [5] A. G. Pakes and F. Dekking. On family trees and subtrees of simple branching processes. *Journal of Theoretical Probability*, 4(2):353–369, 1991.
- [6] Y. Peres. Intersection-equivalence of brownian paths and certain branching processes. Communications in mathematical physics, 177(2):417–434, 1996.