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History

Integral means spectra of conformal maps (’85 – ’91)
Makarov, Becker, Pommerenke,

Przytycki, Urbański, Zdunik, Bañuelos, Moore, Lyons...

Dimension of Quasicircles (’94 – early ’00s)
Astala, Ransford, Smirnov

Weil-Petersson metric in complex dynamics (’08)
McMullen



Reminder: Quasiconformal maps

A k-quasiconformal map f : C→ C is an o.p. homeo for which

∂f

∂z
= µ(z)

∂f

∂z

with
‖µ‖∞ ≤ k , 0 ≤ k < 1.

Converse: Measurable Riemann mapping theorem.

Allows one to embed q.c. maps into holomorphic families by
solving

∂ft

∂z
=

t

k
µ(z)

∂ft
∂z
, t ∈ D.



The problem

90’s formulation: Let D(k), the maximal dimension of a
k-quasicircle.

Theorem: (Smirnov) D(k) ≤ 1 + k2.

Is it sharp??

Modern formulation: Find the supremum of(
||µ||WP

||µ||T

)2

over all tangent vectors in all generalized main cardioids in Polyd ,
d ≥ 2.

all Teichmüller spaces Tg , g ≥ 2. (DF(k) < 1 + (2/3) k2, k small)
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The Main Cardioid ⊂ Mandelbrot Set ⊂ Polyd

Conjecture: The Weil-Petersson metric is incomplete; completion
attaches a single point to geometrically finite parameters.



Riemann Mapping Theorem

Let D∗ = {z : |z | > 1} be the exterior unit disk.

D∗ Ωϕ

“Complexity of the boundary ∂Ω” is manifested in the “complexity
of the Riemann map”.



Integral means spectra

For a conformal map ϕ : D∗ → Ω, the integral means spectrum is
given by

βϕ(p) = lim sup
R→1+

log
´
|z|=R |ϕ

′(z)|p |dz |
log 1

R−1

, p ∈ R.

Problem: Find the universal integral means spectrum

B(p) := sup
ϕ∈T (D∗)

βϕ(p),

where T (D∗) is the universal Teichmüller space.
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Universal Teichmüller space

By definition,

T (D∗) :=
⋃

0≤k<1

Σk ,

where Σk = {ϕ : admit a k-quasiconformal extension to C}.

D∗ Ω

µ

ϕ = wµ



Relation to “Dimensions of Quasicircles”

In view of Royden’s theorem,

Teichmüller metric = Kobayashi metric,

it is also natural to consider

Bk(p) := sup
ϕ∈Σk

βϕ(p).

Also, if Ω is a quasidisk, then

βϕ(p) = p − 1 ⇐⇒ p = M. dim ∂Ω.
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Growth of Bloch functions

A holomorphic function b(z) on D∗ is Bloch if

‖b‖B∗ := sup
z∈D∗

∣∣b′(z)(|z |2 − 1)
∣∣ <∞.

Bers embedding: T (D∗)→ B∗ given by ϕ→ bϕ := logϕ′.

For such a function, one can define its asymptotic variance by

σ2(b) = lim sup
R→1+

1

2π| log(R − 1)|

ˆ
|z|=R

|b(z)|2 |dz |.

(The asymptotic variance is finite.)
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Equality of Characteristics

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...

Dynamical setting: If ∂Ω is a regular fractal, e.g. a Julia set or a
limit set of a Kleinian group, then

2
d2

dp2

∣∣∣∣
p=0

βϕ(p) = σ2(logϕ′) = · · · .

Theorem: True for universal bounds:

2
d2

dp2

∣∣∣∣
p=0

Bk(p) = Σ2(k) := sup
ϕ∈Σk

σ2(logϕ′),

Σ2(k)/k2 is a continuous increasing function for k ∈ [0, 1).
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Asymptotic variance of the Beurling transform

Infinitesimal version. In view of ‖ logϕ′ − kSµ‖B∗ = O(k2),

Σ2 := sup
|µ|≤χD

σ2(Sµ)

where Sµ is the Beurling transform

Sµ(z) = − 1

π

ˆ
C

µ(w)

(z − w)2
dm(w), |z | > 1.

It is easy to see that Sµ ∈ B∗.

Theorem: (AIPP) 0.879 ≤ Σ2 ≤ 1.

(Hedenmalm) Σ2 < 1.
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Equality of Characteristics II

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...

Dynamical setting: If {ϕt} is a holomorphic family of conformal
maps, and ϕt(S1) are invariant under hyperbolic dynamical
systems,

2
d2

dt2

∣∣∣∣
t=0

M. dimϕt(S1) = σ2

(
d

dt

∣∣∣∣
t=0

logϕ′t

)
,

= σ2(Sµ),

= ‖µ‖2
WP,

where ‖ · ‖2
WP is the Weil-Petersson metric.

Theorem: True for universal bounds.
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Dimensions of Quasicircles

Find D(k), the maximal dimension of a k-quasicircle.

Theorem: (Smirnov) D(k) ≤ 1 + k2.

Is it sharp??

NO!
Theorem: D(k) = 1 + Σ2k2 +O(k2.5).

(AIPP – Lower bound comes from polynomial perturbations of
z → zd .)
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Box Lemma

Infinitesimal version: For any ε > 0, if R is sufficiently large, then

 
B

∣∣∣∣2(Sµ)′

ρ∗
(z)

∣∣∣∣2 ρ∗|dz |2 < Σ2 + ε,

for any µ with |µ| ≤ χD and every R-box B.

Global version: For any ε > 0, if R is sufficiently large, then

 
B

∣∣∣∣2(logϕ′)′

ρ∗
(z)

∣∣∣∣2 ρ∗|dz |2 < Σ2(k) + ε,

for any conformal map ϕ ∈ Σk and every R-box B.
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(Asymptotic) locality of non-linearity

Bishop, Jones, McMullen...

Infinitesimal version: Suppose µ ∈ M(D) with ‖µ‖∞ ≤ 1. Then,

I For z ∈ D∗,
∣∣((Sµ)′/ρ∗)(z)

∣∣ . 1.

I If d�D (z−, suppµ) ≥ R then
∣∣((Sµ)′/ρ∗)(z)

∣∣ . e−R .

µ
z

z−



(Asymptotic) locality of non-linearity

Global version: Suppose µ ∈ M(D) with ‖µ‖∞ ≤ k. Then,

I For z ∈ D∗,
∣∣(Nϕ/ρ∗)(z)

∣∣ . 1.

I If dD(z−, supp(µ1 − µ2)) ≥ R then∣∣∣∣Nϕ1 − Nϕ2

ρ∗
(z)

∣∣∣∣ . e−C(k)R + o(|z | − 1).

z

z−

µ1, µ2
µ



Sketch of proof

Want to estimateˆ
|z|=r
|ϕ′|p, with 0 ≤ k < 1 and pk ≈ 0.

Trick! We instead estimate

u(r) :=

ˆ
A(r)
|ϕ′|p ρ∗|dz |2

where A(r) =
{

z : r < |z | < 1 +
r − 1

R

}
, R > 0 large.
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Sketch of proof II

Hardy’s identity =⇒

u′′(r) ≤ 1

(r − 1)2
· p2

4

ˆ
A(r)
|ϕ′|p ·

∣∣∣∣2(logϕ′)′

ρ∗
(z)

∣∣∣∣2 ρ∗|dz |2

Box lemma =⇒

u′′(r) ≤ 1

(r − 1)2
· p2

4

ˆ
A(r)
|ϕ′|p · (Σ2(k) + ε) ρ∗|dz |2

Since u′′(r) ≤ cu

(r − 1)2
, u is bounded above by solution of the

differential equation. (cf. Becker-Pommerenke, 1 + 37k2).
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Additional applications

Proof is very simple and robust:

I Provides an alternative proof of “dynamical equalities” –
including parabolic cases

I Applies to coefficients invariant under Fuchsian groups, with
Σ2
F < 2/3 replacing Σ2

I Improved estimates for sparse Beltrami coefficients

I Can use any equivalent norm on the Bloch space (we use the
L∞ norm, classically people in ’80s used the Bloch norm)

I Works in higher dimensions (if one wants to forgo connections
to Hausdorff dimension)

A similar argument gives connections to Makarov’s constant in the
law of iterated logarithm. (Joint with I. Kayumov.)
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Thank you for your attention!


