Compact Quantum Groups and Free Combinatorics

Roland Speicher
Saarland University
Saarbrücken, Germany
supported by ERC Advanced Grant
"Non-Commutative Distributions in Free Probability"

Section 1

The Origin of Freeness: Free Group Factors

Let us Look on Moments

Free (non-commutative) probability theory investigates
operators on Hilbert spaces
by looking at
moments of those operators

Many methods and concepts for understanding those moments are inspired by analogues from

classical probability theory

Some Basic Notations

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space, i.e.,

- \mathcal{A} is a unital algebra
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a unital linear functional, i.e. $\varphi(1)=1$

Consider (non-commutative) random variables $a_{1}, \ldots, a_{n} \in \mathcal{A}$. Expressions of the form

$$
\varphi\left(a_{i(1)} \cdots a_{i(k)}\right) \quad(k \in \mathbb{N}, 1 \leq i(1), \ldots, i(k) \leq n)
$$

are called moments of a_{1}, \ldots, a_{n}.

Moments of Generators Determine vN-Algebra

Let \mathcal{A}, \mathcal{B} be two von Neumann algebras with

- $\mathcal{A}=\mathrm{vN}\left(a_{1}, \ldots, a_{n}\right), \quad$ and $\quad \mathcal{B}=\mathrm{vN}\left(b_{1}, \ldots, b_{n}\right)$ with selfadjoint generators a_{i} and b_{i}
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ and $\psi: \mathcal{B} \rightarrow \mathbb{C}$ are faithful and normal states
- for all $k \in \mathbb{N}$ and $1 \leq i(1), \ldots, i(k) \leq n$:

$$
\varphi\left(a_{i(1)} \cdots a_{i(k)}\right)=\psi\left(b_{i(1)} \cdots b_{i(k)}\right)
$$

Then

$$
\mathcal{A} \cong \mathcal{B} \quad \text { via } \quad a_{i} \mapsto b_{i} \quad(i=1, \ldots, n)
$$

Consequence: Moments Can be Uselful

- All questions on operators, which depend only on the generated operator algebra, ...
... like: spectrum, polar decomposition, existence of hyperinvariant subspaces, inequalities for L^{p}-norms...
... can in principle be answered by the knowldege of the moments of the operators with respect to a faithful normal state
- This insight is in general not very helpful, since moments are usually quite complicated
- However, in many special (and interesting) situations moments have a special structure

This is the realm of free probability theory

Measure Theory Versus Probability Theory

Difference between measure theory and classical probability theory is essentially given by notion of

independence

Difference between von Neumann algebra theory and free probability theory is essentially given by notion of

freeness or free independence

Freeness describes special structure of moments arising from group von Neumann algebras $L(G)$, if G is the free product of subgroups

Group von Neumann Algebra $L(G)$

Definition

Let G be a discrete group. The corresponding group von Neumann algebra is

$$
L(G):={\overline{\mathbb{C}} \bar{G}^{\text {STOP }}}^{\text {TOP }}
$$

\uparrow
representation of the group algebra acting on the group by left multiplication

If G is i.c.c. (all non-trivial conjugacy classes are infinite), then $L(G)$ is a II_{1} factor.
In particular, the neutral element e of G induces a trace τ on $L(G)$, which is faithful and normal, via

$$
\tau(a):=\langle a e, e\rangle
$$

Hyperfinite and Free Group Factors

$$
G \text { amenable } \quad \Longrightarrow \quad \begin{gathered}
L(G) \\
\text { hyperfinite } \|_{1} \text {-Faktor }
\end{gathered}
$$

$$
\begin{gathered}
G=\mathbb{F}_{n} \\
\text { free group on } \\
n \text { generators }
\end{gathered} \quad \Longrightarrow \quad \begin{gathered}
L\left(\mathbb{F}_{n}\right) \text { is } \\
\text { not hyperfinite } \\
\text { (Murray/von Neumann) }
\end{gathered}
$$

Voiculescu's philosophy: The free group factors $L\left(\mathbb{F}_{n}\right)$ are the next interesting class of von Neumann algebras after the hyperfinite one

The Structure of the Free Group Factors

Free probability theory was created

- in order to understand $L\left(\mathbb{F}_{n}\right)$ and similar von Neumann algebras;
- in particular, to attack the most famous (and still open!!!) problem in this context:
(Isomorphism problem of the free group factors:)
Is it true or false that

$$
L\left(\mathbb{F}_{n}\right) \cong L\left(\mathbb{F}_{m}\right) \quad \text { for } n \neq m(n, m \geq 2)
$$

Transfering Freeness from G to $L(G)$

$$
\begin{gathered}
G=G_{1} * G_{2} \\
\downarrow \\
\mathbb{C} G=\mathbb{C} G_{1} * \mathbb{C} G_{2} \\
\downarrow ? \\
L(G)=L\left(G_{1}\right) * L\left(G_{2}\right)
\end{gathered}
$$

free product of groups
free product
of algebras
erc

Algebraic Freeness of Subgroups

G_{1}, G_{2} are free in G (as subgroups) means:

$$
\left.\begin{array}{c}
g_{i} \in G_{j(i)} \\
g_{i} \neq e \quad \forall i \\
j(1) \neq j(2) \neq \cdots \neq j(k)
\end{array}\right\} \Longrightarrow g_{1} \cdots g_{k} \neq e
$$

This algebraic formulation can be extented to finite sums (as in $\mathbb{C} G$), but not to infinite sums (as in $L(G)$).

Reformulation in Terms of the Trace

We can reformulate the freeness of the subgroups also in terms of τ :

$$
\left.\begin{array}{c}
g_{i} \in G_{j(i)} \\
\tau\left(g_{i}\right)=0 \quad \forall i \\
j(1) \neq \cdots \neq j(k)
\end{array}\right\} \Longrightarrow \tau\left(g_{1} \cdots g_{k}\right)=0
$$

This characterisation goes over to finite as well as to infinite sums (note that τ is normal).

This motivated Voiculescu to make the following definition.

The Fundamental Notion: Freeness

Definition (Voiculescu 1985)

Let \mathcal{A} be a unital algebra and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ a unital linear functional. Subalgebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \subset \mathcal{A}$ are free (w.r.t. φ), if:

$$
\left.\begin{array}{c}
a_{i} \in \mathcal{A}_{j(i)} \\
\varphi\left(a_{i}\right)=0 \quad \forall i \\
j(1) \neq \cdots \neq j(k)
\end{array}\right\} \Longrightarrow \varphi\left(a_{1} \cdots a_{k}\right)=0
$$

- Freeness is a special structure of the mixed moments in elements from $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$.
- This structure should be seen and investigated in analogy to the classical concept of "independence".

Section 2

Freeness

Some History

1985 Voiculescu introduces "freeness" in the context of isomorphism problem of free group factors
1991 Voiculescu discovers relation with random matrices (which leads, among others, to deep results on free group factors)
1994 Speicher develops combinatorial theory of freeness, based on "free cumulants"
later ... many new results on operator algebras, eigenvalue distribution of random matrices, and much more

Definition of Freeness

Definition

- Let (\mathcal{A}, φ) be non-commutative probability space, i.e., \mathcal{A} is a unital algebra and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is unital linear functional (i.e., $\varphi(1)=1$)
- Unital subalgebras $\mathcal{A}_{i}(i \in I)$ are free or freely independent, if $\varphi\left(a_{1} \cdots a_{n}\right)=0$ whenever

$$
\begin{aligned}
& a_{i} \in \mathcal{A}_{j(i)}, \quad j(i) \in I \quad \forall i, \\
& j(1) \neq j(2) \neq \cdots \neq j(n) \\
& \varphi\left(a_{i}\right)=0 \quad \forall i
\end{aligned}
$$

- Random variables $x_{1}, \ldots, x_{n} \in \mathcal{A}$ are free, if their generated unital subalgebras $\mathcal{A}_{i}:=\operatorname{algebra}\left(1, x_{i}\right)$ are so.

What is Freeness?

Freeness between x and y is an infinite set of equations relating various moments in x and y :

$$
\varphi\left(p_{1}(x) q_{1}(y) p_{2}(x) q_{2}(y) \cdots\right)=0
$$

Basic observation: freeness between x and y is actually a rule for calculating mixed moments in x and y from the moments of x and the moments of y :

$$
\varphi\left(x^{m_{1}} y^{n_{1}} x^{m_{2}} y^{n_{2}} \cdots\right)=\operatorname{polynomial}\left(\varphi\left(x^{i}\right), \varphi\left(y^{j}\right)\right)
$$

Example

If x and y are free, then we have

$$
\varphi\left(x^{m} y^{n}\right)=\varphi\left(x^{m}\right) \cdot \varphi\left(y^{n}\right)
$$

Example

$$
\varphi\left(\left(x^{m}-\varphi\left(x^{m}\right) 1\right)\left(y^{n}-\varphi\left(y^{n}\right) 1\right)\right)=0
$$

thus

$$
\begin{gathered}
\varphi\left(x^{m} y^{n}\right)-\varphi\left(x^{m} \cdot 1\right) \varphi\left(y^{n}\right)-\varphi\left(x^{m}\right) \varphi\left(1 \cdot y^{n}\right)+\varphi\left(x^{m}\right) \varphi\left(y^{n}\right) \varphi(1 \cdot 1)=0 \\
\text { and hence } \quad \varphi\left(x^{m} \boldsymbol{y}^{n}\right)=\varphi\left(x^{m}\right) \cdot \varphi\left(\boldsymbol{y}^{n}\right)
\end{gathered}
$$

Example

$$
\varphi((x-\varphi(x) 1) \cdot(y-\varphi(y) 1) \cdot(x-\varphi(x) 1) \cdot(y-\varphi(y) 1))=0
$$

which results in

$$
\begin{aligned}
\varphi(x y x y)=\varphi(x x) \cdot \varphi(y) \cdot \varphi(y)+ & \varphi(x) \cdot \varphi(x) \cdot \varphi(y y) \\
& -\varphi(x) \cdot \varphi(y) \cdot \varphi(x) \cdot \varphi(y)
\end{aligned}
$$

Example

If x and y are free, then we have

$$
\begin{aligned}
\varphi\left(x^{m} y^{n}\right) & =\varphi\left(x^{m}\right) \cdot \varphi\left(y^{n}\right) \\
\varphi\left(x^{m_{1}} y^{n} x^{m_{2}}\right) & =\varphi\left(x^{m_{1}+m_{2}}\right) \cdot \varphi\left(y^{n}\right)
\end{aligned}
$$

but also

$$
\varphi(x y x y)=\varphi\left(x^{2}\right) \cdot \varphi(y)^{2}+\varphi(x)^{2} \cdot \varphi\left(y^{2}\right)-\varphi(x)^{2} \cdot \varphi(y)^{2}
$$

Freeness is a rule for calculating mixed moments, analogous to the concept of independence for random variables. This is the reason that it is also called "free independence".

Example

If x and y are free, then we have

$$
\begin{aligned}
\varphi\left(x^{m} y^{n}\right) & =\varphi\left(x^{m}\right) \cdot \varphi\left(y^{n}\right) \\
\varphi\left(x^{m_{1}} y^{n} x^{m_{2}}\right) & =\varphi\left(x^{m_{1}+m_{2}}\right) \cdot \varphi\left(y^{n}\right)
\end{aligned}
$$

but also

$$
\varphi(x y x y)=\varphi\left(x^{2}\right) \cdot \varphi(y)^{2}+\varphi(x)^{2} \cdot \varphi\left(y^{2}\right)-\varphi(x)^{2} \cdot \varphi(y)^{2}
$$

Free independence is a rule for calculating mixed moments, analogous to the concept of independence for random variables.
Note: free independence is a different rule from classical independence; free independence occurs typically for non-commuting random variables, like operators on Hilbert spaces or (random) matrices.

Where Does Freeness Show Up?

- generators of the free group in the corresponding free group von Neumann algebras $L\left(\mathbb{F}_{n}\right)$
- creation and annihilation operators on full Fock spaces
- for many classes of random matrices

Section 3

The Emergence of the Combinatorics of Freeness

Motivation for the Combinatorics of Freeness: the Free (and Classical) CLT

Consider $a_{1}, a_{2}, \cdots \in(\mathcal{A}, \varphi)$ which are

- identically distributed
- centered and normalized: $\varphi\left(a_{i}\right)=0$ and $\varphi\left(a_{i}^{2}\right)=1$
- either classically independent or freely independent

What can we say about

$$
S_{n}:=\frac{a_{1}+\cdots+a_{n}}{\sqrt{n}} \xrightarrow{n \rightarrow \infty} ? ? ?
$$

Definition

We say that S_{n} converges (in distribution) to s if

$$
\lim _{n \rightarrow \infty} \varphi\left(S_{n}^{m}\right)=\varphi\left(s^{m}\right) \quad \forall m \in \mathbb{N}
$$

Calculation of Moments of S_{n}

We have

$$
\begin{aligned}
\varphi\left(S_{n}^{m}\right) & =\frac{1}{n^{m / 2}} \varphi\left[\left(a_{1}+\cdots a_{n}\right)^{m}\right] \\
& =\frac{1}{n^{m / 2}} \sum_{i(1), \ldots, i(m)=1}^{n} \varphi\left[a_{i(1)} \cdots a_{i(m)}\right]
\end{aligned}
$$

Basic Observation

Note:

$$
\varphi\left[a_{i(1)} \cdots a_{i(m)}\right]=\varphi\left[a_{j(1)} \cdots a_{j(m)}\right]
$$

whenever

$$
\operatorname{ker} i=\operatorname{ker} j
$$

Example

For example, $i=(1,3,1,5,3)$ and $j=(3,4,3,6,4)$:

$$
\varphi\left[a_{1} a_{3} a_{1} a_{5} a_{3}\right]=\varphi\left[a_{3} a_{4} a_{3} a_{6} a_{4}\right]
$$

because independence/freeness allows to express

$$
\begin{aligned}
& \varphi\left[a_{1} a_{3} a_{1} a_{5} a_{3}\right]=\text { polynomial }\left(\varphi\left(a_{1}\right), \varphi\left(a_{1}^{2}\right), \varphi\left(a_{3}\right), \varphi\left(a_{3}^{2}\right), \varphi\left(a_{5}\right)\right) \\
& \varphi\left[a_{3} a_{4} a_{3} a_{6} a_{4}\right]=\text { polynomial }\left(\varphi\left(a_{3}\right), \varphi\left(a_{3}^{2}\right), \varphi\left(a_{4}\right), \varphi\left(a_{4}^{2}\right), \varphi\left(a_{6}\right)\right) \\
& \text { and } \quad \varphi\left(a_{1}\right)=\varphi\left(a_{3}\right), \quad \varphi\left(a_{1}^{2}\right)=\varphi\left(a_{3}^{2}\right) \\
& \varphi\left(a_{3}\right)=\varphi\left(a_{4}\right), \quad \varphi\left(a_{3}^{2}\right)=\varphi\left(a_{4}^{2}\right), \quad \varphi\left(a_{5}\right)=\varphi\left(a_{6}\right)
\end{aligned}
$$

We put

$$
\kappa_{\pi}:=\varphi\left[a_{1} a_{3} a_{1} a_{5} a_{3}\right] \quad \text { where } \quad \pi:=\operatorname{ker} i=\operatorname{ker} j=\{\{1,3\},\{2,5\},\{4\}\}
$$

$\pi \in \mathcal{P}(5)$ is a partition of $\{1,2,3,4,5\}$.

Calculation of Moments of S_{n}

Thus

$$
\begin{aligned}
\varphi\left(S_{n}^{m}\right) & =\frac{1}{n^{m / 2}} \sum_{i(1), \ldots, i(m)=1}^{n} \varphi\left[a_{i(1)} \cdots a_{i(m)}\right] \\
& =\frac{1}{n^{m / 2}} \sum_{\pi \in \mathcal{P}(m)} \kappa_{\pi} \cdot \#\{i: \operatorname{ker} i=\pi\}
\end{aligned}
$$

Note:

$$
\#\{i: \operatorname{ker} i=\pi\}=n(n-1) \cdots(n-\# \pi-1) \sim n^{\# \pi}
$$

So

$$
\varphi\left(S_{n}^{m}\right) \sim \sum_{\pi \in \mathcal{P}(m)} \kappa_{\pi} \cdot n^{\# \pi-m / 2}
$$

No Singletons in the Limit

Consider $\pi \in \mathcal{P}(m)$ with singleton:

$$
\pi=\{\ldots,\{k\}, \ldots\}
$$

thus

$$
\begin{aligned}
\kappa_{\pi} & =\varphi\left(a_{i(1)} \cdots a_{i(k)} \cdots a_{i(m)}\right) \\
& =\varphi\left(a_{i(1)} \cdots a_{i(k-1)} a_{i(k+1)} \cdots a_{i(m)}\right) \cdot \underbrace{\varphi\left(a_{i(k)}\right)}_{=0} \\
& =0
\end{aligned}
$$

We used: If $\{x, y\}$ and a are free/independent, then:

$$
\varphi(x a y)=\varphi(x y) \varphi(a)
$$

No Singletons in the Limit

Consider $\pi \in \mathcal{P}(m)$ with singleton:

$$
\pi=\{\ldots,\{k\}, \ldots\}
$$

thus

$$
\begin{aligned}
\kappa_{\pi} & =\varphi\left(a_{i(1)} \cdots a_{i(k)} \cdots a_{i(m)}\right) \\
& =\varphi\left(a_{i(1)} \cdots a_{i(k-1)} a_{i(k+1)} \cdots a_{i(m)}\right) \cdot \underbrace{\varphi\left(a_{i(k)}\right)}_{=0} \\
& =0
\end{aligned}
$$

Thus: $\kappa_{\pi}=0$ if π has singleton.

Only Pairings Survive in the Limit

So we have

$$
\begin{aligned}
\kappa_{\pi} \neq 0 & \Longrightarrow \quad \pi=\left\{V_{1}, \ldots, V_{r}\right\} \text { with } \# V_{j} \geq 2 \forall j \\
& \Longrightarrow \quad r=\# \pi \leq \frac{m}{2}
\end{aligned}
$$

So in

$$
\varphi\left(S_{n}^{m}\right) \sim \sum_{\pi \in \mathcal{P}(m)} \kappa_{\pi} \cdot n^{\# \pi-m / 2}
$$

only those π survive for $n \rightarrow \infty$ with

- π has no singleton, i.e., no block of size 1
- π has exactly $m / 2$ blocks

Such π are exactly those, where each block has size 2, i.e.,

$$
\pi \in \mathcal{P}_{2}(m):=\{\pi \in \mathcal{P}(m) \mid \pi \text { is pairing }\}
$$

Limit Moments are Given by Summation over Pairings

Thus we have:

$$
\lim _{n \rightarrow \infty} \varphi\left(S_{n}^{m}\right)=\sum_{\pi \in \mathcal{P}_{2}(m)} \kappa_{\pi}
$$

- This gives in particular: odd moments are zero (because no pairings of odd number of elements), thus limit distribution is symmetric
- What are the even moments?

This depends on the κ_{π} 's.
The actual value of those is now different for the classical and the free case!

Classical CLT: Assume a_{i} are Independent

If the a_{i} commute and are independent, then

$$
\kappa_{\pi}=\varphi\left(a_{i(1)} \cdots a_{i(2 k)}\right)=1 \quad \forall \pi \in \mathcal{P}_{2}(2 k)
$$

Example

$$
\varphi\left(a_{1} a_{2} a_{3} a_{3} a_{2} a_{1}\right)=1=\varphi\left(a_{1} a_{2} a_{2} a_{3} a_{1} a_{3}\right)
$$

Thus

$$
\lim _{n \rightarrow \infty} \varphi\left(S_{n}^{m}\right)=\# \mathcal{P}_{2}(m)= \begin{cases}0, & m \text { odd } \\ (m-1)(m-3) \cdots 5 \cdot 3 \cdot 1, & m \text { even }\end{cases}
$$

Those limit moments are the moments of a Gaussian distribution of variance 1.

Free CLT: Assume a_{i} are Free

If the a_{i} are free, then, for $\pi \in \mathcal{P}_{2}(2 k)$,

$$
\kappa_{\pi}= \begin{cases}0, & \pi \text { is crossing } \\ 1, & \pi \text { is non-crossing }\end{cases}
$$

Example

- non-crossing π

$$
\begin{aligned}
\kappa_{\{1,6\},\{2,5\},\{3,4\}}=\varphi\left(a_{1} a_{2} a_{3} a_{3} a_{2} a_{1}\right) & =\varphi\left(a_{3} a_{3}\right) \cdot \varphi\left(a_{1} a_{2} a_{2} a_{1}\right) \\
& =\varphi\left(a_{3} a_{3}\right) \cdot \varphi\left(a_{2} a_{2}\right) \cdot \varphi\left(a_{1} a_{1}\right) \\
& =1
\end{aligned}
$$

- crossing π

$$
\kappa_{\{1,5\},\{2,3\},\{4,6\}\}}=\varphi\left(a_{1} a_{2} a_{2} a_{3} a_{1} a_{3}\right)=\varphi\left(a_{2} a_{2}\right) \cdot \underbrace{\varphi\left(a_{1} a_{3} a_{1} a_{3}\right)}_{0}=0
$$

Free CLT: Assume a_{i} are Free

Notation
Put

$$
N C_{2}(m):=\left\{\pi \in \mathcal{P}_{2}(m) \mid \pi \text { is non-crossing }\right\}
$$

Thus

$$
\lim _{n \rightarrow \infty} \varphi\left(S_{n}^{m}\right)=\# N C_{2}(m)= \begin{cases}0, & m \text { odd } \\ c_{k}=\frac{1}{k+1}\binom{2 k}{k}, & m=2 k \text { even }\end{cases}
$$

Those limit moments are the moments of a semicircular distribution of variance 1,

$$
\lim _{n \rightarrow \infty} \varphi\left(S_{n}^{m}\right)=\frac{1}{2 \pi} \int_{-2}^{2} t^{m} \sqrt{4-t^{2}} d t
$$

How to Recognize the Catalan Numbers c_{k}

Notation
Put

$$
c_{k}:=\# N C_{2}(2 k)
$$

Basic Observation
We have

$$
c_{k}=\sum_{\pi \in N C(2 k)} 1=\sum_{i=1}^{k} \sum_{\pi=\{1,2 i\} \cup \pi_{1} \cup \pi_{2}} 1=\sum_{i=1}^{k} c_{i-1} c_{k-i}
$$

This recursion, together with $c_{0}=1, c_{1}=1$, determines the sequence of Catalan numbers:

$$
\left\{c_{k}\right\}=1,1,2,5,14,42,132,429, \ldots
$$

Intermezzo:
 One Slide on Random Matrices

Convergence of Eigenvalue Distribution of Gaussian Random Matrices to Semicircle

Section 4

Free Cumulants

Understanding the Freeness Rule: the Idea of Cumulants

- write moments in terms of other quantities, which we call free cumulants
- freeness is much easier to describe on the level of free cumulants: vanishing of mixed cumulants
- relation between moments and cumulants is given by summing over non-crossing or planar partitions

Non-Crossing Partitions

Definition

A partition of $\{1, \ldots, n\}$ is a decomposition $\pi=\left\{V_{1}, \ldots, V_{r}\right\}$ with

$$
V_{i} \neq \emptyset, \quad V_{i} \cap V_{j}=\emptyset \quad(i \neq y), \quad \bigcup_{i} V_{i}=\{1, \ldots, n\}
$$

The V_{i} are the blocks of $\pi \in \mathcal{P}(n)$. π is non-crossing if we do not have

$$
p_{1}<q_{1}<p_{2}<q_{2}
$$

such that p_{1}, p_{2} are in same block, q_{1}, q_{2} are in same block, but those two blocks are different.

$$
\mathbf{N C}(\mathbf{n}):=\{\text { non-crossing partitions of }\{1, \ldots, n\}\}
$$

$N C(n)$ is actually a lattice with refinement order.

Moments and Cumulants

Definition

For unital linear functional

$$
\varphi: \mathcal{A} \rightarrow \mathbb{C}
$$

we define cumulant functionals κ_{n} (for all $n \geq 1$)

$$
\kappa_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}
$$

as multi-linear functionals by moment-cumulant relation

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left[a_{1}, \ldots, a_{n}\right]
$$

Note: classical cumulants are defined by a similar formula, where only $N C(n)$ is replaced by $\mathcal{P}(n)$

Example ($n=1$)

$$
\varphi\left(a_{1}\right)=\kappa_{1}\left(a_{1}\right)
$$

Example ($n=2$)

$$
\begin{aligned}
\varphi\left(a_{1} a_{2}\right)= & \kappa_{2}\left(a_{1}, a_{2}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right)
\end{aligned}
$$

and thus

$$
\kappa_{2}\left(a_{1}, a_{2}\right)=\varphi\left(a_{1} a_{2}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
$$

Example ($n=3$)

$$
\begin{aligned}
\varphi\left(a_{1} a_{2} a_{3}\right)= & \kappa_{3}\left(a_{1}, a_{2}, a_{3}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{3}\right) \kappa_{1}\left(a_{2}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \kappa_{3}\left(a_{1}, a_{2}, a_{3}\right)=\varphi\left(a_{1} a_{2} a_{3}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2} a_{3}\right)-\varphi\left(a_{2}\right) \varphi\left(a_{1} a_{3}\right) \\
&-\varphi\left(a_{3}\right) \varphi\left(a_{1} a_{2}\right)+2 \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \varphi\left(a_{3}\right)
\end{aligned}
$$

Example $(n=4)$

$$
\begin{aligned}
& \varphi\left(a_{1} a_{2} a_{3} a_{4}\right)=\quad 山+\| \amalg+\amalg^{1} \downarrow+山^{1}+山 \mid \\
& +\sqcup \sqcup+\sqcup \sqcup+\|\Delta+|\sqcup|+\sqcup\| \\
& +|\square+\|!+\| 1|+||| | \\
& =\kappa_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{3}\left(a_{2}, a_{3}, a_{4}\right) \\
& +\kappa_{1}\left(a_{2}\right) \kappa_{3}\left(a_{1}, a_{3}, a_{4}\right)+\kappa_{1}\left(a_{3}\right) \kappa_{3}\left(a_{1}, a_{2}, a_{4}\right) \\
& +\kappa_{3}\left(a_{1}, a_{2}, a_{3}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{2}\left(a_{3}, a_{4}\right) \\
& +\kappa_{2}\left(a_{1}, a_{4}\right) \kappa_{2}\left(a_{2}, a_{3}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{2}\left(a_{3}, a_{4}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{3}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(a_{3}\right) \kappa_{1}\left(a_{4}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{4}\right) \kappa_{1}\left(a_{3}\right)+\kappa_{2}\left(a_{1}, a_{4}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{3}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right) \kappa_{1}\left(a_{4}\right)
\end{aligned}
$$

Freeness $\hat{=}$ Vanishing of Mixed Cumulants

Theorem (Speicher 1994)
The fact that x_{1}, \ldots, x_{m} are free is equivalent to the fact that

$$
\kappa_{n}\left(x_{i(1)}, \ldots, x_{i(n)}\right)=0
$$

whenever

- $1 \leq i(1), \ldots, i(n) \leq m$
- there are p, q such that $i(p) \neq i(q)$ (in particular, $n \geq 2$)

Example

If x and y are free then: $\varphi(x y x y)=$

$$
\kappa_{1}(x) \kappa_{1}(x) \kappa_{2}(y, y)+\kappa_{2}(x, x) \kappa_{1}(y) \kappa_{1}(y)+\kappa_{1}(x) \kappa_{1}(y) \kappa_{1}(x) \kappa_{1}(y)
$$

Factorization of Non-Crossing Moments

Example

The iteration of the rule

$$
\varphi(a x b)=\varphi(a b) \varphi(x) \quad \text { if }\{a, b\} \text { and } x \text { free }
$$

leads to the factorization of all "non-crossing" moments in free variables

$$
\begin{gathered}
x_{1} \quad x_{2} \quad x_{3} \quad x_{3} \quad x_{2} \quad x_{4} \quad x_{5} \quad x_{5} \quad x_{2} \quad x_{1} \\
\varphi\left(x_{1} x_{2} x_{3} x_{3} x_{2} x_{4} x_{5} x_{5} x_{2} x_{1}\right) \\
=\varphi\left(x_{1} x_{1}\right) \cdot \varphi\left(x_{2} x_{2} x_{2}\right) \cdot \varphi\left(x_{3} x_{3}\right) \cdot \varphi\left(x_{4}\right) \cdot \varphi\left(x_{5} x_{5}\right)
\end{gathered}
$$

Section 5

Operator-Valued Extension of Free Probability

Definition

Let $\mathcal{B} \subset \mathcal{A}$. A linear map $E: \mathcal{A} \rightarrow \mathcal{B}$ is a conditional expectation if

$$
E[b]=b \quad \forall b \in \mathcal{B}
$$

and

$$
E\left[b_{1} a b_{2}\right]=b_{1} E[a] b_{2} \quad \forall a \in \mathcal{A}, \quad \forall b_{1}, b_{2} \in \mathcal{B}
$$

An operator-valued probability space consists of $\mathcal{B} \subset \mathcal{A}$ and a conditional expectation $E: \mathcal{A} \rightarrow \mathcal{B}$

Example (Classical conditional expectation)

Let \mathfrak{M} be a σ-algebra and $\mathfrak{N} \subset \mathfrak{M}$ be a sub- σ-algebra. Then

- $\mathcal{A}=L^{\infty}(\Omega, \mathfrak{M}, P)$
- $\mathcal{B}=L^{\infty}(\Omega, \mathfrak{N}, P)$
- $E[\cdot \mid \mathfrak{N}]$ is the classical conditional expectation from the bigger onto the smaller σ-algebra.

Operator-Valued Freeness

Definition

Consider an operator-valued probability space $(\mathcal{A}, E: \mathcal{A} \rightarrow \mathcal{B})$. The operator-valued distribution of $x \in \mathcal{A}$ is given by all operator-valued moments

$$
E\left[x b_{1} x b_{2} \cdots b_{n-1} x\right] \in \mathcal{B} \quad\left(n \in \mathbb{N}, b_{1}, \ldots, b_{n-1} \in \mathcal{B}\right)
$$

Random variables $x_{i} \in \mathcal{A}(i \in I)$ are free with respect to E (or free with amalgamation over \mathcal{B}) if

$$
E\left[a_{1} \cdots a_{n}\right]=0
$$

whenever

- $a_{i} \in \mathcal{B}\left\langle x_{j(i)}\right\rangle$ are polynomials in some $x_{j(i)}$ with coefficients from \mathcal{B}
- $j(1) \neq j(2) \neq \cdots \neq j(n)$
- $E\left[a_{i}\right]=0$ for all i

Operator-Valued Freeness: NC Moments

Note: random variables x and scalars b from \mathcal{B} do not commute in general!

Example

Still one has factorizations of all non-crossing moments in free variables.

x_{1}	x_{2}	x_{3}	x_{3}	x_{2}	x_{4}	x_{5}	x_{5}	x_{2}	x_{1}

$$
\begin{aligned}
& E\left[x_{1} x_{2} x_{3} x_{3} x_{2} x_{4} x_{5} x_{5} x_{2} x_{1}\right] \\
& \quad=E\left[x_{1} \cdot E\left[x_{2} \cdot E\left[x_{3} x_{3}\right] \cdot x_{2} \cdot E\left[x_{4}\right] \cdot E\left[x_{5} x_{5}\right] \cdot x_{2}\right] \cdot x_{1}\right]
\end{aligned}
$$

Operator-Valued Freeness: NC Moments

Operator-valued freeness works mostly like ordinary freeness, one only has to take care of the order of the variables; in all expressions they have to appear in their original order!

Example

Still one has factorizations of all non-crossing moments in free variables.

$$
\begin{aligned}
& E\left[x_{1} x_{2} x_{3} x_{3} x_{2} x_{4} x_{5} x_{5} x_{2} x_{1}\right] \\
& \qquad=E\left[x_{1} \cdot E\left[x_{2} \cdot E\left[x_{3} x_{3}\right] \cdot x_{2} \cdot E\left[x_{4}\right] \cdot E\left[x_{5} x_{5}\right] \cdot x_{2}\right] \cdot x_{1}\right]
\end{aligned}
$$

Operator-Valued Freeness: Crossing Moments

For "crossing" moments one has analogous formulas as in scalar-valued case, modulo respecting the order of the variables ...

Example

The formula for free x_{1} and x_{2}

$$
\begin{aligned}
& \varphi\left(x_{1} x_{2} x_{1} x_{2}\right)=\varphi\left(x_{1} x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{2}\right)+\varphi\left(x_{1}\right) \varphi\left(x_{1}\right) \varphi\left(x_{2} x_{2}\right) \\
&-\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)
\end{aligned}
$$

has now to be written as

$$
\begin{aligned}
E\left[x_{1} x_{2} x_{1} x_{2}\right]=E\left[x_{1} E\left[x_{2}\right] x_{1}\right] \cdot E\left[x_{2}\right]+E\left[x_{1}\right] & \cdot E\left[x_{2} E\left[x_{1}\right] x_{2}\right] \\
& -E\left[x_{1}\right] E\left[x_{2}\right] E\left[x_{1}\right] E\left[x_{2}\right]
\end{aligned}
$$

Operator-Valued Free Cumulants

Definition

Consider an operator-valued probability space $E: \mathcal{A} \rightarrow \mathcal{B}$.
We define operator-valued free cumulants

$$
\kappa_{n}^{\mathcal{B}}: \mathcal{A}^{n} \rightarrow \mathcal{B}
$$

by

$$
E\left[a_{1} \cdots a_{n}\right]=\sum_{\pi \in N C(n)} \kappa_{\pi}^{\mathcal{B}}\left[a_{1}, \ldots, a_{n}\right]
$$

- arguments of $\kappa_{\pi}^{\mathcal{B}}$ are distributed according to blocks of π
- but now: cumulants are nested inside each other according to nesting of blocks of π

Operator-Valued Free Cumulants

Example

$$
\pi=\{\{1,10\},\{2,5,9\},\{3,4\},\{6\},\{7,8\}\} \in N C(10)
$$

$$
\begin{aligned}
\kappa_{\pi}^{\mathcal{B}}\left[a_{1}, \ldots,\right. & \left.a_{10}\right] \\
& =\kappa_{2}^{\mathcal{B}}\left(a_{1} \cdot \kappa_{3}^{\mathcal{B}}\left(a_{2} \cdot \kappa_{2}^{\mathcal{B}}\left(a_{3}, a_{4}\right), a_{5} \cdot \kappa_{1}^{\mathcal{B}}\left(a_{6}\right) \cdot \kappa_{2}^{\mathcal{B}}\left(a_{7}, a_{8}\right), a_{9}\right), a_{10}\right)
\end{aligned}
$$

Vanishing of Mixed Cumulants Characterizes Freeness

Definition

We define operator-valued free cumulants $\kappa_{n}^{\mathcal{B}}: \mathcal{A}^{n} \rightarrow \mathcal{B}$ by

$$
E\left[a_{1} \cdots a_{n}\right]=\sum_{\pi \in N C(n)} \kappa_{\pi}^{\mathcal{B}}\left[a_{1}, \ldots, a_{n}\right]
$$

As in the scalar-valued case the following are equivalent:

- x_{1}, \ldots, x_{m} are free over \mathcal{B}
- for all $n, 1 \leq i(1), \ldots, i(n) \leq m$ with $i(p) \neq i(q)$ for some p, q, and all $b_{1}, \ldots, b_{n-1} \in \mathcal{B}$ we have

$$
\kappa_{n}^{\mathcal{B}}\left(x_{i(1)} b_{1}, x_{i(2)} b_{2}, \ldots, x_{i(n-1)} b_{n-1}, x_{i(n)}\right)=0
$$

Section 6

Non-Commutative de Finetti Theorem, Quantum Permutation Group and Non-Crossing Partitions

Classical Exchangeable Random Variables

Consider probability space $(\Omega, \mathfrak{A}, P)$. Denote expectation by φ,

$$
\varphi(Y)=\int_{\Omega} Y(\omega) d P(\omega)
$$

Definition

We say that random variables X_{1}, X_{2}, \ldots are exchangeable if their joint distribution is invariant under finite permutations, i.e. if

$$
\varphi\left(X_{i(1)} \cdots X_{i(n)}\right)=\varphi\left(X_{\pi(i(1))} \cdots X_{\pi(i(n))}\right)
$$

for all $n \in \mathbb{N}$, all $i(1), \ldots, i(n) \in \mathbb{N}$, and all permutations π

Example

$$
\varphi\left(X_{1}^{n}\right)=\varphi\left(X_{7}^{n}\right), \quad \varphi\left(X_{1}^{3} X_{3}^{7} X_{4}\right)=\varphi\left(X_{8}^{3} X_{2}^{7} X_{9}\right)
$$

Tail σ-Algebra

Example

- Independent and identically distributed random variables are exchangeable.
- Note that the X_{i} might all contain some common component; e.g., if all X_{i} are the same, then clearly $X, X, X, X, X \ldots$ is exchangeable.

Theorem of de Finetti says that an infinite sequence of exchangeable random variables is independent modulo its common part.

Tail σ-Algebra

Example

- Independent and identically distributed random variables are exchangeable.
- Note that the X_{i} might all contain some common component; e.g., if all X_{i} are the same, then clearly $X, X, X, X, X \ldots$ is exchangeable.

Formalize common part via tail σ-algebra of the sequence X_{1}, X_{2}, \ldots

$$
\mathfrak{A}_{\text {tail }}:=\bigcap_{i \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq i\right)
$$

Denote by E the conditional expectation onto this tail σ-algebra

$$
E: L^{\infty}(\Omega, \mathfrak{A}, P) \rightarrow L^{\infty}\left(\Omega, \mathfrak{A}_{\text {tail }}, P\right)
$$

Classical de Finetti Theorem

Definition

$$
\begin{gathered}
\mathfrak{A}_{\text {tail }}:=\bigcap_{i \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq i\right) \\
E: L^{\infty}(\Omega, \mathfrak{A}, P) \rightarrow L^{\infty}\left(\Omega, \mathfrak{A}_{\text {tail }}, P\right)
\end{gathered}
$$

Theorem (de Finetti 1931, Hewitt, Savage 1955)
The following are equivalent for an infinite sequence of random variables:

- the sequence is exchangeable
- the sequence is independent and identically distributed with respect to the conditional expectation E onto the tail σ-algebra of the sequence

$$
E\left[X_{1}^{m(1)} X_{2}^{m(2)} \cdots X_{n}^{m(n)}\right]=E\left[X_{1}^{m(1)}\right] \cdot E\left[X_{2}^{m(2)}\right] \cdots E\left[X_{n}^{m(n)}\right]
$$

Non-commutative Random Variables

Replace now

random variables \rightarrow operators on Hilbert spaces
expectation \rightarrow state on the algebra generated by those operators

Setting

In the following our setting will be a non-commutative W^{*}-probability space (\mathcal{A}, φ), i.e.,

- \mathcal{A} is von Neumann algebra (i.e., weakly closed subalgebra of bounded operators on Hilbert space)
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is faithful state on \mathcal{A}, i.e.,

$$
\begin{gathered}
\varphi\left(a a^{*}\right) \geq 0, \quad \text { for all } a \in \mathcal{A} \\
\varphi\left(a a^{*}\right)=0 \quad \text { if and only if } a=0
\end{gathered}
$$

Exchangeable NC Random Variables

Definition

Non-commutative random variables $x_{1}, x_{2}, \cdots \in \mathcal{A}$ are exchangeable if

$$
\varphi\left(x_{i(1)} \cdots x_{i(n)}\right)=\varphi\left(x_{\pi(i(1))} \cdots x_{\pi(i(n))}\right)
$$

for all $n \in \mathbb{N}$, all $i(1), \ldots, i(n) \in \mathbb{N}$, and all permutations π.

Question

Does exchangeability imply anything like independence in this general non-commutative setting?

Answer

Only partially. Exchangeability gives, by work of Koestler, some weak form of independence (special factorization properties), but does not fully determine all mixed moments ... there are too many possibilities out in the non-commutative world, and exchangeability is a too weak condition!

However ...

Invariance under permutations is in a sense also a commutative concept and should be replaced by a non-commutative counterpart in the non-commutative world!

permutation group \longrightarrow quantum permutation group

Recall: classical permutation group

$$
S_{k} \hat{=}\{k \times k \text { permutation matrices }\}
$$

Dualize

$$
C\left(S_{k}\right)=\left\{f: S_{k} \rightarrow \mathbb{C} ; g \mapsto\left(\left(u_{i j}(g)\right)_{i, j=1}^{k}\right\}\right.
$$

Classical Permutation Group S_{k}

Then $C\left(S_{k}\right)$ is the universal commutative C^{*}-algebra generated by $u_{i j}$ $(i, j=1, \ldots, k)$, subject to the relations

$$
u_{i j}^{*}=u_{i j}=u_{i j}^{2} \quad \forall i, j, \quad \sum_{j} u_{i j}=1=\sum_{j} u_{j i} \quad \forall i
$$

$\operatorname{alg}\left(u_{i j} \mid i, j=1, \ldots, k\right)$ is a Hopf algebra (which is dense in $\left.C\left(S_{k}\right)\right)$ with

$$
\begin{array}{rlr}
\Delta u_{i j}=\sum_{k} u_{i k} \otimes u_{k j} & \text { coproduct } \\
\varepsilon\left(u_{i j}\right)=\delta_{i j} & \text { co-unit } \\
S\left(u_{i j}\right)=u_{j i} & \text { antipode }
\end{array}
$$

Quantum Permutation Group

Definition (Wang 1998)

The quantum permutation group $A_{s}(k)$ is given by the universal unital C^{*}-algebra generated by $u_{i j}(i, j=1, \ldots, k)$ subject to the relations

- $u_{i j}^{2}=u_{i j}=u_{i j}^{*}$ for all $i, j=1, \ldots, k$
- each row and column of $u=\left(u_{i j}\right)_{i, j=1}^{k}$ is a partition of unity:

$$
\sum_{j=1}^{k} u_{i j}=1 \quad \forall i \quad \text { and } \quad \sum_{i=1}^{k} u_{i j}=1 \quad \forall j
$$

(note: elements within a row or within a column are orthogonal)
$A_{s}(k)$ is a compact quantum group in the sense of Woronowicz.

Notation

We write: $A_{s}(k)=C\left(S_{k}^{+}\right)$

$$
\begin{aligned}
& S_{k}^{+} \hat{=}\{\text { quantum permutations }\} \\
& \hat{=}\left\{u=\left(u_{i j}\right) \mid u_{i j}\right. \text { operators on Hilbert space } \\
&\text { satisfying these relations }\}
\end{aligned}
$$

If

$$
u_{1}=\left(u_{i j}^{(1)}\right)_{i, j=1}^{k} \quad \text { and } \quad u_{2}=\left(u_{i j}^{(2)}\right)_{i, j=1}^{k}
$$

are quantum permutations, then so is

$$
u_{1} \odot u_{2}:=\left(\sum_{k} u_{i k}^{(1)} \otimes u_{k j}^{(2)}\right)_{i, j=1}^{k}
$$

Quantum Permutations

Example

Examples of $u=\left(u_{i j}\right)_{i, j=1}^{k}$ satisfying these relations are:

- permutation matrices
- basic non-commutative example is of the form (for $k=4$):

$$
\left(\begin{array}{cccc}
p & 1-p & 0 & 0 \\
1-p & p & 0 & 0 \\
0 & 0 & q & 1-q \\
0 & 0 & 1-q & 1
\end{array}\right)
$$

for (in general, non-commuting) projections p and q

- $S_{2}^{+}=S_{2}$,
- $S_{3}^{+}=S_{3}$,
- but $S_{k}^{+} \neq S_{k}$ for $k \geq 4$

Quantum Exchangeability

Definition

A sequence x_{1}, \ldots, x_{k} in (\mathcal{A}, φ) is quantum exchangeable if its distribution does not change under the action of quantum permutations S_{k}^{+}, i.e., if we have:
Let a quantum permutation $u=\left(u_{i j}\right) \in C\left(S_{k}^{+}\right)$act on $\left(x_{1}, \ldots, x_{k}\right)$ by

$$
y_{i}:=\sum_{j} u_{i j} \otimes x_{j} \quad \in \quad C\left(S_{k}^{+}\right) \otimes \mathcal{A}
$$

Then

- $\left(x_{1}, \ldots, x_{k}\right) \in(\mathcal{A}, \varphi)$
- $\left(y_{1}, \ldots, y_{k}\right) \in\left(C\left(S_{k}^{+}\right) \otimes \mathcal{A}\right.$, id $\left.\otimes \varphi\right)$
have the same distribution, i.e.,

$$
\varphi\left(x_{i(1)} \cdots x_{i(n)}\right) \cdot 1_{C\left(S_{k}^{+}\right)}=\operatorname{id} \otimes \varphi\left(y_{i(1)} \cdots y_{i(n)}\right)
$$

Quantum Exchangeability

Equality of distributions

$$
\varphi\left(x_{i(1)} \cdots x_{i(n)}\right) \cdot 1_{C\left(S_{k}^{+}\right)}=\mathrm{id} \otimes \varphi\left(y_{i(1)} \cdots y_{i(n)}\right)
$$

means explicitly that

$$
\varphi\left(x_{i(1)} \cdots x_{i(n)}\right) \cdot 1=\sum_{j(1), \ldots, j(n)=1}^{k} u_{i(1) j(1)} \cdots u_{i(n) j(n)} \varphi\left(x_{j(1)} \cdots x_{j(n)}\right)
$$

for all $u=\left(u_{i j}\right)_{i, j=1}^{k}$ which satisfy the defining relations for $A_{s}(k)$.

- In particular: quantum exchangeable \Longrightarrow exchangeable
- Commuting variables are usually not quantum exchangeable

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1), j(2), j(3)} u_{i(1) j(1)} u_{i(2) j(2)} u_{i(3) j(3)} \cdot \kappa_{\pi}\left(x_{j(1)}, x_{j(2)}, x_{j(3)}\right)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1), j(2), j(3)} u_{i(1) j(1)} u_{i(2) j(2)} u_{i(3) j(3)} \cdot \underbrace{\kappa_{\pi}\left(x_{j(1)}, x_{j(2)}, x_{j(3)}\right)}_{\kappa_{2}\left(x_{j(1)}, x_{j(3)}\right) \cdot \kappa_{1}\left(x_{j(2)}\right)}
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1), j(2), j(3)} u_{i(1) j(1)} u_{i(2) j(2)} u_{i(3) j(3)} \cdot \kappa_{2}\left(x_{j(1)}, x_{j(3)}\right) \cdot \underbrace{\kappa_{1}\left(x_{j(2)}\right)}_{\kappa_{1}(x)}
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1), j(2), j(3)} u_{i(1) j(1)} \underbrace{u_{i(2) j(2)}}_{\sum_{j(2)} \rightarrow 1} u_{i(3) j(3)} \cdot \kappa_{2}\left(x_{j(1)}, x_{j(3)}\right) \cdot \underbrace{\kappa_{1}\left(x_{j(2)}\right)}_{\kappa_{1}(x)}
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor$. Then we have

$$
L H S=\sum_{j(1), j(3)} u_{i(1) j(1)} u_{i(3) j(3)} \cdot \kappa_{2}\left(x_{j(1)}, x_{j(3)}\right) \cdot \kappa_{1}(x)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1), j(3)} u_{i(1) j(1)} u_{i(3) j(3)} \cdot \underbrace{\kappa_{2}\left(x_{j(1)}, x_{j(3)}\right)}_{\delta_{j(1) j(3)} \cdot \kappa_{2}(x, x)} \cdot \kappa_{1}(x)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1)=j(3)} u_{i(1) j(1)} u_{i(3) j(3)} \cdot \kappa_{2}(x, x) \cdot \kappa_{1}(x)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\sum_{j(1)} \underbrace{u_{i(1) j(1)} u_{i(3) j(1)}}_{\delta_{i(1) i(3)} u_{i(1) j(1)}} \cdot \kappa_{2}(x, x) \cdot \kappa_{1}(x)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor$. Then we have

$$
L H S=\delta_{i(1) i(3)} \cdot \kappa_{2}(x, x) \cdot \kappa_{1}(x)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor 1$. Then we have

$$
L H S=\kappa_{2}\left(x_{i(1)}, x_{i(3)}\right) \cdot \kappa_{1}\left(x_{i(2)}\right)
$$

F.I.D. Variables are Quantum Exchangeable

Proposition

Consider $x_{1}, \ldots, x_{k} \in(\mathcal{A}, \varphi)$ which are free and identically distributed. Then x_{1}, \ldots, x_{k} are quantum exchangeable.

Proof

We have to show equality of moments of x_{i} 's and of y_{i} 's. This is the same, by moment-cumulant formula, as showing for all $n \in \mathbb{N}$ and all $\pi \in N C(n)$

$$
\mathrm{id} \otimes \kappa_{\pi}\left(y_{i(1)}, \ldots, y_{i(n)}\right)=\kappa_{\pi}\left(x_{i(1)}, \ldots, i_{i(n)}\right)
$$

Consider $n=3$ and $\pi=\lfloor$. Then we have

$$
L H S=\kappa_{\pi}\left(x_{i(1)}, x_{i(2)}, x_{i(3)}\right)=R H S
$$

Implications of Quantum Exchangeability

Question

What does quantum exchangeability for an infinite sequence x_{1}, x_{2}, \ldots imply?

As before, constant sequences are trivially quantum exchangeable, thus we have to take out the common part of all the x_{i}.
erc

Implications of Quantum Exchangeability

Question

What does quantum exchangeability for an infinite sequence x_{1}, x_{2}, \ldots imply?

Definition

Define the tail algebra of the sequence:

$$
\mathcal{A}_{\text {tail }}:=\bigcap_{i \in \mathbb{N}} \mathrm{vN}\left(x_{k} \mid k \geq i\right),
$$

then there exists conditional expectation $E: \mathrm{vN}\left(x_{i} \mid i \in \mathbb{N}\right) \rightarrow \mathcal{A}_{\text {tail }}$.

Question

Does quantum exchangeability imply an independence like property for this E ?

Non-commutative de Finetti Theorem

Theorem (Köstler, Speicher 2009)

The following are equivalent for an infinite sequence of non-commutative random variables:

- the sequence is quantum exchangeable
- the sequence is free and identically distributed with respect to the conditional expectation E onto the tail-algebra of the sequence

Proof

Consider first non-crossing moments like $E\left[x_{9} x_{7} x_{2} x_{7} x_{9}\right]=? ? ?$ Because of exchangeability we have

$$
\begin{aligned}
? ? ? & =\frac{E\left[x_{9} x_{7} x_{10} x_{7} x_{9}\right]+E\left[x_{9} x_{7} x_{11} x_{7} x_{9}\right]+\cdots+E\left[x_{9} x_{7} x_{9+N} x_{7} x_{9}\right]}{N} \\
& =E\left[x_{9} x_{7} \cdot \frac{1}{N} \sum_{i=1}^{N} x_{9+i} \cdot x_{7} x_{9}\right]
\end{aligned}
$$

However, by the mean ergodic theorem,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{9+i}=E\left[x_{9}\right]=E\left[x_{2}\right]
$$

Thus

$$
E\left[x_{9} x_{7} x_{2} x_{7} x_{9}\right]=E\left[x_{9} x_{7} E\left[x_{2}\right] x_{7} x_{9}\right] .
$$

Proof

$$
E\left[x_{9} x_{7} x_{2} x_{7} x_{9}\right]=E\left[x_{9} x_{7} E\left[x_{2}\right] x_{7} x_{9}\right] .
$$

Do now the same for $x_{7} E\left[x_{2}\right] x_{7}$.

$$
\begin{aligned}
E\left[x_{9} x_{7} E\left[x_{2}\right] x_{7} x_{9}\right] & =\lim _{N \rightarrow \infty} E\left[x_{9}\left(\frac{1}{N} \sum_{i=1}^{N} x_{13+i} E\left[x_{2}\right] x_{13+i}\right) x_{9}\right] \\
& =E\left[x_{9} E\left[x_{7} E\left[x_{2}\right] x_{7}\right] x_{9}\right]
\end{aligned}
$$

So we get

$$
E\left[x_{9} x_{7} x_{2} x_{7} x_{9}\right]=E\left[x_{9} E\left[x_{7} E\left[x_{2}\right] x_{7}\right] x_{9}\right]
$$

Proof

In the same way one gets factorizations for all non-crossing moments in an iterative way (always work on interval blocks)

$$
\pi=\{\{1,10\},\{2,5,9\},\{3,4\},\{6\},\{7,8\}\} \in N C(10)
$$

x_{1}	x_{2}	x_{3}	x_{3}	x_{2}	x_{4}	x_{5}	x_{5}	x_{2}	x_{1}

$$
\begin{aligned}
& E\left[x_{1} x_{2} x_{3} x_{3} x_{2} x_{4} x_{5} x_{5} x_{2} x_{1}\right] \\
& \quad=E\left[x_{1} \cdot E\left[x_{2} \cdot E\left[x_{3} x_{3}\right] \cdot x_{2} \cdot E\left[x_{4}\right] \cdot E\left[x_{5} x_{5}\right] \cdot x_{2}\right] \cdot x_{1}\right]
\end{aligned}
$$

Proof

- Thus exchangeability implies factorizations for all non-crossing terms (Köstler 2008).
- For commuting variables this determines everything.
- However, for non-commuting variables there are many more expressions which cannot be treated like this.

Problem

Basic example: $\mathrm{E}\left[\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{2}\right]=? ? ?$
To determine those we need quantum exchangeability!

Proof: determine $E\left[x_{1} x_{2} x_{1} x_{2}\right]$

Assume, for convenience, that $E\left[x_{1}\right]=E\left[x_{2}\right]=0$. By quantum exchangeability we have

$$
E\left[x_{1} x_{2} x_{1} x_{2}\right]=\sum_{j(1), \ldots, j(4)=1}^{k} u_{1 j(1)} u_{2 j(2)} u_{1 j(3)} u_{2 j(4)} E\left[x_{j(1)} x_{j(2)} x_{j(3)} x_{j(4)}\right]
$$

$$
=\sum_{j(1) \neq j(2) \neq j(3) \neq j(4)} \cdots
$$

$$
=\underbrace{\sum_{j(1)=j(3) \neq j(2)=j(4)} u_{1 j(1)} u_{2 j(2)} u_{1 j(3)} u_{2 j(4)}}_{\neq 1 \text { for general }\left(u_{i j}\right)} E\left[x_{1} x_{2} x_{1} x_{2}\right]
$$

Proof: determine $E\left[x_{1} x_{2} x_{1} x_{2}\right]$

Thus we have: if $E\left[x_{1}\right]=0=E\left[x_{2}\right]$, then $E\left[x_{1} x_{2} x_{1} x_{2}\right]=0$ This implies in general:

$$
\begin{aligned}
E\left[x_{1} x_{2} x_{1} x_{2}\right]=E\left[x_{1} E\left[x_{2}\right] x_{1}\right] \cdot E\left[x_{2}\right]+E\left[x_{1}\right] \cdot & E\left[x_{2} E\left[x_{1}\right] x_{2}\right] \\
& -E\left[x_{1}\right] E\left[x_{2}\right] E\left[x_{1}\right] E\left[x_{2}\right]
\end{aligned}
$$

.... which is the formula for variables which are free with respect to E.

Proof

In general, one shows in the same way that

$$
E\left[p_{1}\left(x_{i(1)}\right) p_{2}\left(x_{i(2)}\right) \cdots p_{n}\left(x_{i(n)}\right)\right]=0
$$

whenever

- $n \in \mathbb{N}$ and $p_{1}, \ldots, p_{n} \in \mathcal{A}_{\text {tail }}\langle X\rangle$ are polynomials in one variable
- $i(1) \neq i(2) \neq i(3) \neq \cdots \neq i(n)$
- $E\left[p_{j}\left(x_{i(j)}\right)\right]=0$ for all $j=1, \ldots, n$

Thus, the x_{i} are free w.r.t E in the sense of Voiculescu's free probability theory.

Non-commutative de Finetti Theorem

Theorem (Köstler, Speicher 2009)

The following are equivalent for an infinite sequence of non-commutative random variables:

- the sequence is quantum exchangeable
- the sequence is free and identically distributed with respect to the conditional expectation E onto the tail-algebra of the sequence

Thus, freeness arises very naturally from symmetry requirements, if one takes the quantum permutation group as the right analogue of the permutation group in the non-commutative world.

Section 7

More Quantum Symmetries in Free/Non-Commutative Probability

What are Quantum Groups?

- are generalizations of groups G (actually, of $C(G)$)
- are supposed to describe non-classical symmetries
- are Hopf algebras, with some additional structure ...

What are Quantum Groups?

Deformation of Classical Symmetries: $\mathrm{G} \rightsquigarrow \mathrm{G}_{\mathrm{q}}$

- quantum groups are often deformations G_{q} of classical groups, depending on some parameter q, such that for $q \rightarrow 1$, they go to the classical group $G=G_{1}$
- G_{q} and G_{1} are incomparable, none is stronger than the other
G_{1} is supposed to act on commuting variables
G_{q} is the right replacement to act on q-commuting variables
Strengthening of Classical Symmetries: $\mathbf{G} \rightsquigarrow \mathrm{G}^{+}$
- there are situations where a classical group G has a genuine non-commutative analogue G^{+}(no interpolations)
- G^{+}is "stronger" than $G: \quad G \subset G^{+}$
G acts on commuting variables
G^{+}is the right replacement for acting on maximally non-commuting variables

Orthogonal Hopf Algebras

We are interested in quantum versions of real compact matrix groups. Think of

- orthogonal matrices or permutation matrices

Such quantum versions are captured by the notion of orthogonal Hopf algebra.

Definition

An orthogonal Hopf algebra is a C^{*}-algebra A, given with a system of n^{2} self-adjoint generators $u_{i j} \in A(i, j=1, \ldots, n)$, subject to the following conditions:

- The inverse of $u=\left(u_{i j}\right)$ is the transpose matrix $u^{t}=\left(u_{j i}\right)$.
- $\Delta\left(u_{i j}\right)=\Sigma_{k} u_{i k} \otimes u_{k j}$ defines a morphism $\Delta: A \rightarrow A \otimes A$.
- $\varepsilon\left(u_{i j}\right)=\delta_{i j}$ defines a morphism $\varepsilon: A \rightarrow \mathbb{C}$.
- $S\left(u_{i j}\right)=u_{j i}$ defines a morphism $S: A \rightarrow A^{o p}$.

Orthogonal Hopf Algebras

Definition

An orthogonal Hopf algebra is a C^{*}-algebra A, given with a system of n^{2} self-adjoint generators $u_{i j} \in A(i, j=1, \ldots, n)$, subject to the following conditions:

- The inverse of $u=\left(u_{i j}\right)$ is the transpose matrix $u^{t}=\left(u_{j i}\right)$.
- $\Delta\left(u_{i j}\right)=\Sigma_{k} u_{i k} \otimes u_{k j}$ defines a morphism $\Delta: A \rightarrow A \otimes A$.
- $\varepsilon\left(u_{i j}\right)=\delta_{i j}$ defines a morphism $\varepsilon: A \rightarrow \mathbb{C}$.
- $S\left(u_{i j}\right)=u_{j i}$ defines a morphism $S: A \rightarrow A^{o p}$.
- These are compact quantum groups in the sense of Woronowicz.
- In the spirit of non-commutative geometry, we are thinking of
$\mathbf{A}=\mathbf{C}\left(\mathbf{G}^{+}\right)$as the continuous functions, generated by the coordinate functions $u_{i j}$, on some (non-existing) quantum group G^{+}, replacing a classical group G.

Definition (Quantum Orthogonal Group O_{n}^{+}(Wang 1995))

The quantum orthogonal group $A_{o}(n)=C\left(O_{n}^{+}\right)$is the universal unital C^{*}-algebra generated by selfadjoint $u_{i j}(i, j=1, \ldots, n)$ subject to the relation: $u=\left(u_{i j}\right)_{i, j=1}^{n}$ is an orthogonal matrix; i.e., for all i, j we have

$$
\sum_{k=1}^{n} u_{i k} u_{j k}=\delta_{i j} \quad \text { and } \quad \sum_{k=1}^{n} u_{k i} u_{k j}=\delta_{i j}
$$

Definition (Quantum Permutation Group S_{n}^{+}(Wang 1998))

The quantum permutation group $A_{s}(n)=C\left(S_{n}^{+}\right)$is the universal unital C^{*}-algebra generated by $u_{i j}(i, j=1, \ldots, n)$ subject to the relations

- $u_{i j}^{2}=u_{i j}=u_{i j}^{*}$ for all $i, j=1, \ldots, n$
- each row and column of $u=\left(u_{i j}\right)_{i, j=1}^{n}$ is a partition of unity:

$$
\sum_{j=1}^{n} u_{i j}=1 \quad \text { and } \quad \sum_{i=1}^{n} u_{i j}=1
$$

Are there more of those?

Questions

Are there more of those?

$$
\begin{array}{lllll}
S_{n}^{+} & \subset & G_{n}^{+} & \subset & O_{n}^{+} \\
& & & & \\
& \cup & & \cup & \\
& & & & \cup \\
& & & & \\
S_{n} & \subset & G_{n} & \subset & O_{n}
\end{array}
$$

Questions

- Are there more non-commutative versions G_{n}^{+}of classical groups G_{n} ?

Are there more of those?

S_{n}^{+}		\subset	
			O_{n}^{+}
		G_{n}^{*}	
S_{n}		\subset	

Questions

- Are there more non-commutative versions G_{n}^{+}of classical groups G_{n} ?
- Actually, are there more nice non-commutative quantum groups G_{n}^{*} ?

How can we describe and understand intermediate quantum groups

Questions:

- Are there more non-commutative versions G_{n}^{+}of classical groups G_{n} ?
- Actually, are there more nice non-commutative quantum groups G_{n}^{*}, stronger than S_{n} ?

$$
\begin{gathered}
S_{n} \subset \mathbf{G}_{\mathbf{n}}^{*} \subset O_{n}^{+} \\
C\left(S_{n}\right) \leftarrow \mathbf{C}\left(\mathbf{G}_{\mathbf{n}}^{*}\right) \leftarrow C\left(O_{n}^{+}\right)
\end{gathered}
$$

Deal with quantum groups by looking on their representations!!!

Section 8

Describing Quantum Groups via Intertwiner Spaces

Spaces of Intertwiners

Definition

Associated to an orthogonal Hopf algebra $\left(A=C\left(G_{n}^{*}\right),\left(u_{i j}\right)_{i, j=1}^{n}\right)$ are the spaces of intertwiners:

$$
\mathbf{I}_{G_{n}^{*}}(k, l)=\left\{T:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l} \mid T u^{\otimes k}=u^{\otimes l} T\right\}
$$

where $u^{\otimes k}$ is the $n^{k} \times n^{k}$ matrix $\left(u_{i_{1} j_{1}} \ldots u_{i_{k} j_{k}}\right)_{i_{1} \ldots i_{k}, j_{1} \ldots j_{k}}$.

$$
\begin{gathered}
u \in M_{n}(A) \quad u: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes A \\
u^{\otimes k}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes A
\end{gathered}
$$

Note: if $T \in \mathbf{I}_{G_{n}^{*}}(0, l)$, then $\xi:=T 1 \in\left(\mathbb{C}^{n}\right)^{\otimes l}$ is a fixed vector unter $u^{\otimes l}$:

$$
T u^{\otimes 0}=u^{\otimes l} T \quad \Longrightarrow \quad \xi=T 1=u^{\otimes l} T 1=u^{\otimes l} \xi
$$

$\mathbf{I}_{G_{n}^{*}}$ is Tensor Category with Duals

Proposition

Collection of vector spaces $\mathbf{I}_{G_{n}^{*}}(k, l)$ has the following properties:

- $T, T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$ implies $T \otimes T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$.
- If $T, T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$ are composable, then $T T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$.
- $T \in \mathbf{I}_{G_{n}^{*}}$ implies $T^{*} \in \mathbf{I}_{G_{n}^{*}}$.
- $i d(x)=x$ is in $\mathbf{I}_{G_{n}^{*}}(1,1)$.
- $\xi=\sum e_{i} \otimes e_{i}$ is in $\mathbf{I}_{G_{n}^{*}}(0,2)$.

Let us check that

$$
\xi=\sum e_{i} \otimes e_{i} \in \mathbf{I}_{G_{n}^{*}}(0,2)
$$

Proof: Why is $\xi=\sum_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \otimes \mathbf{e}_{\mathbf{i}} \in \mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}}(\mathbf{0}, \mathbf{2})$

We have to see

$$
\left(u^{\otimes 2} \xi\right)_{i_{1}, i_{2}}=\xi_{i_{1}, i_{2}}
$$

$$
\begin{aligned}
\left(u^{\otimes 2 \sum_{i}} e_{i} \otimes e_{i}\right)_{i_{1}, i_{2}} & =\sum_{i} \sum_{j_{1}, j_{2}} u_{i_{1} j_{1}} u_{i_{2} j_{2}}\left(e_{i} \otimes e_{i}\right)_{j_{1}, j_{2}} \\
& =\sum_{i}^{\sum_{j_{1}, j_{2}} u_{i_{1} j_{1}} u_{i_{2} j_{2}} \delta_{i_{j}} \delta_{i j_{2}}} \\
& =\sum_{i} u_{i_{1} i} u_{i_{2} i}=\delta_{i_{1} i_{2}}=\left(\sum_{i} e_{i} e_{i}\right)_{i}
\end{aligned}
$$

Tannaka-Krein for compact quantum groups

Theorem (Woronowicz 1988)
The compact quantum group G_{n}^{*} can actually be rediscovered from its space of intertwiners.
There is a one-to-one correspondence between:

- orthogonal Hopf algebras $C\left(O_{n}^{+}\right) \rightarrow \mathbf{C}\left(\mathbf{G}_{\mathbf{n}}^{*}\right) \rightarrow C\left(S_{n}\right)$
- tensor categories with duals $\mathbf{I}_{O_{n}^{+}} \subset \mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}} \subset \mathbf{I}_{S_{n}}$.

How to Get Intertwiners

Definition

We denote by $P(k, l)$ the set of partitions of the set with repetitions $\{1, \ldots, k, 1, \ldots, l\}$. Such a partition will be pictured as

$$
p=\begin{gathered}
1 \ldots k \\
\mathcal{P} \\
1 \ldots l
\end{gathered}
$$

where \mathcal{P} is a diagram joining the elements in the same block of the partition.

Example

How to Get Intertwiners

Definition

Associated to any partition $p \in P(k, l)$ is the linear map

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

where e_{1}, \ldots, e_{n} is the standard basis of \mathbb{C}^{n}, and where

$$
\delta_{p}(i, j)= \begin{cases}1, & \text { if all indices which are connected by } p \text { are the same } \\ 0, & \text { otherwise }\end{cases}
$$

How to Get Intertwiners

Definition

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Example

$$
\begin{gathered}
T_{\{| |\}}\left(e_{a} \otimes e_{b}\right)=e_{a} \otimes e_{b} \\
T_{\{|-|\}}\left(e_{a} \otimes e_{b}\right)=\delta_{a b} e_{a} \otimes e_{a} \\
T_{\left\{\begin{array}{c}
\sqcup \\
\mid ।
\end{array}\right\}} \begin{array}{l}
\left(e_{a} \otimes e_{b}\right)=\delta_{a b} \sum_{c d} e_{c} \otimes e_{d}
\end{array}
\end{gathered}
$$

Intertwiners of (Quantum) Permutation and of (Quantum) Orthogonal Group

Question: What are the intertwiners?

S_{n}^{+}	\subset	O_{n}^{+}	$\mathbf{I}_{S_{n}^{+}}$	\supset	$\mathbf{I}_{O_{n}^{+}}$
\cup		\cup	\cap		\cap
S_{n}	\subset	O_{n}	$\mathbf{I}_{S_{n}}$	\supset	$\mathbf{I}_{O_{n}}$

First answer: Intertwiners of S_{n}

$$
\operatorname{span}\left(T_{p} \mid p \in P(k, l)\right)=\mathbf{I}_{S_{n}}(k, l)
$$

Proof: Why is T_{p} in $\mathbf{I}_{S_{n}}$ for all $p \in P$?

Take $u \hat{=} \pi$ permutation matrix, i.e., $u e_{i}=e_{\pi^{-1}(i)}$. Then

$$
\begin{aligned}
T_{p} u^{\otimes k} e_{i_{1}} \otimes & \cdots \otimes e_{i_{k}}=T_{p} e_{\pi^{-1}\left(i_{1}\right)} \otimes \cdots \otimes e_{\pi^{-1}\left(i_{k}\right)} \\
& =\sum_{j} \delta_{p}\left(\pi^{-1}\left(i_{1}\right), \ldots, \pi^{-1}\left(i_{k}\right), j_{1}, \ldots, j_{l}\right) e_{j_{1}} \otimes \cdots \otimes e_{j_{l}}
\end{aligned}
$$

and

$$
\begin{aligned}
u^{\otimes l} T_{p} e_{i_{1}} \otimes & \cdots \otimes e_{i_{k}}=u^{\otimes l} \sum_{r} \delta_{p}\left(i_{1}, \ldots, i_{k}, r_{1}, \ldots, r_{l}\right) e_{r_{1}} \otimes \cdots \otimes e_{r_{l}} \\
& =\sum_{r} \delta_{p}\left(i_{1}, \ldots, i_{k}, r_{1}, \ldots, r_{l}\right) e_{\pi^{-1}\left(r_{1}\right)} \otimes \cdots \otimes e_{\pi^{-1}\left(r_{l}\right)} \\
& =\sum_{j} \delta_{p}\left(i_{1}, \ldots, i_{k}, \pi\left(j_{1}\right), \ldots, \pi\left(j_{l}\right)\right) e_{j_{1}} \otimes \cdots \otimes e_{j_{l}}
\end{aligned}
$$

But $\quad \delta_{p}\left(\pi^{-1}\left(i_{1}\right), \ldots, \pi^{-1}\left(i_{k}\right), j_{1}, \ldots, j_{l}\right)=\delta_{p}\left(i_{1}, \ldots, i_{k}, \pi\left(j_{1}\right), \ldots, \pi\left(j_{l}\right)\right)$

Intertwiners of (Quantum) Permutation and of (Quantum) Orthogonal Group

Let $N C(k, l) \subset P(k, l)$ be the subset of noncrossing partitions.
$\operatorname{span}\left(T_{p} \mid p \in N C(k, l)\right)=\mathbf{I}_{S_{n}^{+}}(k, l) \quad \supset \quad \mathbf{I}_{O_{n}^{+}}(k, l)=\operatorname{span}\left(T_{p} \mid p \in N C_{2}(k, l)\right)$
$\operatorname{span}\left(T_{p} \mid p \in P(k, l)\right)=\mathbf{I}_{S_{n}}(k, l) \quad \supset \quad \mathbf{I}_{O_{n}}(k, l)=\operatorname{span}\left(T_{p} \mid p \in P_{2}(k, l)\right)$

Easy Quantum Groups

Definition (Banica, Speicher 2009)

A quantum group $S_{n} \subset G_{n}^{*} \subset O_{n}^{+}$is called easy when its associated tensor category is of the form

$$
\begin{aligned}
\mathbf{I}_{S_{n}} & =\operatorname{span}\left(T_{p} \mid p \in P\right) \\
& \cup \\
\mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}} & =\operatorname{span}\left(\mathbf{T}_{\mathbf{p}} \mid \mathbf{p} \in \mathbf{P}_{\mathbf{G}^{*}}\right) \\
\cup & \\
\mathbf{I}_{O_{n}^{+}} & =\operatorname{span}\left(T_{p} \mid p \in N C_{2}\right)
\end{aligned}
$$

for a certain collection of subsets $P_{G^{*}} \subset P$.

What are we interested in?

- classification of easy (and more general) quantum groups
- understanding of meaning/implications of symmetry under such quantum groups; in particular, under quantum permutations S_{n}^{+}, or quantum rotations O_{n}^{+}
- treating series of such quantum groups (like S_{n}^{+}or O_{n}^{+}) as fundamental examples of non-commuting random matrices

Section 9

Easy Quantum Groups: Classification

Classification Results for Easy Quantum Groups

Theorem and Definition

The category of partitions $P_{G^{*}} \subset P$ for an easy quantum group G_{n}^{*} must satisfy:

- $P_{G^{*}}$ is stable by tensor product.
- $P_{G^{*}}$ is stable by composition.
- $P_{G^{*}}$ is stable by involution.
- $P_{G^{*}}$ contains the "unit" partition \mid.
- $P_{G^{*}}$ contains the "duality" partition Π.

Example of Composition $P(2,4) \times P(4,1) \rightarrow P(2,1)$

Example

Are there more of those easy quantum groups?

$$
\begin{array}{llll}
S_{n}^{+} & & \subset & \\
& & O_{n}^{+} \\
\cup & & & \\
& & & \\
& & & \\
S_{n} & & \subset & \\
& O_{n}
\end{array}
$$

Are there more of those easy quantum groups?

$$
\begin{array}{cccccc}
S_{n}^{+} & \subset & G_{n}^{+} & \subset & O_{n}^{+} \\
& & & & \\
\cup & & \cup & & & \cup \\
& & & & & \\
S_{n} & \subset & G_{n} & \subset & O_{n}
\end{array}
$$

Questions

- Are there more easy non-commutative versions G_{n}^{+}of easy classical groups G_{n} ?

Classification Results

Theorem (Banica, Speicher 2009; Weber 2011)

There are

- 7 Categories of Noncrossing Partitions and

$$
\left.\begin{array}{ccc}
\left.\begin{array}{c}
\text { singletons } \\
\text { pairings }
\end{array}\right\} & \supset\left\{\begin{array}{c}
\text { singletons } \\
\text { pairings } \\
\text { (even part })
\end{array}\right\} & \supset\left\{\begin{array}{c}
\text { singletons } \\
\text { pairings } \\
\text { resp. parity })
\end{array}\right\}
\end{array}\right)\left\{\begin{array}{c}
\text { all } \\
\text { pairings }
\end{array}\right\}
$$

Classification Results

Theorem (Banica, Speicher 2009; Weber 2011)

There are

- 6 Categories of Partitions containing Basic Crossing

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { singletons } \\
\text { pairings }
\end{array}\right\} \supset\left\{\begin{array}{c}
\text { singletons } \\
\text { pairings } \\
(\text { even part })
\end{array}\right\} \supset \supset \quad \supset\left\{\begin{array}{c}
\text { all } \\
\text { pairings }
\end{array}\right\} \\
& \left.\begin{array}{ccc}
\cap & \cap & \cap \\
\left\{\begin{array}{c}
\text { all } \\
\text { partitions }
\end{array}\right\} & \left\{\begin{array}{c}
\text { all partitions } \\
\text { (even part) }
\end{array}\right\} & \supset
\end{array} \begin{array}{c}
\text { blocks of } \\
\text { even size }
\end{array}\right\}
\end{aligned}
$$

Classification Results

Theorem (Banica, Speicher 2009; Weber 2011)
...and thus there are

- 7 free easy quantum groups $S_{n}^{+} \subset G_{n}^{+} \subset O_{n}^{+}$and

B_{n}^{+}	\subset	$B_{n}^{\prime+}$	\subset	$B_{n}^{\#+}$	\subset	O_{n}^{+}
\cup		\cup				\cup
S_{n}^{+}	\subset	$S_{n}^{\prime+}$		\subset		H_{n}^{+}

Classification Results

Theorem (Banica, Speicher 2009; Weber 2011)
...and thus there are

- 6 classical easy groups $S_{n} \subset G_{n} \subset O_{n}$

B_{n}	\subset	B_{n}^{\prime}	\subset		\subset	O_{n}
\cup		\cup				\cup
S_{n}	\subset	S_{n}^{\prime}		\subset		H_{n}

The easy classical groups

The easy classical groups are:

- O_{n}
- S_{n}
- $H_{n}=\mathbb{Z}_{2}$ 亿 S_{n} : the hyperoctahedral group, consisting of monomial matrices with ± 1 nonzero entries.
- $B_{n} \simeq O_{n-1}$: the bistochastic group, consisting of orthogonal matrices having sum 1 in each row and each column.
- $S_{n}^{\prime}=\mathbb{Z}_{2} \times S_{n}$: permutation matrices multiplied by ± 1.
- $B_{n}^{\prime}=\mathbb{Z}_{2} \times B_{n}$: bistochastic matrices multiplied by ± 1.

Are there more of those easy quantum groups?

$$
\begin{array}{cccc}
S_{n}^{+} & & \subset & \\
& & O_{n}^{+} \\
\cup & & & \\
& & & \\
S_{n} & & \subset & \\
& O_{n}
\end{array}
$$

Question

Are there more of those easy quantum groups?

S_{n}^{+}		\subset	
			O_{n}^{+}
			G_{n}^{*}
S_{n}		\subset	
			O_{n}

Question

- Are there more easy non-commutative quantum groups G_{n}^{*}, stronger than S_{n} ?

Classification of Easy Quantum Groups

- $\exists!7$ free easy QG's (categories noncrossing) [Banica, Speicher 09, Weber 13; (Banica, Bichon, Collins 07)]
- \exists ! 6 easy groups (categ. containing $\times \in P(2,2), u_{i j} u_{k l}=u_{k l} u_{i j}$) [Banica, Speicher 09]
- \exists ! 3 half-liberated easy QG's \& one infinite series (categories containing $* \in P(3,3), u_{i j} u_{k l} u_{s t}=u_{s t} u_{k l} u_{i j}$) [Banica, Curran, Speicher 10, Weber 13]
- \exists ! 13 non-hyperoctahedral easy QG's
(\sim categories containing singletons as blocks)
[Banica, Curran, Speicher 10, Weber 13]
- hyperoctahedral case: [Raum, Weber 12 \& 13]

de Finetti Theorems

Theorem (de Finetti 1931, Hewitt, Savage 1955)

The following are equivalent for an infinite sequence of classical, commuting random variables:

- the sequence is exchangeable (i.e., invariant under all S_{n})
- the sequence is independent and identically distributed with respect to the conditional expectation E onto the tail σ-algebra of the sequence

Theorem (Köstler, Speicher 2008)

The following are equivalent for an infinite sequence of non-commutative random variables:

- the sequence is quantum exchangeable (i.e., invariant under all S_{n}^{+})
- the sequence is free and identically distributed with respect to the conditional expectation E onto the tail-algebra of the sequence

Section 10

Haar State and Non-Commutative Random Matrices

Non-Commutative Random Matrices

- there exists, as for any compact quantum group, a unique Haar state on the easy quantum groups, thus one can integrate/average over the quantum groups
- actually: for the easy quantum groups, there exist nice and "concrete" formula for the calculation of this state:

$$
\int_{G_{n}^{*}} u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} d u=\sum_{\substack{p, q \in P_{G^{*}}(k) \\ p \leq \operatorname{ker} i \\ q \leq \operatorname{ker} j}} W_{n}(p, q)
$$

where W_{n} is inverse of

$$
G_{n}(p, q)=n^{|p \vee q|}
$$

Non-Commutative Random Matrices

- this allows the calculation of distributions of functions of our non-commutative random matrices G_{n}^{*}, in the limit $n \rightarrow \infty$
- in particular, in analogy to Diaconis\&Shashahani, we have results about the asymptotic distribution of $\operatorname{Tr}\left(u^{k}\right)$
- note: in the classical case, knowledge about traces of powers of the matrices is the same as knowledge about the eigenvalues of the matrices

Weingarten Formula for Easy Quantum Groups

Denote by $D=(D(k))_{k \in \mathbb{N}}$ the category of partitions for the easy quantum group G_{n}^{*}; where $D(k):=D(0, k)$. Then

$$
\int_{G_{n}^{*}} u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} d u=\sum_{\substack{p, q \in D(k) \\ p \leq \operatorname{ker} i \\ q \leq \operatorname{ker} j}} W_{n}(p, q),
$$

where $W_{k, n}=\left(W_{n}(p, q)\right)_{p, q \in D(k)}=G_{k, n}^{-1}$ is the inverse of the Gram matrix

$$
G_{k, n}=\left(G_{n}(p, q)\right)_{p, q \in D(k)} \quad \text { where } \quad G_{n}(p, q)=n^{|p \vee q|}
$$

Note: $p \vee q$ is always the supremum in the lattice of all partitions; i.e., $p \vee q$ is not necessarily in D

Weingarten Formula for Easy Quantum Groups

Example: Integrate $u_{21} u_{23}$. Then $i=(2,2), j=(1,3)$, hence

$$
\operatorname{ker} i=\sqcup, \quad \operatorname{ker} j=| |
$$

and thus

$$
\int_{G_{n}} u_{21} u_{23} d u=W(\sqcup,| |)+W(| |,| |)
$$

Similarly,
$\int_{G_{n}} u_{23} u_{23} d u=W(\sqcup, \sqcup)+W(\sqcup,| |)+W(| |, \sqcup)+W(| |,| |)$

Asymptotics of the Weingarten Formula

$$
\int_{G_{n}^{*}} u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} d u=\sum_{\substack{p, q \in D(k) \\ p \leq \operatorname{ker} i \\ q \leq \operatorname{ker} j}} W_{n}(p, q)
$$

where $W_{k, n}=\left(W_{n}(p, q)\right)_{p, q \in D(k)}=G_{k, n}^{-1}$ is the inverse of the Gram matrix

$$
G_{k, n}=\left(G_{n}(p, q)\right)_{p, q \in D(k)} \quad \text { where } \quad G_{n}(p, q)=n^{|p \vee q|}
$$

We have the asymptotics

$$
W_{n}(p, q)=O\left(n^{|p \vee q|-|p|-|q|}\right)
$$

Distribution of Traces of Powers

Let G be an easy quantum group. Consider $s \in \mathbb{N}, k_{1}, \ldots, k_{s} \in \mathbb{N}$, $k:=\sum_{i=1}^{s} k_{i}$, and denote

$$
\gamma:=\left(1,2, \ldots, k_{1}\right)\left(k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}\right) \cdots(\cdots, k) \in S_{k}
$$

Then we have, for any n such that $G_{k n}$ is invertible:

$$
\int_{G_{n}} \operatorname{Tr}\left(u^{k_{1}}\right) \ldots \operatorname{Tr}\left(u^{k_{s}}\right) d u=\#\{p \in D(k) \mid p=\gamma(p)\}+O(1 / n) .
$$

If G is a classical easy group, then this formula is exact, without any lower order corrections in n.

Proof

$$
\begin{aligned}
& I:=\int_{G} \operatorname{Tr}\left(u^{k_{1}}\right) \ldots \operatorname{Tr}\left(u^{k_{s}}\right) d u \\
& =\sum_{i_{1} \ldots i_{k}} \int_{G}\left(u_{i_{1} i_{2}} \ldots u_{i_{k_{1}} i_{1}}\right) \ldots\left(u_{i_{k-k_{s}+1} i_{k-k_{s}+2}} \ldots u_{i_{k} i_{k-k_{s}+1}}\right) \\
& =\sum_{i_{1} \ldots i_{k}} \int_{G} u_{i_{1} i_{\gamma(1)}} \ldots u_{i_{k} i_{\gamma(k)}} \\
& =\sum^{n} \quad \sum \quad W_{k n}(p, q) \\
& i_{1} \ldots i_{k}=1 \quad p, q \in D_{k} \\
& p \leq \operatorname{ker} \mathbf{i}, q \leq \operatorname{ker} \mathbf{i} \circ \gamma \\
& =\sum_{i_{1} \ldots i_{k}=1}^{n} \sum_{\substack{p, q \in D_{k} \\
p \leq \operatorname{ker} \mathbf{i}, \gamma(q) \leq \operatorname{ker} \mathbf{i}}} W_{k n}(p, q)
\end{aligned}
$$

Proof

$$
\begin{aligned}
I & =\sum_{i_{1} \ldots i_{k}=1}^{n} \sum_{\substack{p, q \in D_{k} \\
p \leq \operatorname{ker} \mathbf{i}, \gamma(q) \leq \operatorname{ker} \mathbf{i}}} W_{k n}(p, q) \\
& =\sum_{p, q \in D_{k}}^{n} \sum_{\substack{i_{1} \ldots i_{k}=1 \\
p \leq \operatorname{ker} \mathbf{i}, \gamma(q) \leq \operatorname{ker} \mathbf{i}}}^{n} W_{k n}(p, q) \\
& =\sum_{p, q \in D_{k}} n^{|p \vee \gamma(q)|} W_{k n}(p, q) \\
& =\sum_{p, q \in D_{k}} n^{|p \vee \gamma(q)|} n^{|p \vee q|-|p|-|q|}(1+O(1 / n))
\end{aligned}
$$

The leading order of $n^{|p \vee \gamma(q)|+|p \vee q|-|p|-|q|}$ is n^{0}, which is achieved if and erc only equivalently $p=q=\gamma(q)$.

Proof

In the classical case, instead of using the approximation for $W_{n k}(p, q)$, we can write $n^{|p \vee \gamma(q)|}$ as $G_{n k}(\gamma(q), p)$.
(Note that this only makes sense if we know that $\gamma(q)$ is also an element in D_{k}; and this is only the case for the classical partition lattices.)
Then one can continue as follows:
$I=\sum_{p, q \in D_{k}} G_{n k}(\gamma(q), p) W_{k n}(p, q)=\sum_{q \in D_{k}} \delta(\gamma(q), q)=\#\left\{q \in D_{k} \mid q=\gamma(p)\right\}$.

The Distribution of $u_{r}:=\lim _{n \rightarrow \infty} \operatorname{Tr}\left(u^{r}\right)$

Variable	O_{n}	O_{n}^{+}
u_{1}	real Gaussian	semicircular
u_{2}	real Gaussian	semicircular
$u_{r}(r \geq 3)$	real Gaussian	circular

Variable	S_{n}	S_{n}^{+}
u_{1}	Poisson	free Poisson
$u_{2}-u_{1}$	Poisson	semicircular
$u_{r}-u_{1}(r \geq 3)$	sum of Poissons	circular

Something to Remember

Whereas $\operatorname{Tr}(u)$ and $\operatorname{Tr}\left(u^{2}\right)$ are selfadjoint, this is not true for $\operatorname{Tr}\left(u^{3}\right)$ in the general non-commutative situation!

$$
\begin{gathered}
u_{1}=\sum u_{i i}=u_{1}^{*} \\
u_{2}=\sum u_{i j} u_{j i}=\sum u_{j i} u_{i j}=u_{2}^{*} \\
u_{3}=\sum u_{i j} u_{j l} u_{l i} \neq \sum u_{l i} u_{j l} u_{i j}=u_{3}^{*}
\end{gathered}
$$

Non-Commutative Random Matrices

- this allows the calculation of distributions of functions of our non-commutative random matrices G_{n}^{*}, in the limit $n \rightarrow \infty$
- in particular, in analogy to Diaconis\&Shashahani, we have results about the asymptotic distribution of $\operatorname{Tr}\left(u^{k}\right)$
- note: in the classical case, knowledge about traces of powers of the matrices is the same as knowledge about the eigenvalues of the matrices

The Final Question

What actually are eigenvalues of a non-commutative matrix?

The Final Question

What actually are eigenvalues of a non-commutative matrix?
"Whereof one cannot speak, thereof one must be silent"

