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Károly Simon Mandelbrot percolations November 2, 2015 1 / 94

www.math.bme.hu/~simonk


Projections of Manedelbrot percolation

1 Projections of Manedelbrot percolation
2 Algebraic difference of frcatal percolations
3 The projections
4 Falconer-Grimett Teorem
5 New results
6 Non-homogeneous Fractal percolation sets
7 Homogeneous percolation of small dimension
8 The sum of three linear random Cantor sets
9 The projection of measures

Peres-Rams Theorem
random cut-out set

10 The proof of the Dimension formula
Károly Simon Mandelbrot percolations November 2, 2015 2 / 94



Projections of Manedelbrot percolation

From the dimension formula the following hold almost
surely:

If p ≤ 1/M2 then Λ = ∅.
If 1/M2 < p < 1/M then dimH(Λ) < 1 (but Λ 6= ∅
with positive probability).
If p > 1

M then either
(a) Λ = ∅ or
(b) dimH(Λ) > 1 .

Recall: 1

dimH Λ = dimB Λ = log(M2 · p)
log M a.s.
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Projections of Manedelbrot percolation

Marstrand Theorem

Theorem 1.1 (Marstrand)
Let B ⊂ R2 be a Borel set.

1 If dimH(B) ≤ 1 then for Leb-a.e. θ, we have

dimH(projθ(B)) = dimH(B)

2 If dimH(B) > 1 then for Leb-a.e. θ, we have

Leb (projθ(B)) > 0.
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Algebraic difference of frcatal percolations

The outline of the construction I

Given an integer M ≥ 2 and a vector of probabilities

(po, p1, . . . , pM−1) ∈ [0, 1]M .

Which is in general NOT a probability vector. We
divide the unit interval I = [0, 1] into the M subintervals
Ik =

[k−1
M , k

M
]
, k = 0, . . . ,M − 1. We keep Ik with

probability pk . For all intervals kept, repeat this
algorithm infinitely many times. Whatever remains it is
our random Cantor set Λ.
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Algebraic difference of frcatal percolations

Motivation
Λ1,Λ2 ⊂ R. The algebraic difference set

Λ2 − Λ1 := {f2 − f1 : f1 ∈ Λ1, f2 ∈ Λ2} .

Motivation to study it comes from e.g. :
Dynamical systems, unfolding of homoclinic
tangency (Palis, Takens)
Diophantine approximation (Moreira, Yoccoz).

Palis conjectured: For dynamically defined Cantor sets:
”Generically” Either

Λ2 − Λ1 is small: Leb(Λ2 − Λ1) = 0 or
Λ2 − Λ1 is big: Λ2 − Λ1 contains some intervals.
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Algebraic difference of frcatal percolations

The algebraic difference from geometric
point of view II

F2 − F1

F1

F2

F1 × F2
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Algebraic difference of frcatal percolations

The crosscorrelations

For i ∈ {0, . . . ,M − 1} let

γi :=
M−1∑
k=0

pkpk+i mod M ,

where pi was the probability that we choose the interval
i-th interval Ii =

[ i−1
M , i

M
]
.
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Algebraic difference of frcatal percolations

γi := M−1∑
k=0

pkpk+i mod M

Theorem 2.1 (Dekking, S.)

Assuming that Λ1,Λ2 6= ∅, we have
(a) If ∀i = 0, . . . ,M − 1 : γi > 1 then almost

surely Λ2 − Λ1 contains an interval .
(b) If ∃i ∈ {0, . . . ,M − 1} : γi , γi+1 mod M < 1

then almost surely

Λ2 − Λ1 does not contain any interval .
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Algebraic difference of frcatal percolations

The Lebesgue measure of Λ2 − Λ1

We remind: γi :=
M−1∑
k=0

pkpk+i mod M

Theorem 2.2 (Mora, S., Solomyak)

We assume that p0, . . . , pM−1 > 0 Moreover, we require
that

(A2) Γ := γ0 · · · γM−1 > 1.

Then conditional on Λ1,Λ2 6= ∅, we have

(1) Leb(Λ2 − Λ1) > 0.

holds almost surely.
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Algebraic difference of frcatal percolations

Positive Lebesgue measure with no
intervals
Let M = 3 and

(p0, p1, p2) = (0.52, 0.5, 0.72).
In this case we have

γ0 = p2
0 + p2

1 + p2
2 = 1.0388,

γ1 = γ2 = p0p1 + p1p2 + p2p0 = 0.9944,
So, there is no interval.

γ0γ1γ2 = 1.0272 > 1
So, Leb(Λ2 − Λ1) > 0.
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Algebraic difference of frcatal percolations

Rotation

1

1 ϕ

1
2

√
2

J

− 1
2

√
2 Q

Λ := ϕ(Λ1 × Λ2).
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Algebraic difference of frcatal percolations

x

y
C0 C1 C2

C02
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Algebraic difference of frcatal percolations

The expectation matrices M(k)
In the k-th column (k = 0, . . . ,M − 1) we consider the
expectation E of the followings:

 E {#small4 in big4} E {#small4 in big4 }
E {#small4 in big4 } E {#small4 in big4 }


︸ ︷︷ ︸

M(k)

Then M(k1 . . . kn) is defined analogously for the n-th
level column Λk1...kn. Observe that

M(k1 . . . kn) =M(k1) · · ·M(kn)
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Algebraic difference of frcatal percolations

How does γi come into the picture?

The first column sum of M(k) = γk+1 ( mod 1)

The second column sum of M(k) = γk

This implies that:

If ∀k , γk > s > 1

Then for every k1 . . . kn:

every column sums in M(k1 . . . kn) > sn.
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Algebraic difference of frcatal percolations

M = 4, (p1, . . . , p3) = (1, 0, 1, ρ)
Consider the one-parameter (0 ≤ ρ ≤ 1) family of
random Cantor sets: M = 4, (p1, . . . , p3) = 1, 0, 1, ρ.
Then

M(0) =
ρ 0
ρ 2 +ρ2

 ,M(1) =
1 ρ

1 ρ

 ,

M(2) =
ρ 1
ρ 1

 ,M(3) =
2 +ρ2 ρ

0 ρ

 .
γ0 = 2 +ρ2, γ1 = 2ρ, γ2 = 2, γ3 = 2ρ.
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Algebraic difference of frcatal percolations

Application of Theorems DS

For ρ > 1
2 :

γ0, . . . , γ3 > 1
so, Theorem DS implies: ∃ an interval in Λ1 − Λ2

almost surely, conditioned on non-extinction.
For ρ < 1

2 Thm. DS gives (directly) nothing.

Károly Simon Mandelbrot percolations November 2, 2015 18 / 94



Algebraic difference of frcatal percolations

The order 2 Cantor set is the base M2 Cantor set with
vector

(p(2)
0 , . . . , p(2)

M2−1)

p(2)
Mi+j = pipj for i , j ∈ {0, . . . ,M−1} .

We will denote the objects associated to p(2) all with a
superindex (2), for instance Λ(2) is the random M2-adic
Cantor set generated by p(2), and I (2)

k1...kn
denotes an n-th

level M2-adic interval. Then
i1 . . . in, j1 . . . jn ∈ {0, . . . ,M−1}n one has

I (2)
Mi1+j1,...,Min+jn = Ii1j1...injn.
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Algebraic difference of frcatal percolations

Conclusion by higher order Cantor sets

Using higher order Cantor sets (up to order 324), and
Matlab we obtained that the critical point ρc where
Λ2 − Λ1 changes from empty to non empty interior,
satisfies 0.3222 < ρc < 0.3226. The fact that Theorem
2.1 can be applied not only the Mandelbnrot percolation
sets but also for their iterates, was CLAIMED in [3] but
proved carefully by Dekking and Don [2]. The most
precise answer about whether or not we have an interval
in the arithmetic difference was obtained by Dekking and
Kuijvenhoven [1] in terms of lower spectral radius of a
sequence of matrices.
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Algebraic difference of frcatal percolations

Dekking Kuijvenhoven Theorem

Let p := {p0, . . . pM−1} be a given list of probabilities.
We consider two independent copies Λ1,Λ2 of the
Mandelbrot percolation set on the line, corresponding to
the parameters p and M.We construct the expectation
matrices

Γ := {M(0), . . . ,M(M − 1)}
as above.
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Algebraic difference of frcatal percolations

Dekking Kuijvenhoven Theorem

We consider the lower spectral radius

ρ(Γ) := lim infn→∞ min
i1,...in
‖M(i1) · · ·M(in)‖1/n.

(i) If ρ(Γ) > 1 then Λ1 − Λ2 contains some
interval a.s. conditioned0 on Λ1 − Λ2 6= ∅.

(ii) If ρ(Γ) < 1 then Λ1 − Λ2 does not contain
any intervals a.s..
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The projections
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The projections

Orthogonal projection to `θ

proj
θ (Λ

)

Λ

θ

`θ
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The projections

Radial and co-radial projections with
center t

1
C

Λ

Projt(Λ)
t

Let CProjt(Λ) := {dist(t, x) : x ∈ Λ} ( CProjt(Λ) is
the set of the length of dashed lines above).
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The projections

The co-radial projection

CProjt(Λ)CProjt(Λ)CProjt(Λ)

Λ

t
CProjt(Λ)CProjt(Λ)CProjt(Λ)
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Falconer-Grimett Teorem

CProjt(Λ)CProjt(Λ)CProjt(Λ)

Λ

t
CProjt(Λ)CProjt(Λ)CProjt(Λ)

Figure: The orthogonal projα, radial Projt, co-radial CProjt
projections and the auxiliary projections Πα, Rt , and R̃t .
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Falconer-Grimett Teorem

Theorem 4.1 (Falconer and Grimmett)
Assume that all pi ,j ≡ p and

(2) p > 1
M

Then the orthogonal projection to the x-axis and to the
y-axis of Λ contain an interval almost surely,
conditioned on non-extinction.
Our research was inspired by this paper. The idea of the
proof: use large deviation theory for the INDEPENDENT
number of level n successors of squares which are in the
same vertical column.
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Falconer-Grimett Teorem

Namely, dimH Λ > 1 =⇒ ∃n,∃ a level n
column with exponentially many retained
level n squares. This column is the biggest
column on the next figure. So, there are
exponentially many (this is 3 on the
figure) level n squares in this column.

Now we move from level n to level n + 1.
We focus on any of the level n + 1
columns (red column on the Figure).
Independently each of the exponentially
many (3) level-n retained square, gives
birth an expected number of pM > 1
number of level n + 1 squares in itself.

M−n
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Falconer-Grimett Teorem

By Large Deviation Thm there exists an
α > 1 s.t. apart from a supper
exponentially small probability, the number
of retained level n + 1 squares is at least α
times the retained level n squares in the
red column. This holds for all the other
exponentially many level n + 1 columns.

M−n
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Falconer-Grimett Teorem

This implies that in each column on the
figure there will be α > 1 times more
squares of level n + 1 than of level n
except with a super exponentially small
probability.
Then we proceed to level n + k squares of
the level n-column. And similarly we get
that there are exponenetially many level
n + k retained squares in each level n + k
column, apart from a supperexponentially
small probability.

M−n
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New results

Theorem [R., S.] (When p > 1
M )

We assume that
p > 1

M .

Then the following statements hold almost surely
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) contains an interval .

Further,

∀t ∈ R2, Projt(Λ) and CProjt(Λ) contain an interval .
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Non-homogeneous Fractal percolation sets
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Non-homogeneous Fractal percolation sets

Theorem [M. Rams, S.] (general case)
We partition the unit square into M2 congruent sub
squares the (i , j)-th one is retained with probability pi ,j
and discarded with probability 1− pi ,j independently. In
the squares retained after the previous step we repeat
the same process at infinitum.

Λ1

p0,0 p1,0 p2,0

p0,1 p1,1 p2,1

p0,2 p1,2 p2,2
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Non-homogeneous Fractal percolation sets

Theorem Rams, S.
Assume that

1 ∀k :
M−1∑
i=0

pi ,k > 1 and
M−1∑
j=0

pk,j > 1 and

2 ∀α ∈
(
0, π2

)
∪
(
π
2 , π

)
, α is good.

Then the following statements hold almost surely
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀t ∈ R2, Projt(Λ) containes an interval .
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Non-homogeneous Fractal percolation sets

∆α

if α ∈ (0, π/2)

K = [0, 1]2

∆α

if α ∈ (π/2, π)

K = [0, 1]2
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Non-homogeneous Fractal percolation sets

proj
θ (Λ

) K = [0, 1]2

Λ

θ

`θ

α = θ⊥

∆α

Πα(Λ) is the set of black points
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Non-homogeneous Fractal percolation sets

α is good if ∃∆α
1 ,∆α

2 ⊂ ∆α,and ∃rα ∈ N such that
∆α

1 ⊂ int(∆α
2 ) and ∀x ∈ ∆α

2 the
sum of the probabilities of the gray squares > 2.

Λ1

p0,0 p1,0 p2,0

p0,1 p1,1 p2,1

p0,2 p1,2 p2,2
x

α

K = [0, 1]2p0,2 · p0,0 + p0,2 · p2,1 + p1,2 · p1,2 > 2

p0,2 · p0,0
p0,2 · p2,1

p1,2 · p1,2
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Non-homogeneous Fractal percolation sets

Remarks

The gray sum is equal to the expected number of level
rα red diagonals whose Πα-projection covers x .
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Non-homogeneous Fractal percolation sets

How to find our if α is a good angle?

x

α
∆

`

` ∩
S

S

If ∃ε > 0 s.t. ∀x ∈ ∆:
∑

S,S∩ 6̀=∅
pS ·

1

M
· |` ∩ S| ≥ (1 + ε) · |`|

then α is a good angle.
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Non-homogeneous Fractal percolation sets

The Sun at 2:12 p.m.

The Sun at noon

The Sun at 11:00 a.m.

ΛΛΛ

The intervals in the shadow of the random dust EEE at different times
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Non-homogeneous Fractal percolation sets

What happens in dimension higher than 2

Theorem 6.1 (Vagó and S.)
The same happens in dimension higher than 2 as on the
plane.

The method of the proofs is the same in higher
dimension. However, there are some technical difficulties
that appear in higher dimension which are not present
when we work on the plane.

Károly Simon Mandelbrot percolations November 2, 2015 43 / 94



Homogeneous percolation of small dimension

1 Projections of Manedelbrot percolation
2 Algebraic difference of frcatal percolations
3 The projections
4 Falconer-Grimett Teorem
5 New results
6 Non-homogeneous Fractal percolation sets
7 Homogeneous percolation of small dimension
8 The sum of three linear random Cantor sets
9 The projection of measures

Peres-Rams Theorem
random cut-out set

10 The proof of the Dimension formula
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Homogeneous percolation of small dimension

Theorem [Rams, S.] If 1
M2 < p ≤ 1

M

Theorem 7.1

Let ` ⊂ R2 be a straight line and let Λ` be the
orthogonal projection of Λ to `.

Then for almost all realizations of Λ (conditioned on
Λ 6= ∅) and for all straight lines ` we have:

(3) dimH(Λ`) = dimH(Λ).

Actually much more is true:
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Homogeneous percolation of small dimension

Lines intersect ≤ c · n squares of level n
Theorem 7.2 (Rams, S.)

If 1
M2 < p ≤ 1

M then for almost all realizations of Λ
(conditioned on Λ 6= ∅) and for all straight lines ` :
there exists a constant C such that the number of
level nnn squares having nonempty intersection with
ΛΛΛ is at most c · nc · nc · n.
On the other hand, almost surely for n big enough, we
can find some line of 45◦ angle which intersects
const · n level n squares.

First I draw the theorem and then I state it more
precisely.

Károly Simon Mandelbrot percolations November 2, 2015 46 / 94



Homogeneous percolation of small dimension

M−n

Recall: 2
1

M2 < p ≤ 1
M ⇒ Then every line ` intersects at most

const · n level n squares.
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Homogeneous percolation of small dimension

Previous theorem stated more precisely I
Recall that Λn is the union of retained level-n squares.
Let ∆ be the decreasing diagonal of the unit square K
(the diagonal connecting points (0, 1) and (1, 0)).

Definition 7.3 (Slices of Λ)
Consider the family of all lines with argument between 0
and π/2 having non-empty intersection with int(∆). The
unit square K cuts out a line segment from each of these
lines. Let L be the set of all line segments obtained in
this way. The sets of the form Λ ∩ ` , ` ∈ L are the
slices of Λ .
Let Ln(`) := |Λn ∩ `| , ` ∈ L.
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Homogeneous percolation of small dimension

Previous theorem stated more precisely II

Clearly, L can be presented as a countable union of
families of lines segments Lθ whose angles Arg(`) are
θ-separated from both 0 and π/2:

Lθ :=
{
` ∈ L : min

{
Arg(`), π2 − Arg(`)

}
>θ

}
,0 < θ <

π

4 .
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Homogeneous percolation of small dimension

Previous theorem stated more precisely II

Corollary 7.4

For almost all realizations of E we have
(4)
∀θ ∈

(
0, π4

)
, ∃N , ∀n ≥ N , ∀` ∈ Lθ; # En(`) ≤ const·n,

where En(`) is the collection of selected level n squares
that intersects Λ.
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Homogeneous percolation of small dimension

Large deviation estimate for Ln(`) I

Theorem 7.5 (Hoeffding)

Let X1, . . . ,Xm be independent bounded random
variables with ai ≤ Xi ≤ bi , (i = 1, . . . ,m). Then for any
t > 0:

P (X1 + · · ·+ Xm − E [X1 + · · ·+ Xm] ≥ t)

≤ exp

 −2t2

m∑
i=1

(bi − ai)2

 .
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Homogeneous percolation of small dimension

Large deviation estimate for Ln(`) II

We apply this to prove:
Lemma 7.6

For every u > 1 there is a constant r = r(u) > 0 such
that for every n ≥ 1, ` ∈ L and 0 < R < |`|,
(5)
P (Ln(`) > pLn−1(`) · u|Ln−1(`) ≥ R) < exp

(
−rM(n−1)R

)
Recall: 3
Ln(`) := |Λn ∩ `| , ` ∈ L.
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Homogeneous percolation of small dimension

Summary
1 If 0 < p ≤ 1/M2 then Λ dies out in finitely many

steps almost surely.
2 If 1

M2 < p < 1
M The Λ 6= ∅ with positive probability

but dimH(Λ) = log(M2p)
M < 1. For almost all

non-empty realizations, for all projections (all radial,
co-radial and all orthogonal projections)
the dimension of Λ does not decrease
under the projection .

3 If 1
M < p < pc . Conditioned on non-extinction,

almost surely: all projections of Λ contain some
intervals but Λ is totally disconnected .

4 If p ≥ pc then Λ percolates.
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Homogeneous percolation of small dimension

Definition 7.7
We say that f [0, 1]2 → R is a strictly monotonic
smooth function if f ∈ C2[0, 1] and f ′x 6= 0, f ′y 6= 0.

Theorem 7.8 (Rams, S.)
If p > 1

M (dimH Λ > 1) then for every strictly monotonic
smooth function f , f (Λ) contains an interval , almost
surely conditioned on non-extinction.

Examples:
{x + y : (x , y) ∈ Λ} ⊃ interval .
{x · y : (x , y) ∈ Λ} ⊃ interval .
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The sum of three linear random Cantor sets
y

xx

`a`a`a

y

a

a

(x, y)

The arithmetic sum of the
sets Λ1,Λ2 is:

Λ1 + Λ2 :=
{x + y : x ∈ Λ1, y ∈ Λ2}

The geometric interpretation of the arithmetic sum is:

Λ1 + Λ2 := {a : `a ∩ Λ1 × Λ2 6= ∅} .

So, Λ1 + Λ2 is the 45◦ projection of Λ1 × Λ2.
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The sum of three linear random Cantor sets

a

a

a

(x, y, z)

(x, y, 0)

x

y

Sa Sa := {(x, y, z) : x+ y + z = a}

a = x + y + z ⇐⇒ (x , y , z) ∈ Sa

Λ1 + Λ2 + Λ3 = {a : Sa ∩ Λ1 × Λ2 × Λ3 6= ∅} .
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The sum of three linear random Cantor sets

Recall: 4
If 1

M2 < p ≤ 1
M then for almost all realizations of Λ

(conditioned on Λ 6= ∅) and for all straight lines ` :
there exists a constant C such that the number of
level nnn squares having nonempty intersection with
ΛΛΛ is at most c · nc · nc · n.
The same theorem holds if we substitute the
two-dimensional Mandelbrot percolation Cantor set with
the product of two independent one dimensional Cantor
sets having the same M and probabilities p1, p2 such that
p = p1 · p2.
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The sum of three linear random Cantor sets

Let Λ1,Λ2,Λ3 be one dimensional Mandelbrot percolation
fractals constructed with the same M but with may be
different probabilities p1, p2, p3. Let Λ be the three
dimensional Mandelbrot percolation with the same M
and

p := p1p2p3

The random Cantor sets

Λ1 × Λ2 × Λ3 and Λ

share many common features:

dim Λ1 × Λ2 × Λ3 = dim Λ = log M3p
log M .

conditioned on non-extinction.
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The sum of three linear random Cantor sets

Dependency in the product set

Λ123 := Λ1 × Λ2 × Λ3, Λ12 := Λ1 × Λ2.

In Λ123 and in Λ12 there is NO independence between
the successors of two cubes having one side common.

a
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The sum of three linear random Cantor sets

Λ and Λ12 are a little bit different from the
point of 45◦ projection

a

a

From now we focus on Λ123:Károly Simon Mandelbrot percolations November 2, 2015 61 / 94



The sum of three linear random Cantor sets

Let En be the set of selected level n cubes in Λn
1,2,3.

Since dimB Λ123 > 1 so for a τ > 0:
#En ≈ Mn ·Mτ ·n.

The colored planes: 3Mn

planes that are orthogonal
to (1, 1, 1) and the
consecutive ones are
separated by M−n. By
pigeon hole principle one of
the planes intersects
const ·Mτn selected level n
cubes. Assume that this is
the blue plane.

x

z

y

a

a

a

a+M−n

a+M−n

a+M−n

a−M−n

a−M−n

a−M−n
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The sum of three linear random Cantor sets

Among the Mτn cubes which intersect the blue plane the
ones sharing one common side are NOT independent.
For example those who intersect the red line are NOT
independent.

a

a

a

b

b
M−n
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The sum of three linear random Cantor sets;
dimH Λ123 > 1 but dimH Λ12, dimH Λ23, dimH Λ31 < 1 .

a

a

a

b

b
M−n

M−n

The point is that on the red dashed line there could be
potentially Mn selected level n squares but in reality
there will be only c · n selected squares.
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The sum of three linear random Cantor sets

An easy combinatorial
Lemma shows that for a
t > 0 constant there are
Mnt selected level n squares
that have

no common sides (so
what ever happens in
these cubes in the
future is independent )
such that they all
intersect the blue plane.

a

a

a

Then we use Large deviation theory similarly to Falconer
Grimett to get intervals in the projection.
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The sum of three linear random Cantor sets

a+ 1
2
M−n

a+ 1
2
M−n

a+ 1
2
M−n

a

a

a

1
Mn
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The projection of measures
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The projection of measures Peres-Rams Theorem

Here we always assume that we are in the homogeneous
case and the dimesion (in case of non-extinction) is
greater than 1. That is

(6) pi ,j ≡ p > 1
M .

It is well know from the theory of Branching processes
that for

(7) limn→∞
#En

(M2 · p)n = W > 0, a.s.

That is

(8) limn→∞
#En·M−2n

W ·pn = 1 , a.s..
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The projection of measures Peres-Rams Theorem

We write En for the collection of retained level-n
squares. Let Leb be the two dimensional Lebesgue
measure. Then the natural measure on Λ is:

(9) µ := limn→∞
Leb|Λn

Leb(Λn) = limn→∞
Leb|Λn

#En ·M−2n

= limn→∞
Leb|Λn
pn·W ,

where in the last step we used (8) and the limit is meant
as a weak limit. It was proved by Mauldin Williams [4]
that this limit exists. Y. Peres and M. Rams investigated
the θ-angle orthogonal projection of the natural measure
µθ := (projθ)∗µ .They proved that
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The projection of measures Peres-Rams Theorem

Theorem 9.1 (Peres, Rams [5])
Assume that Mp > 1 (this equivalent with dimH Λ > 1
a.s. conditioned on non-extinction.) Then conditioned
on non-extinction, for almost all realization the following
holds: for all θ the projected measure
µθ is absolute continuous . Moreover, if θ 6= 0, π/2
then the density is Hölder continuous . For the verital
and horizontal directions the density in not defined at the
M-adic points. Apart from them the density is Hölder
cont. for a specially chosen metric.

Károly Simon Mandelbrot percolations November 2, 2015 70 / 94



The projection of measures Peres-Rams Theorem

One important idea of the proof is that instead of the
natural measure µ it is enough to verify the statement
for the measure

µ̃ := W · µ = limn→∞
Leb|Λn

pn︸ ︷︷ ︸
µ̃n

This is so, because as we discussed in Theorem 2.4, in
File A, the r.v. W > 0 a.s. conditioned on
non-extinction. Now, the measure {µ̃n}∞n=1 is a
martingale:

(10) E [µ̃n+1|En] = µ̃n.
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The projection of measures Peres-Rams Theorem

Beside this µ̃n has another impostant property: If we
take the projection projθ of the measure µ̃n to the line of
angle angle θ we obtain the measure µ̃n,θ . Observe that
this measure has a geometric meaning. Namely, µ̃n,θ is
absolute continuous and its density d µ̃n,θ

dx (z) at z ∈ `θ
(the line of angle θ) is

d µ̃n,θ

dx (z) =
∣∣∣`⊥θ (z) ∩ Λn

∣∣∣
pn
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The projection of measures Peres-Rams Theorem

This method of Peres and Rams [5] was used by
Shmerkin and Suomala [6] (2015) to obtain similar
results for many general families of random fractals,
where the natural measure (or its rescalled version) is a
martingale. The Shmerkin and Soumala paper [6] is a
very long paper with lots of applications about the slices
and the projections (not only linear ones) of random
measures. Here I mention only one example.
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The projection of measures random cut-out set

Let r > 0 be a positive number and Q(·) be the
measure R2 ×

(
0, 1

2
)

defined by r · s−1dxds . The
inhomogeneous Poisson point process with intensity Q is
a random countable set X := {xi , ri} satisfying:

For every Borel set B ⊂ R×
(
0, 1

2
)

# (X ∩ B) ∼ Poi (Q(B))

If Bi ⊂ R2 ×
(
0, 1

2
)

are pairwise disjoint then the
random variables

# {X ∩ Bi}

are independent .
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The projection of measures random cut-out set

The random cut-out set is

(11) A := B(0, 1) \
⋃
j

B(xj , rj)

An := B(0, 1) \
⋃
j

{
B(xj , rj) : rj > 2−n}

Let α := c · r , where c is a constant. Let
dµn(x) := 2αn

1An(x). The natural measure is

µ∞ := limn→∞µn,

where the lim is the weak limit.
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The projection of measures random cut-out set

Figure: Figure is from Smerkin
Suomala paper

Shmerkin, Suomala
Theorem:
The projection of µ∞
is absolute continuous
with Hölder
continuous density
almost surely
whenever the attractor
has Hausdorr
dimension greater than
1 .
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The proof of the Dimension formula

I learned that proof of the dimension formula which is
presented here from Michel Dekking.
In this section we are on R . Recall the dimension
formula for the homogeneous Mandelbrot percolation
with parameters M, p on the line was:

(12) dimH Λ = dimB Λ = log(M · p)
log M a.s.

Recall also that the meaning of the nominator of (12):

M · p = E [#E1] .

Now we prove formula (12).

q := P (Λ = ∅) , Ik :=
[ k

M ,
k+1
M
]
, k = 0, . . . ,M − 1
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The proof of the Dimension formula

In this one-dimensional setting, the dimension of the
Mandelbrot percolation set Λ is log Mp

M . We always
assume that

(13) p > 1
M

otherwise Λ = ∅ a.s..
Lemma 10.1

For every α > 0 either Hα(Λ) = 0 holds a.s. or
P (Hα(Λ) = 0) = q. In formula:

(14) P (Hα(Λ) = 0) ∈ {q, 1} .
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The proof of the Dimension formula

proof
Let

Zn := #En

We write
g(s) := E

[
sZ1

]
for the p.g.f. of Z1.
On the next slide we prove that
P (Hα(Λ) = 0) is a fixed point of g .
Using that the set of fixed points of g consists of 1 and
q, this will complete the proof. So the calculation is as
follows:
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The proof of the Dimension formula

proof cont.

P (Hα(Λ) = 0) =P (Hα(Λ0)= 0, . . . ,Hα(ΛM−1)= 0)

=
M∑

k=0
P (Hα(Λi)= 0,∀i = 0, . . . ,M − 1|Z1 = k)

·P (Z1 = k)

=
M∑

k=0
[P (Hα(Λ0)= 0|Z1 = k)]k · P (Z1 = k)

=
M∑

k=0

[
P
(( 1

M

)α
Hα(Λ) = 0

)]k
· P (Z1 = k)

=
M∑

k=0

[
P (Hα(Λ) = 0)

]k
· P (Z1 = k) .�
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The proof of the Dimension formula

The upper bound
Λn consists of Z1 intervals of length M−n. This implies
that

(15) Hα
M−n (Λ) ≤ Zn ·

(
M−n)α .

Using this and the Markov inequality:

(16) P (Hα
M−n (Λ) ≥ ε) ≤ E [Hα

M−n (Λ)]
ε

≤ E [Zn]
εMnα = E [Z1]n

εMnα = 1
ε

E [Z1]
Mα

n
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The proof of the Dimension formula

The upper bound cont.

Let
α >

logE [Z1]
log M = log(Mp)

log M .

Then
E [Z1] < Mα.

Using Borel Cantelli and (16) this means that

P (Hα(Λ) = 0) = 1,

since limn→∞H
α
M−n = Hα(Λ). That is dimH Λ ≤ α a.s.�
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The proof of the Dimension formula

The following Lemma is a corollary of Lemma 10.1 by an
immediate case analysis:
Lemma 10.2

The random variable dimH Λ is almost surely constant
on the event {Λ 6= ∅} .
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The proof of the Dimension formula

The lower bound
Let

s := log(Mp)
log M .

We want to prove that

(17) dimH Λ ≥ s a.s. conditioned on nonextinction.

First we prove that
Lemma 10.3

If B ⊂ [0, 1] has the property that P (Λ ∩ B 6= 0) > 0
then this implies that dimH B ≥ − log p

M .
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The proof of the Dimension formula

The lower bound cont.
Proof of the Lemma
Recall that in the definition of the Hausdorff dimension
we can restrict ourselves to covers by M-adic intervals
like I :=

[k−1
Mn ,

k
Mn

]
. If I is such an interval then

P (Λ ∩ I 6= ∅) ≤ P (Ileft ∪ I ∪ Iright selected ) = 3pn

Using that the solution of the equation pn = (M−n)x is
x = − log p

log M , from the previous formula we get that

(18) P (Λ ∩ I 6= ∅) ≤ 3|I |
− log p
log M .
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The proof of the Dimension formula

The lower bound cont.

Proof of the Lemma cont.
To prove that dimH B ≥ − log p

log M it is enough to verify that
there exists a constant C > 0 such that for an arbitrary
covering {Ik} of Λ by M-adic intervals (not necessarily of
the same length) we have

(19) ∑
k
|Ik |

− log p
log M > C > 0 .

To see this, we define C := P (Λ ∩ B). By assumption
C > 0. Using that {Ik} is a cover of B we have:
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The proof of the Dimension formula

The lower bound cont.

Proof of the Lemma cont.

0 < C = P (Λ ∩ B 6= ∅) ≤ P
Λ ∩

⋃
k

Ik 6= ∅


≤ ∑
k

3|Ik |
− log p
log M .

This completes the proof of the Lemma.
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The proof of the Dimension formula

The lower bound cont.
Now we consider three Mandelbrot percolation sets Λ, Λ̃
and Λ̂ on the line. One of the parameters for all of them
is the same M. The other parameters are p, p̃ and p̂
respectively. We assume that

(20) p̂ = p · p̃ .

We have already discussed that

(21) Λ̂ d= Λ ∩ Λ̃.

In particular,
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The proof of the Dimension formula

The lower bound cont.

(22) Pp̂
(
Λ̂ 6= ∅

)
= (Pp × Pp̃)

(
Λ ∩ Λ̃ 6= ∅

)
Let

Vp,p̃ :={
ωp ∈ Ωp : Pp̃

(
ω̃p ∈ Ωp̃ : Λ(ωp) ∩ Λ̃(ωp̃) 6= ∅

)
> 0

}
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The proof of the Dimension formula

The lower bound cont.

Lemma 10.4

Assume that p̂ > 1
M . We choose p, p̃ such that (as

always) p̂ = p · p̃. Then

(23) Pp (Vp,p̃) > 0

Proof.
By assumption Pp̂

(
Λ̂ 6= ∅

)
> 0. Then the assertion of

the Lemma follows from (22) and Fubini Theorem.
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The proof of the Dimension formula

The lower bound cont.

Here we use the notation and assumption of Lemma
10.4. Now we fix an ωp ∈ Vp,p̃. Let B := Λ(ωp). Then
by the definition of Vp,p̃ we have

Pp̃ (ωp̃ ∈ Ωp̃ : Λ(ωp̃) ∩ B 6= ∅) > 0.

This implies by Lemma 10.3 that

dimH Λ(ωp) ≥ − log p̃
log M .
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The proof of the Dimension formula

The lower bound cont.
We have assumed that

1
M < p̂ = p · p̃.

That is p̃ > 1
Mp and p̃ can be as close to 1

Mp as we want.
So on a set of positive P-measure of ω ∈ Vp,p̃, we have

(24) − log p̃
log M ≤ dimH Λ(ωp) ≤ log(Mp)

log M .

But we know that dimH Λp(ωp) is constant on Λp 6= ∅
this completes the proof.�
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The proof of the Dimension formula
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