Quasicircles of dimension $1+k^{2}$ do not exist

Oleg Ivrii

September 17, 2015

History

Integral means spectra of conformal maps ('85-'91)
Makarov, Becker, Pommerenke,
Przytycki, Urbański, Zdunik, Bañuelos, Moore, Lyons...
Dimension of Quasicircles ('94 - early '00s)
Astala, Ransford, Smirnov
Weil-Petersson metric in complex dynamics ('08)
McMullen

Reminder: Quasiconformal maps

A k-quasiconformal map $f: \mathbb{C} \rightarrow \mathbb{C}$ is an o.p. homeo for which

$$
\frac{\partial f}{\bar{\partial} z}=\mu(z) \frac{\partial f}{\partial z}
$$

with

$$
\|\mu\|_{\infty} \leq k, \quad 0 \leq k<1
$$

Converse: Measurable Riemann mapping theorem.
Allows one to embed q.c. maps into holomorphic families by solving

$$
\frac{\partial f_{t}}{\bar{\partial} z}=\frac{t}{k} \mu(z) \frac{\partial f_{t}}{\partial z}, \quad t \in \mathbb{D}
$$

The problem

90's formulation: Let $D(k)$, the maximal dimension of a k-quasicircle.

Theorem: (Smirnov) $D(k) \leq 1+k^{2}$.
Is it sharp??

The problem

90's formulation: Let $D(k)$, the maximal dimension of a k-quasicircle.

Theorem: (Smirnov) $D(k) \leq 1+k^{2}$.
Is it sharp??
Modern formulation: Find the supremum of

$$
\left(\frac{\|\mu\|_{\mathrm{WP}}}{\|\mu\|_{T}}\right)^{2}
$$

over all tangent vectors in all generalized main cardioids in Poly ${ }_{d}$, $d \geq 2$.
all Teichmüller spaces $\mathcal{T}_{g}, g \geq 2 .\left(D_{\mathrm{F}}(k)<1+(2 / 3) k^{2}, k\right.$ small $)$

The Main Cardioid \subset Mandelbrot Set \subset Poly $_{d}$

Conjecture: The Weil-Petersson metric is incomplete; completion attaches a single point to geometrically finite parameters.

Riemann Mapping Theorem

Let $\mathbb{D}^{*}=\{z:|z|>1\}$ be the exterior unit disk.

"Complexity of the boundary $\partial \Omega$ " is manifested in the "complexity of the Riemann map".

Integral means spectra

For a conformal map $\varphi: \mathbb{D}^{*} \rightarrow \Omega$, the integral means spectrum is given by

$$
\beta_{\varphi}(p)=\limsup _{R \rightarrow 1^{+}} \frac{\log \int_{|z|=R}\left|\varphi^{\prime}(z)\right|^{p}|d z|}{\log \frac{1}{R-1}}, \quad p \in \mathbb{R}
$$

Integral means spectra

For a conformal map $\varphi: \mathbb{D}^{*} \rightarrow \Omega$, the integral means spectrum is given by

$$
\beta_{\varphi}(p)=\limsup _{R \rightarrow 1^{+}} \frac{\log \int_{|z|=R}\left|\varphi^{\prime}(z)\right|^{p}|d z|}{\log \frac{1}{R-1}}, \quad p \in \mathbb{R}
$$

Problem: Find the universal integral means spectrum

$$
B(p):=\sup _{\varphi \in \mathcal{T}\left(\mathbb{D}^{*}\right)} \beta_{\varphi}(p)
$$

where $\mathcal{T}\left(\mathbb{D}^{*}\right)$ is the universal Teichmüller space.

Universal Teichmüller space

By definition,

$$
\mathcal{T}\left(\mathbb{D}^{*}\right):=\bigcup_{0 \leq k<1} \Sigma_{k}
$$

where $\Sigma_{k}=\{\varphi$: admit a k-quasiconformal extension to $\mathbb{C}\}$.

Relation to "Dimensions of Quasicircles"

In view of Royden's theorem,
Teichmüller metric $=$ Kobayashi metric,
it is also natural to consider

$$
B_{k}(p):=\sup _{\varphi \in \Sigma_{k}} \beta_{\varphi}(p)
$$

Relation to "Dimensions of Quasicircles"

In view of Royden's theorem,
Teichmüller metric $=$ Kobayashi metric,
it is also natural to consider

$$
B_{k}(p):=\sup _{\varphi \in \Sigma_{k}} \beta_{\varphi}(p) .
$$

Also, if Ω is a quasidisk, then

$$
\beta_{\varphi}(p)=p-1 \quad \Longleftrightarrow \quad p=\mathrm{M} \cdot \operatorname{dim} \partial \Omega .
$$

Growth of Bloch functions

A holomorphic function $b(z)$ on \mathbb{D}^{*} is Bloch if

$$
\|b\|_{\mathcal{B}^{*}}:=\sup _{z \in \mathbb{D}^{*}}\left|b^{\prime}(z)\left(|z|^{2}-1\right)\right|<\infty
$$

Growth of Bloch functions

A holomorphic function $b(z)$ on \mathbb{D}^{*} is Bloch if

$$
\|b\|_{\mathcal{B}^{*}}:=\sup _{z \in \mathbb{D}^{*}}\left|b^{\prime}(z)\left(|z|^{2}-1\right)\right|<\infty
$$

Bers embedding: $\mathcal{T}\left(\mathbb{D}^{*}\right) \rightarrow \mathcal{B}^{*}$ given by $\varphi \rightarrow b_{\varphi}:=\log \varphi^{\prime}$.

Growth of Bloch functions

A holomorphic function $b(z)$ on \mathbb{D}^{*} is Bloch if

$$
\|b\|_{\mathcal{B}^{*}}:=\sup _{z \in \mathbb{D}^{*}}\left|b^{\prime}(z)\left(|z|^{2}-1\right)\right|<\infty
$$

Bers embedding: $\mathcal{T}\left(\mathbb{D}^{*}\right) \rightarrow \mathcal{B}^{*}$ given by $\varphi \rightarrow b_{\varphi}:=\log \varphi^{\prime}$.
For such a function, one can define its asymptotic variance by

$$
\sigma^{2}(b)=\limsup _{R \rightarrow 1^{+}} \frac{1}{2 \pi|\log (R-1)|} \int_{|z|=R}|b(z)|^{2}|d z|
$$

(The asymptotic variance is finite.)

Equality of Characteristics

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...
Dynamical setting: If $\partial \Omega$ is a regular fractal, e.g. a Julia set or a limit set of a Kleinian group, then

$$
\left.2 \frac{d^{2}}{d p^{2}}\right|_{p=0} \beta_{\varphi}(p)=\sigma^{2}\left(\log \varphi^{\prime}\right)=\cdots
$$

Equality of Characteristics

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...
Dynamical setting: If $\partial \Omega$ is a regular fractal, e.g. a Julia set or a limit set of a Kleinian group, then

$$
\left.2 \frac{d^{2}}{d p^{2}}\right|_{p=0} \beta_{\varphi}(p)=\sigma^{2}\left(\log \varphi^{\prime}\right)=\cdots
$$

Theorem: True for universal bounds:

$$
\left.2 \frac{d^{2}}{d p^{2}}\right|_{p=0} B_{k}(p)=\Sigma^{2}(k):=\sup _{\varphi \in \Sigma_{k}} \sigma^{2}\left(\log \varphi^{\prime}\right)
$$

$\Sigma^{2}(k) / k^{2}$ is a continuous increasing function for $k \in[0,1)$.

Asymptotic variance of the Beurling transform

Infinitesimal version. In view of $\left\|\log \varphi^{\prime}-k \mathcal{S} \mu\right\|_{\mathcal{B}^{*}}=\mathcal{O}\left(k^{2}\right)$,

$$
\Sigma^{2}:=\sup _{|\mu| \leq \chi \mathbb{D}} \sigma^{2}(\mathcal{S} \mu)
$$

where $\mathcal{S} \mu$ is the Beurling transform

$$
\mathcal{S} \mu(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\mu(w)}{(z-w)^{2}} d m(w), \quad|z|>1
$$

It is easy to see that $\mathcal{S} \mu \in \mathcal{B}^{*}$.

Asymptotic variance of the Beurling transform

Infinitesimal version. In view of $\left\|\log \varphi^{\prime}-k \mathcal{S} \mu\right\|_{\mathcal{B}^{*}}=\mathcal{O}\left(k^{2}\right)$,

$$
\Sigma^{2}:=\sup _{|\mu| \leq \chi \mathbb{D}} \sigma^{2}(\mathcal{S} \mu)
$$

where $\mathcal{S} \mu$ is the Beurling transform

$$
\mathcal{S} \mu(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\mu(w)}{(z-w)^{2}} d m(w), \quad|z|>1
$$

It is easy to see that $\mathcal{S} \mu \in \mathcal{B}^{*}$.
Theorem: (AIPP) $0.879 \leq \Sigma^{2} \leq 1$.
(Hedenmalm) $\Sigma^{2}<1$.

Equality of Characteristics II

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...
Dynamical setting: If $\left\{\varphi_{t}\right\}$ is a holomorphic family of conformal maps, and $\varphi_{t}\left(\mathbb{S}^{1}\right)$ are invariant under hyperbolic dynamical systems,

$$
\begin{aligned}
\left.2 \frac{d^{2}}{d t^{2}}\right|_{t=0} \mathrm{M} \cdot \operatorname{dim} \varphi_{t}\left(\mathbb{S}^{1}\right) & =\sigma^{2}\left(\left.\frac{d}{d t}\right|_{t=0} \log \varphi_{t}^{\prime}\right), \\
& =\sigma^{2}(\mathcal{S} \mu) \\
& =\|\mu\|_{\mathrm{WP}}^{2}
\end{aligned}
$$

where $\|\cdot\|_{W P}^{2}$ is the Weil-Petersson metric.

Equality of Characteristics II

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...
Dynamical setting: If $\left\{\varphi_{t}\right\}$ is a holomorphic family of conformal maps, and $\varphi_{t}\left(\mathbb{S}^{1}\right)$ are invariant under hyperbolic dynamical systems,

$$
\begin{aligned}
\left.2 \frac{d^{2}}{d t^{2}}\right|_{t=0} \mathrm{M} \cdot \operatorname{dim} \varphi_{t}\left(\mathbb{S}^{1}\right) & =\sigma^{2}\left(\left.\frac{d}{d t}\right|_{t=0} \log \varphi_{t}^{\prime}\right), \\
& =\sigma^{2}(\mathcal{S} \mu) \\
& =\|\mu\|_{\mathrm{WP}}^{2}
\end{aligned}
$$

where $\|\cdot\|_{\mathrm{WP}}^{2}$ is the Weil-Petersson metric.
Theorem: True for universal bounds.

Dimensions of Quasicircles

Find $D(k)$, the maximal dimension of a k-quasicircle.
Theorem: (Smirnov) $D(k) \leq 1+k^{2}$.
Is it sharp??

Dimensions of Quasicircles

Find $D(k)$, the maximal dimension of a k-quasicircle.
Theorem: (Smirnov) $D(k) \leq 1+k^{2}$.
Is it sharp??
NO!
Theorem: $D(k)=1+\Sigma^{2} k^{2}+\mathcal{O}\left(k^{2.5}\right)$.
(AIPP - Lower bound comes from polynomial perturbations of $z \rightarrow z^{d}$.)

Box Lemma

Infinitesimal version: For any $\varepsilon>0$, if R is sufficiently large, then

$$
f_{B}\left|\frac{2(\mathcal{S} \mu)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}<\Sigma^{2}+\varepsilon
$$

for any μ with $|\mu| \leq \chi_{\mathbb{D}}$ and every R-box B.

Box Lemma

Infinitesimal version: For any $\varepsilon>0$, if R is sufficiently large, then

$$
f_{B}\left|\frac{2(\mathcal{S} \mu)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}<\Sigma^{2}+\varepsilon
$$

for any μ with $|\mu| \leq \chi_{\mathbb{D}}$ and every R-box B.

Global version: For any $\varepsilon>0$, if R is sufficiently large, then

$$
f_{B}\left|\frac{2\left(\log \varphi^{\prime}\right)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}<\Sigma^{2}(k)+\varepsilon
$$

for any conformal map $\varphi \in \Sigma_{k}$ and every R-box B.

(Asymptotic) locality of non-linearity

Bishop, Jones, McMullen...
Infinitesimal version: Suppose $\mu \in M(\mathbb{D})$ with $\|\mu\|_{\infty} \leq 1$. Then,

- For $z \in \mathbb{D}^{*},\left|\left((\mathcal{S} \mu)^{\prime} / \rho_{*}\right)(z)\right| \lesssim 1$.
- If $d_{\mathbb{D}}^{\square}\left(z^{-}, \operatorname{supp} \mu\right) \geq R$ then $\left|\left((\mathcal{S} \mu)^{\prime} / \rho_{*}\right)(z)\right| \lesssim e^{-R}$.

(Asymptotic) locality of non-linearity

Global version: Suppose $\mu \in M(\mathbb{D})$ with $\|\mu\|_{\infty} \leq k$. Then,

- For $z \in \mathbb{D}^{*},\left|\left(N_{\varphi} / \rho_{*}\right)(z)\right| \lesssim 1$.
- If $d_{\mathbb{D}}\left(z^{-}, \operatorname{supp}\left(\mu_{1}-\mu_{2}\right)\right) \geq R$ then

$$
\left|\frac{N_{\varphi_{1}}-N_{\varphi_{2}}}{\rho_{*}}(z)\right| \lesssim e^{-C(k) R}+o(|z|-1) .
$$

Sketch of proof

Want to estimate

$$
\int_{|z|=r}\left|\varphi^{\prime}\right|^{p}, \quad \text { with } \quad 0 \leq k<1 \quad \text { and } \quad p k \approx 0
$$

Sketch of proof

Want to estimate

$$
\int_{|z|=r}\left|\varphi^{\prime}\right|^{p}, \quad \text { with } \quad 0 \leq k<1 \quad \text { and } \quad p k \approx 0
$$

Trick! We instead estimate

$$
u(r):=\int_{A(r)}\left|\varphi^{\prime}\right|^{p} \rho_{*}|d z|^{2}
$$

where $A(r)=\left\{z: r<|z|<1+\frac{r-1}{R}\right\}, R>0$ large.

Sketch of proof II

Hardy's identity \Longrightarrow

$$
u^{\prime \prime}(r) \leq \frac{1}{(r-1)^{2}} \cdot \frac{p^{2}}{4} \int_{A(r)}\left|\varphi^{\prime}\right|^{p} \cdot\left|\frac{2\left(\log \varphi^{\prime}\right)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}
$$

Sketch of proof II

Hardy's identity \Longrightarrow

$$
u^{\prime \prime}(r) \leq \frac{1}{(r-1)^{2}} \cdot \frac{p^{2}}{4} \int_{A(r)}\left|\varphi^{\prime}\right|^{p} \cdot\left|\frac{2\left(\log \varphi^{\prime}\right)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}
$$

Box lemma \Longrightarrow

$$
u^{\prime \prime}(r) \leq \frac{1}{(r-1)^{2}} \cdot \frac{p^{2}}{4} \int_{A(r)}\left|\varphi^{\prime}\right|^{p} \cdot\left(\Sigma^{2}(k)+\varepsilon\right) \rho_{*}|d z|^{2}
$$

Sketch of proof II

Hardy's identity \Longrightarrow

$$
u^{\prime \prime}(r) \leq \frac{1}{(r-1)^{2}} \cdot \frac{p^{2}}{4} \int_{A(r)}\left|\varphi^{\prime}\right|^{p} \cdot\left|\frac{2\left(\log \varphi^{\prime}\right)^{\prime}}{\rho_{*}}(z)\right|^{2} \rho_{*}|d z|^{2}
$$

Box lemma \Longrightarrow

$$
u^{\prime \prime}(r) \leq \frac{1}{(r-1)^{2}} \cdot \frac{p^{2}}{4} \int_{A(r)}\left|\varphi^{\prime}\right|^{p} \cdot\left(\Sigma^{2}(k)+\varepsilon\right) \rho_{*}|d z|^{2}
$$

Since $u^{\prime \prime}(r) \leq \frac{c u}{(r-1)^{2}}, u$ is bounded above by solution of the differential equation. (cf. Becker-Pommerenke, $1+37 k^{2}$).

Additional applications

Proof is very simple and robust:

- Provides an alternative proof of "dynamical equalities" including parabolic cases
- Applies to coefficients invariant under Fuchsian groups, with $\Sigma_{F}^{2}<2 / 3$ replacing Σ^{2}
- Improved estimates for sparse Beltrami coefficients
- Can use any equivalent norm on the Bloch space (we use the L^{∞} norm, classically people in '80s used the Bloch norm)
- Works in higher dimensions (if one wants to forgo connections to Hausdorff dimension)

Additional applications

Proof is very simple and robust:

- Provides an alternative proof of "dynamical equalities" including parabolic cases
- Applies to coefficients invariant under Fuchsian groups, with $\Sigma_{F}^{2}<2 / 3$ replacing Σ^{2}
- Improved estimates for sparse Beltrami coefficients
- Can use any equivalent norm on the Bloch space (we use the L^{∞} norm, classically people in '80s used the Bloch norm)
- Works in higher dimensions (if one wants to forgo connections to Hausdorff dimension)

A similar argument gives connections to Makarov's constant in the law of iterated logarithm. (Joint with I. Kayumov.)

Thank you for your attention!

