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History

Fractal percolation, introduced by
Mandelbrot early 1970’s:
We partition the unit square into M2 congruent sub
squares each of them are independently retained with
probability p and discarded with probability 1− p. In the
squares retained after the previous step we repeat the
same process at infinitum.

Λ3
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History

Figure: The Figure is from [3]. The first 5 approximation M = 3,
p = 0.85
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History

Let En be the set of retained level n squares. We write
Λn :=

⋃
Q∈En

Q.

Then the statistically self-similar set of interest is:

Λ :=
∞⋂

n=1
Λn.

Definition 1.1
Officially: The process En is called
Fractal percolation or Mandelbrot percolation (and it
has a number of other names) and Λ is its limit sets.
However, in practice many people call the limit set Λ
Mandelbrot (or fractal) percolation.
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History Formal definition of the Mandelbrot Percolation

The formal definition

The following formal definition of the Mandelbrot
percolation in Rd was given by M. Dekking [2]. Let
I :=

{
1, . . . ,M2

}
. We define I0 := ∅. Let T :=

∞⋃
n=0
In

be the Md -array tree.
The probability space is Ω := {0, 1}T the set of labeled
Md -array trees.
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History Formal definition of the Mandelbrot Percolation

The probability measure Pp on Ω is define in such a way
that the family of labels Xi ∈ {0, 1} of nodes i ∈ T
satisfy:

Pp(X∅ = 1) = 1
Pp(Xi1,...,in) = pin
{Xi}i∈T are independent .

Following [2] we define the survival set of level n by

Sn := {i ∈ In : Xi1...,ik = 1, ∀1 ≤ k ≤ n} .

Then
Λn =

⋃
i∈Sn

Qi, Λ =
∞⋂

n=1
Λn,

where Qi are defined for finite words i ∈ by the following
Figure:
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History Formal definition of the Mandelbrot Percolation

The formal definition

Q6 = ϕ6(Q)

x1

x4

x7

x2

x5

x8

x3

x6

x9
x47

ϕ47(Q) = Q47
Q = [0, 1]2

Figure: Definition of level n squares
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History Formal definition of the Mandelbrot Percolation

It was proved by Falconer and independently Mauldin,
Williams that conditioned on non-extinction:

(1) dimH Λ = dimB Λ = log(M2 · p)
log M a.s.

The meaning of the nominator of (1):

M2 · p = E [#E1] .

Therefore

(2) M2 · p < 1 =⇒ Λ = ∅ a.s.
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History Formal definition of the Mandelbrot Percolation

Another consequence of (1) is:

(3) dimH Λ > 1 a.s. conditioned on nonextinction

⇐⇒ p > 1
M .

Observe that #En is a Galton-Watson Branching
process with offspring distribution Bin(M2, p) . So, now
we recall couple of things from Probability Theory about
such processes.
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A little bit of Probability Theory
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A little bit of Probability Theory Generator functions

Notation used throughout this chapter

In this chapter we always assume that X is a r.v.,
whose values can only be non-negative integers.
∀k ∈ N let pk := P (X = k) .
Probability Generator Function (p.g.f.) for r.v. X :

gX (s) := E
[
sX ] =

∞∑
k=0

pk · sk .

The probability generator function (in short p.g.f. )
have the following three basic properties:
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A little bit of Probability Theory Generator functions

p.g.f.

(a) The p.g.f. uniquely defines the distribution
function,

(b) p.g.f. of sums of independent, non-negative
r.v. is equal to the product of their p.g.f.

(c) E [X (X − 1) · · · (X − k)] = g (k+1)(1), where
g (k+1) is the k + 1st derivative of g.f. g . So
(4)
E [X ] = g ′(1) and E

[
X 2] = g ′′(1) + g ′(1).
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A little bit of Probability Theory Generator functions

Lemma 2.1

Let X and N be independent, non-negative r.v., the
generator functions: gX and gN . Let {Xi} be
independent, Xi

d= X .

R := X1 + · · ·+ XN and then:

(5) gR(s) = gN(gX (s)).

From here:
(6)

E [R] = g ′R(1) = g ′N(gX (1)︸ ︷︷ ︸
1

) · g ′X (1) = E [N] · E [X ] .
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A little bit of Probability Theory Branching processes

Galton -Watson branching process {Xk}∞k=0 is defined as
follows: Given numbers pk ∈ [0, 1] such that

∞∑
k=0

pk = 1.

We start with one individual. X0 := 1. It has k offsprings
with probability pk . Then each of these offsprings (if
there are any) has the same offspring distribution {pk}.
More formally: let Y be a r.v. with

P (Y = k) = pk , k ≥ 0.

Let {
Y (n)

i

}
n,i≥1

be independent copies of Y .
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A little bit of Probability Theory Branching processes

The size of n-th generation is:

(7) Xn+1 :=
Xn∑
i=1

Y (n+1)
i .

That is Y (n+1)
i is the number of offsprings of the i-th

individual on level n. Let

g(s) := g1(s) =: E
[
eY ] =

∞∑
n=0

pn · sn .
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A little bit of Probability Theory Branching processes

Branching processes

Let
gn := E

[
sXn

]
,

so gn is the generator function of number Xn of
individuals in the nth generation. It follows from Lemma
2.1

gn+1 = gn(g(s)).
From here we get by induction, that

(8) gn(s) = g ◦ · · · ◦ g︸ ︷︷ ︸
n

(s) =: gn (s).
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A little bit of Probability Theory Branching processes

Branching processes (cont.)

Applying this for s = 0:

(9) P (Xn = 0) = gn(0).

Hence,

P (the probability of extinction) = limn→∞P(Xn = 0).
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A little bit of Probability Theory Branching processes

The event:

{∃n, Xn = 0} = {Xn → 0}

is called extinction .
Proposition 2.2
Assume that p1 6= 1. Then on the event of nonextinction
we have

Zn →∞.

We write q for the extinction probability.
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A little bit of Probability Theory Branching processes

E [Y ]=g ′(1)<1 =⇒ limn→∞P(Xn = 0) = 1

g(s)

g(0) g2(0) g3(0)
g4(0)

0 1

1
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A little bit of Probability Theory Branching processes

So, the probability of one individual
has n children is pn . Then the
expected value of number of children
is m :=

∞∑
n=1

pn · n. We have defined
generator function
g(s) :=

∞∑
n=0

pn · sn . The function g

goes over point (1, 1). Let ` be the
tangent line of g in s = 1. Then
gradient of `: g ′(1) = m. If m > 1 ,
then part of ` which goes in [0, 1]2
lies under y = x so there exists
”another” fix point q < 1 of g in
[0, 1]. From the graph:

0 ≤ g ′(q)< 1. So if
gn := g ◦ · · · ◦ g︸ ︷︷ ︸

n
, then

gn(x)→ q, ∀x < 1 .
From the previous slide
and from the graph: q
is the probability of
extinction.

`

q

q

g(s)
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A little bit of Probability Theory Branching processes

We say that the branching process is subcritical, critical
or supercritical if the expected number of offsprings
m < 1, m = 1 or m > 1 respectively.
Clearly

E [Xn] = (gn)′(1) = (g ′(1))n = mn .

It is easy to prove that
Lemma 2.3

The sequence
Xn
mn

is a martingale.
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A little bit of Probability Theory Branching processes

Since Xn
mn is non-negative, it converges. We call the limit

W .
limn→∞

Xn
mn =: W .

Theorem 2.4 (Kesten-Stigum)

Assume that m > 1. then the following are equivalent
(i) P (W = 0) = q, ( probability of extinction).

(ii) E [W ] = 1.
(iii) E [Y · log Y ] <∞.

That is, if (iii) holds then W > 0 a.s. conditioned on
nonextinction. This follows from a general zero-one
property for the Galton-Watson branching process:
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A little bit of Probability Theory Branching processes

Definition 2.5 (inherited property)
We say that a property of trees is inherited if

whenever the tree has this property so do all the
descendent trees of the offspring of the root and
every finite tree has this property.

The proof of the following Proposition is available in [4,
Proposition 5.6].
Proposition 2.6

Every inherited property has probability either 0 or 1
conditioned on nonextinction.
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A little bit of Probability Theory Branching processes

Let τ(d) be the probability that a Galton- Watson tree
contain a d-ary sub-tree begging at the root (initial
individual). (In particular τ(1) is the survival probability.)
Dekking and Pakes [5] proved that

Proposition 2.7 (Dekking, Pakes)

Let g be the p.g.f. of a super critical Galton-Watson
process. Put

Dd(s) :=
d−1∑
j=1

(1− s)j (Djg)(s)
j! .

Then 1− τ(d) is the smallest fixed point of Gd in [0, 1].
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A little bit of Probability Theory Branching processes

Using the previous proposition and the fact that for a
Bin (N , p) distribution the p.g.f. is:

(10) g(s) = (p · s + (1− p))N .

one can show as a homework exercise that
Corollary 2.8

If the offspring distribution in a Galton-Watson tree is
Bin(d + 1, p), then for p < 1 large enough we have
τ(d) > 0 .

In the case of Mandelbrot percolation with parameters
(M, p), the offspring distribution is Bin

(
M2, p

)
.
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A little bit of Probability Theory Branching processes

Definition 2.9
We say that a deterministic set E ⊂ [0, 1]2 is SC-like if
it can be presented as

E :=
∞⋂

n=1
En ,

where En is the union of (M2 − 1)n level n squares in
such a uniform way that any Q ⊂ En level n square
contains exactly M2 − 1 level n + 1 squares which are
contained in En+1. Similarly to the Sierṕinski Carpet we
deleted one level n square in every step of the
construction. However, as oppose to the
Sierpiński-Carpet we do not require that the only deleted
square assume in each step the same position.
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A little bit of Probability Theory Branching processes

Corollary 2.10

If we choose p < 1 sufficiently close to 1 then Λ(p)
contains an SC-like set with positive probability.
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Application for the intersection of Brownian traces

The following theorem is due to Dvoretzky, Erdős ,
Kakutani, Taylor. Consider the d-dimensional Brownian
trace:

[Bd ] := {Bd(t) : t ∈ [0, 1]}

where Bd(t) is the d-dimensional Brownian motion
started from a point in Rd or the distribution of the
initial point has bounded density on [0, 1]d .
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Application for the intersection of Brownian traces

Theorem 3.1 (Intersection of Brownian traces)

(i) d ≥ 4: Two independent Brownian traces
which started from different points are
disjoint.

(ii) d = 3:
1 Two independent Brownian traces

intersect a.s.
2 Three independent Brownian traces

started from different points, have
no mutual points of intersection .
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Application for the intersection of Brownian traces

Theorem 3.1 cont.
(iii) d = 2: any finite number of Brownian

motions have mutual points of intersections.

Actually more is true. Hawkes proved in 1971 that for
every k , if we consider k independent Brownian traces on
the plane and H ⊂ R2 is an arbitrary Borel set then the
Hausdorff dimension of those points of H which are
mutual intersection points of these k Brownian traces is
gual to the Hausdorff dimension of H .
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Application for the intersection of Brownian traces

Definition

Consider the Mandelbrot Percolation on Rd for M = 2
and for a given p ∈ (0, 1). Since we always choose here
M = 2 the resulted random set is denoted by Λd(p) .

Yuval Peres provided a simpler proof in [6] using
Mandelbrot percolations. We sketch some ideas of this
way of verifying Theorem 3.1 above.
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Application for the intersection of Brownian traces

Preliminaries

The following Theorem were proved by Hawkes 1981 and
Lyons 1990.
Theorem 3.2

Let p = 2−β < 1. For any set H ⊂ [0, 1]d we have
(i) If dimH(H) < β then H ∩ Λd(p) = ∅ a.s..

(ii) If dimH(H) > β then H ∩ Λd(p) 6= ∅ with
positive probability.
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Application for the intersection of Brownian traces

An important tool

Let µ be a Borel measure on Rd . The β-energy of µ is

Eβ :=
∫ ∫
|x − y |−βdµ(x)dµ(y).

Given a Borel set H ⊂ Rd . We define

Capβ(H) :=
[

inf
spt(µ)⊂H

Eβ(µ)
]−1

,

where the infinum is taken for probability measures with
the convention 1/∞ = 0.
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Application for the intersection of Brownian traces

Frostman 1935

Theorem 3.3

For K ⊂ Rd we have

(11) dimH(K ) = inf
{
β > 0 : Capβ(K ) = 0

}
.

The following Proposition was stated in [6, Corllary 4.3]
and it follows from theorems due to Benjamini, Lyons,
Pemantle, Peres
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Application for the intersection of Brownian traces

Proposition 3.4
Let β ≥ 0 and d ≥ 1. then for any closed K ⊂ [0, 1]d we
have

P
(
Qd

(
2−β

)
∩ K 6= ∅

)
� Capβ(K ).
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Application for the intersection of Brownian traces

Definition 3.5

Two random Borel set A and B in Rd are
intersection-equivalent A ∼i B in the open set U , if
for any closed set H ⊂ U , we have

(12) P (A ∩ H 6= ∅) � P (B ∩ H 6= ∅) ,

where � means that the ratio of the two sides are in
between two positive constants. In this case (3.5) holds
for every Borel set H .

This section is about the intersection equivalence
between some Mandelbrot percolation sets and Brownian
traces.
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Application for the intersection of Brownian traces

The following theorem was proved by Yuval Peres [6] in
1996.
Theorem 3.6

(i) If d ≥ 3 then [Bd ] is intersection-equivalent
to Λd

(
22−d

)
in the unit cube.

(ii) Let d = 2 . For any Borel set H

∃p < 1 s.t. P (Λ2(p) ∩ H) > 0
=⇒ P ([B2] ∩ H) = 1.
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Application for the intersection of Brownian traces

Lemma 3.7

Let A1, . . . ,Ak and F1, . . . ,Fk be random Borel sets in
Rd for some d, s.t. Aj ∼i Bj for all j = 1, . . . , k. Then

(13) A1 ∩ · · · ∩ Ak ∼i F1 ∩ · · · Fk .

proof
It is enough to prove for k = 2 (induction). Further, it is
enough to prove that

(14) A1 ∩ A2 ∼i F1 ∩ A2.

This is done by conditioning on A2:
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Application for the intersection of Brownian traces

proof cont.

P (A1 ∩ A2 ∩ H 6= ∅) = E [P (A1 ∩ A2 ∩ H 6= ∅|A2)]
� E [P (F1 ∩ A2 ∩ H 6= ∅|A2)]

P (F1 ∩ A2 ∩ H 6= ∅) .�

Lemma 3.8
For any 0 < p, g < 1, if Λd(p) and Λ′d(q) are
independent, then

(15) Λd(p) ∩ Λ′d(q) d= Λd(pq) .

The proof is immediate from the construction.
Károly Simon Mandelbrot percolations November 2, 2015 41 / 59



Application for the intersection of Brownian traces

Proof of Thm 3.1 (i)
Let d = 4. Then

Λ4

(1
4

)
∼i {B4(t) : t ≥ ε} ,

and
Λ4

(1
4

)
∼i {B ′4(s) : s ≥ ε}

So, by Lemma 3.7, we have
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Application for the intersection of Brownian traces

Proof of Thm 3.1 (i) cont.
{B4(t) : t ≥ ε} ∩ {B ′4(s) : s ≥ ε} ∩ [0, 1]4

∼i Λ4

(1
4

)
∩ Λ̃4

(1
4

)
∩ [0, 1]4.

P
(
{B4(t) : t ≥ ε} ∩ {B ′4(s) : s ≥ ε} ∩ [0, 1]4 6= ∅

)
� P

(
Λ4

(1
4

)
∩ Λ̃4

(1
4

)
6= ∅

)

= P
(

Λ4

( 1
16

)
6= ∅

)
= 0 .

Hence, there are no intersections apart from possibly the
initial points.
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Application for the intersection of Brownian traces

Proof of Thm 3.1 (ii)

{B3(t) : t ≥ ε} ∼i Λ3

(1
2

)

{B ′3(s) : s ≥ ε} ∼i Λ′3
(1

2

)

Hence
(16)(
{B3(t) : t ≥ ε} ∩ {B ′3(s) : s ≥ ε} ∩ [0, 1]3

)
∼i Λ3

(1
4

)
.
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Application for the intersection of Brownian traces

Proof of Thm 3.1 (ii) cont.
In case of Λ3

(1
4
)

every individual has maximum 8
children independently each with probability 1/4 that is

expected number of offsprings is = 8 · 1
4 = 2 > 1

This implies that with positive probability Λ3
(1

4
)
6= ∅.

So, from (16) we obtain that two independent copies of
Brownian traces in R3 intersect with positive probability.
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Application for the intersection of Brownian traces

Proof of Thm 3.1 (ii) cont.
The mutual intersection of three independent Brownian
traces is intersection equivalent to

Λ3

(1
2

)
∩ Λ̃3

(1
2

)
∩ Λ̂3

(1
2

)
∼i Λ3

(1
8

)
.

(processes of different color are independent). Then

expected number of offsprings is = 8 · 1
8 = 1.

It is well known from the theory of Branching processes
that this implies that Λ3

(1
8
)

= ∅ a.s.. So, the same holds
for the mutual intersection of three Borwnian traces
started from different points.
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Percolation phenomenon

Λ percolates

Let Λ(ω) be a realization of the Mandelbrot percolation
random Cantor set. We say that Λ(ω) percolates if there
is a connected component of Λ(ω) which connects the
left and the right walls of the square [0, 1]2.

Let us write Λ|!| for the event that the random
self-similar set Λ percolates.
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Percolation phenomenon

Theorem [J.T Chayes, L. Chayes, R.
Durrett] [1]
Let TD be the event that Λ is totally disconnected.
That is all connected components are singletons. Let

pc := inf
{

p : Pp
(
E|!|

)
> 0

}
Then 0 < pc < 1 and

pc = sup {p : Pp (TD) = 1} .

If p < pc < 1 then all connected components of Λ are
singletons. If p ≥ pc then Λ percolates with positive
probability. (As opposed to the usual percolation, which
percolates at pc with zero probability.)
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Percolation phenomenon

Henk Don [3] in 2013 published some ne bounds on the
crfitical probability for different values of M.
lower bounds: pc(2) > 0.881 and pc(3) > 0.784.
upper bounds : pc(2) < 0.993, pc(3) < 0.94 and

pc(4) < 0.972.
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Percolation phenomenon

The weaker assertion that we prove

In what follows we prove that following weaker assertion:
Let M ≥ 3 be fixed. We consider the Mandelbrot
percolation on the plane which corresponds to probability
p. Let us denote it by Λ(p). We prove that

(17) ∃pc < 1, s.t. p > pc , P (Λ(p) percolates.) > 0.

That is Λ(p) contains a continuous path
t 7→ (x(t), y(t)), t ∈ [0, 1] such that x(0) = 0 and
x(1) = 1. Sometimes we express this as Λ(p) has a
left-right crossing.
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Percolation phenomenon

Lemma 4.1

Assume that M ≥ 3. Assume that each level n square
gives birth to at least M2 − 1 level n + 1 squares. Then
there is a left-to-right crossing at all levels n. More
precisely:

For every n, there is a sequence

Q1, . . . ,Qk ∈ En

of level n retained squares such that any two consecutive
squares share a common side and Q1 has a common side
with the Eastern and Qk has a common side with the
Western wall of [0, 1]2.
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Percolation phenomenon

Proof
Recall that we write En for the collection of retained level
n squares. Observe that

(18) ∀Q ∈ En, ∀C ,D ∈ En+1,C ,D ⊂ Q,
C side connected to D.

Assume that there is a left-to-right crossing

Q1, . . . ,Qr ∈ En .

We define
Q0 = Qr+1 := [0, 1]2.
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Percolation phenomenon

Qi Qi+1

Di−1

Ci Di

Ci+1

Si

Figure: Figure for the proof of Lemma 4.1
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Percolation phenomenon

Proof cont.
For every i = 0, . . . r , let Si be the common side of Qi
and Qi+1 for i = 0, . . . r . We define

Ci ,Di ∈ En+1,Ci ⊂ Qi , and Di ⊂ Qi+1 share a side.

By (18) Di is side connected to Ci+1. This implies that
there is a left-to-right crossing from D0 to Cr . �

Károly Simon Mandelbrot percolations November 2, 2015 55 / 59



Percolation phenomenon

So, what we prove it the following special case of
Theorem 49
Theorem 4.2
For M ≥ 3 the left-right crossing probability θ∞(p) is
positive.

The same is true for M = 2 but it requires extra steps in
the proof.
Proof.
By Corollary 2.10 Λ(p) contains an SC-like set with
positive probability. However, in Lemma 4.1 we have
proved that in an SC-like set we can always find a
left-to-right crossing.
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Percolation phenomenon

Preparation for the case of M = 2
Let Λn,M(p) be the n-th approximation of the
Mandelbrot percolation set on the plane when we divide
the square into M2 congruent sub-squares of size M−1

and the probability of retaining them is p. We need the
definition of stochastic ordering:
Definition 4.3 (Stochastic domination)
Let X ,Y be r.v. not necessarily living on the same
probability space. We say that Y
stochastically dominates X , (Y � X ) if

(19) ∀x , P (X ≤ x) ≥ P (Y ≤ x) .
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The case of M = 2

Our aim is the sketch why Lemma 4.1 holds for M = 2.
For every p ∈ (0, 1) there is a q ∈ (0, 1) such that if
Y ∼ Bernoulli(q) and X1, . . . ,XM2 are independent
and Xi ∼ Bernoulli(√p) then

Y � max {X1, . . . ,XM2}

Then E2,M(q) � E1,M2(p)
In case of M = 2 we can apply Lemma 4.1 for
E1,4(p) which completes the proof.
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