Differentiable functions on modules and the equation $\operatorname{grad}(v)=\operatorname{Mgrad}(w)$

Krzysztof Ciosmak

Institute of Mathematics of the Polish Academy of Sciences
Harmonic analysis, complex analysis, spectral theory and all that
Będlewo, 04.08.2016

Basic definition

A - a finite dimensional commutative algebra over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$
B - an A-module
$U \subset B$ - an open set
A-differentiability
$f: U \rightarrow A$ is A-differentiable if it is differentiable and the derivative is A-linear: $\operatorname{Df}(x)(a y)=a D f(x)(y)$ for all $x \in U, y \in B$ and $a \in A$.

A-analyticity

$f: U \rightarrow A$ is A-analytic if for every $b_{0} \in U$ there exist an open neighbourhood $V \subset U$ of b_{0}, such that for $b \in V$

$$
f(b)=\sum_{i=0}^{\infty} L_{i}\left(b-b_{0}, \ldots, b-b_{0}\right)
$$

for some symmetric A-multilinear $L_{i}: B^{i} \rightarrow A$ such that for $b \in V$

$$
\sum_{i=0}^{\infty}\left\|L_{i}\left(b-b_{0}, \ldots, b-b_{0}\right)\right\|<\infty
$$

A-analyticity

$f: U \rightarrow A$ is A-analytic if for every $b_{0} \in U$ there exist an open neighbourhood $V \subset U$ of b_{0}, such that for $b \in V$

$$
f(b)=\sum_{i=0}^{\infty} L_{i}\left(b-b_{0}, \ldots, b-b_{0}\right)
$$

for some symmetric A-multilinear $L_{i}: B^{i} \rightarrow A$ such that for $b \in V$

$$
\sum_{i=0}^{\infty}\left\|L_{i}\left(b-b_{0}, \ldots, b-b_{0}\right)\right\|<\infty
$$

A-analyticity \& \mathbb{F}-analyticity

$f: U \rightarrow A$ is A-differentiable and \mathbb{F}-analytic if and only if it is A-analytic.

Splitting

Assume that $A=\bigoplus_{i=1}^{m} A_{i}, e=\sum_{i=1}^{n} e_{i}$. Let $U \subset B$ be convex and open.

Splitting

Assume that $A=\bigoplus_{i=1}^{m} A_{i}, e=\sum_{i=1}^{n} e_{i}$. Let $U \subset B$ be convex and open. Let $\pi_{B_{i}}: B \rightarrow B$ by $\pi_{i}(b)=e_{i} b$.

Splitting

Assume that $A=\bigoplus_{i=1}^{m} A_{i}, e=\sum_{i=1}^{n} e_{i}$. Let $U \subset B$ be convex and open.
Let $\pi_{B_{i}}: B \rightarrow B$ by $\pi_{i}(b)=e_{i} b$.
Let $f: U \rightarrow A$ be A-differentiable. Then

$$
f=\sum_{i=1}^{m} f_{i} \circ \pi_{B_{i}}
$$

for some A_{i}-differentiable functions $f_{i}: \pi_{B_{i}}(U) \rightarrow A_{i}$.

Splitting

Assume that $A=\bigoplus_{i=1}^{m} A_{i}, e=\sum_{i=1}^{n} e_{i}$. Let $U \subset B$ be convex and open.
Let $\pi_{B_{i}}: B \rightarrow B$ by $\pi_{i}(b)=e_{i} b$.
Let $f: U \rightarrow A$ be A-differentiable. Then

$$
f=\sum_{i=1}^{m} f_{i} \circ \pi_{B_{i}}
$$

for some A_{i}-differentiable functions $f_{i}: \pi_{B_{i}}(U) \rightarrow A_{i}$.
Conversely, any function of this form is A-differentiable.

Splitting

Assume that $A=\bigoplus_{i=1}^{m} A_{i}, e=\sum_{i=1}^{n} e_{i}$. Let $U \subset B$ be convex and open.
Let $\pi_{B_{i}}: B \rightarrow B$ by $\pi_{i}(b)=e_{i} b$.
Let $f: U \rightarrow A$ be A-differentiable. Then

$$
f=\sum_{i=1}^{m} f_{i} \circ \pi_{B_{i}}
$$

for some A_{i}-differentiable functions $f_{i}: \pi_{B_{i}}(U) \rightarrow A_{i}$.
Conversely, any function of this form is A-differentiable.
Thus, we can concentrate only on local algebras (i.e. those which have only one maximal ideal).

Banach algebras

$C_{A}^{k}(\bar{U}, A)$ - the set of all A-differentiable functions on U of class C^{k}, with all derivatives, of order up to k, continuous up to boundary.

Banach algebras

$C_{A}^{k}(\bar{U}, A)$ - the set of all A-differentiable functions on U of class C^{k}, with all derivatives, of order up to k, continuous up to boundary. We have a Banach algebra norm

$$
\|f\|_{k}=\sup _{x \in \bar{U}}\|f(x)\|+\sum_{i=1}^{k} \frac{1}{i!} \sup _{x \in \bar{U}} \sup _{\|y\|=1}\left\|D^{i} f(x)(y, \ldots, y)\right\| .
$$

Algebra generated by one element

$A=\mathbb{F}[x] /\left((x-\lambda)^{\prime}\right)$
$U \subset B$ - open, convex and bounded

Algebra generated by one element

$A=\mathbb{F}[x] /\left((x-\lambda)^{\prime}\right)$
$U \subset B$ - open, convex and bounded
Any A-differentiable function in $f \in C_{A}^{p}(\bar{U}, A)$ may be written in the form
$f=\sum_{k=0}^{l-1}\left(\rho_{\left(e^{k}\right)} f_{k}\left(\pi_{D_{k}}(u)\right)+\sum_{j=1}^{I-1-k} \frac{1}{j!} G_{\left(e^{k}\right)}^{j} D^{j} f_{k}\left(\pi_{D_{k}}(u)\right)\left(\left(u-\rho_{D_{k}} \pi_{D_{k}}(u)\right)^{j}\right)\right)$
for some functions

$$
\left(f_{k}\right)_{k=0,1 \ldots, l-1} \in \bigoplus_{k=0}^{l-1} C_{\mathbb{F}}^{p+l-1-k}\left(\overline{\pi_{D_{k}}(U)}, \mathbb{F}\right) .
$$

Conversely, any such function belongs to $C_{A}^{p}(\bar{U}, A)$. This assignment is an isomorphism of Banach spaces.

Generalised Laplace equations

A commutative algebra A is a Frobenius algebra if there is a linear functional $\phi: A \rightarrow \mathbb{F}$ such that the biliniear form $(x, y) \mapsto \phi(x y)$ is nondegenerate.

Generalised Laplace equations

A commutative algebra A is a Frobenius algebra if there is a linear functional $\phi: A \rightarrow \mathbb{F}$ such that the biliniear form $(x, y) \mapsto \phi(x y)$ is nondegenerate.

Correspondence to A-differentiable functions

Suppose that A is a Frobenius algebra and that $U \subset B$ is open and simply connected. Let $t \in \mathbb{N}$. Let $v: U \rightarrow \mathbb{F}$ be a C^{2+t} function such that

$$
D^{2} v(b)(a x, y)=D^{2} v(b)(x, a y)
$$

Then $v=\phi(f)$ for some A-differentiable function f of class C^{2+t}. Such f is uniquely determined by v, up to a constant.

The equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$
Let $t \in \mathbb{N}$. Let $U \subset \mathbb{F}^{n}$ be an open, simply connected set. Let A be an algebra generated by matrix $M^{\top} \in M_{n \times n}(\mathbb{F})$ and let $B=\mathbb{F}^{n}$ with the natural structure of A-module. Let $v, w: U \rightarrow \mathbb{F}$.

The equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$
Let $t \in \mathbb{N}$. Let $U \subset \mathbb{F}^{n}$ be an open, simply connected set. Let A be an algebra generated by matrix $M^{\top} \in M_{n \times n}(\mathbb{F})$ and let $B=\mathbb{F}^{n}$ with the natural structure of A-module. Let $v, w: U \rightarrow \mathbb{F}$. The following conditions are equivalent
(i) v, w are C^{2+t} functions satisfying $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$,
(ii) $v=\phi(f)$ is a component function of an A-differentiable function $f: U \rightarrow A$ of class C^{2+t}, and $w=\phi\left(M^{\top} f\right)+c$, where c is a constant.

The equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$

Let $t \in \mathbb{N}$. Let $U \subset \mathbb{F}^{n}$ be an open, simply connected set. Let A be an algebra generated by matrix $M^{\top} \in M_{n \times n}(\mathbb{F})$ and let $B=\mathbb{F}^{n}$ with the natural structure of A-module. Let $v, w: U \rightarrow \mathbb{F}$. The following conditions are equivalent
(i) v, w are C^{2+t} functions satisfying $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$,
(ii) $v=\phi(f)$ is a component function of an A-differentiable function $f: U \rightarrow A$ of class C^{2+t}, and $w=\phi\left(M^{\top} f\right)+c$, where c is a constant.

Analyticity

The following conditions are equivalent:
(i) any functions v, w of class C^{2} which satisfy $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$ are analytic and are components of A-analytic functions,
(ii) M has no real eigenvalues.

Example

Consider the matrix

$$
M=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 1 & \lambda
\end{array}\right]
$$

The minimal polynomial of M^{\top} is $P(x)=(x-\lambda)^{2}$. Algebra A generated by M^{\top} is isomorphic to $\mathbb{R}[x] /(x-\lambda)^{2}$. A-module $B=\mathbb{R}^{3}$ has the decomposition

$$
B=\mathbb{R}[x] /(x-\lambda) \oplus \mathbb{R}[x] /(x-\lambda)^{2}
$$

A has a basis $1, e$, where $e=x-\lambda$. B has a basis $\left(e_{1}, e_{2}, e_{3}\right)$, such that $e e_{1}=0, e e_{2}=0, e e_{3}=e_{2}$.

Example

Consider the matrix

$$
M=\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 1 & \lambda
\end{array}\right]
$$

The minimal polynomial of M^{\top} is $P(x)=(x-\lambda)^{2}$. Algebra A generated by M^{\top} is isomorphic to $\mathbb{R}[x] /(x-\lambda)^{2}$. A-module $B=\mathbb{R}^{3}$ has the decomposition

$$
B=\mathbb{R}[x] /(x-\lambda) \oplus \mathbb{R}[x] /(x-\lambda)^{2}
$$

A has a basis $1, e$, where $e=x-\lambda$. B has a basis $\left(e_{1}, e_{2}, e_{3}\right)$, such that $e e_{1}=0, e e_{2}=0, e e_{3}=e_{2}$.
A is a Frobenius algebra, with the functional $\phi\left(x_{1} 1+x_{2} e\right)=x_{2}$.

Example

Consider the matrix

$$
M=\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 1 & \lambda
\end{array}\right]
$$

The minimal polynomial of M^{\top} is $P(x)=(x-\lambda)^{2}$. Algebra A generated by M^{\top} is isomorphic to $\mathbb{R}[x] /(x-\lambda)^{2}$. A-module $B=\mathbb{R}^{3}$ has the decomposition

$$
B=\mathbb{R}[x] /(x-\lambda) \oplus \mathbb{R}[x] /(x-\lambda)^{2}
$$

A has a basis $1, e$, where $e=x-\lambda$. B has a basis $\left(e_{1}, e_{2}, e_{3}\right)$, such that $e e_{1}=0, e e_{2}=0, e e_{3}=e_{2}$.
A is a Frobenius algebra, with the functional $\phi\left(x_{1} 1+x_{2} e\right)=x_{2}$.
Let

$$
U=(0,1)^{3}=\left\{x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \in B: 0<x_{i}<1\right\} .
$$

Example

Consider the matrix

$$
M=\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 1 & \lambda
\end{array}\right]
$$

The minimal polynomial of M^{\top} is $P(x)=(x-\lambda)^{2}$. Algebra A generated by M^{\top} is isomorphic to $\mathbb{R}[x] /(x-\lambda)^{2}$. A-module $B=\mathbb{R}^{3}$ has the decomposition

$$
B=\mathbb{R}[x] /(x-\lambda) \oplus \mathbb{R}[x] /(x-\lambda)^{2} .
$$

A has a basis $1, e$, where $e=x-\lambda$. B has a basis $\left(e_{1}, e_{2}, e_{3}\right)$, such that $e e_{1}=0, e e_{2}=0, e e_{3}=e_{2}$.
A is a Frobenius algebra, with the functional $\phi\left(x_{1} 1+x_{2} e\right)=x_{2}$.
Let

$$
U=(0,1)^{3}=\left\{x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \in B: 0<x_{i}<1\right\} .
$$

Consider the generalised Laplace equations

$$
D^{2} v(\cdot)\left(z, M^{\top} y\right)=D^{2} v(\cdot)\left(M^{\top} z, y\right)
$$

Equivalently

$$
\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}=0, \quad \frac{\partial^{2} v}{\partial x_{2}^{2}}=0
$$

Equivalently

$$
\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}=0, \quad \frac{\partial^{2} v}{\partial x_{2}^{2}}=0
$$

Any such v is given by $v=\phi(f)$ for some A-differentiable f of class $C^{2}(\bar{U})$. Further, any such f is uniquely determined by two functions - f_{0} in $C_{\mathbb{R}}^{3}\left(\overline{\pi_{D_{0}}(U)}, \mathbb{R}\right)$, and f_{1} in $C_{\mathbb{R}}^{2}\left(\overline{\pi_{D_{1}}(U)}, \mathbb{R}\right)$, where

$$
\begin{aligned}
& D_{0}=\mathbb{R}[x] /(x-\lambda)^{2} \\
& D_{1}=\mathbb{R}[x] /(x-\lambda) \oplus \mathbb{R}[x] /(x-\lambda)^{2}
\end{aligned}
$$

and

$$
\begin{array}{ll}
\pi_{D_{0}}: B \rightarrow D_{0} /(x-\lambda) D_{0}, & \pi_{D_{0}}\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=x_{2}\left[e_{2}\right] \\
\pi_{D_{1}}: B \rightarrow D_{1} /(x-\lambda) D_{1}, & \pi_{D_{1}}\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=x_{1}\left[e_{1}\right]+x_{2}\left[e_{2}\right] .
\end{array}
$$

Let

$$
\begin{aligned}
& \rho_{D_{0}}: D_{0} /(x-\lambda) D_{0} \rightarrow B, \quad \rho_{D_{0}}\left(x_{2}\left[e_{2}\right]\right)=x_{2} e_{2}, \\
& \rho_{D_{1}}: D_{1} /(x-\lambda) D_{1} \rightarrow B, \quad \rho_{D_{1}}\left(x_{1}\left[e_{1}\right]+x_{2}\left[e_{2}\right]\right)=x_{1} e_{1}+x_{2} e_{2}, \\
& \rho_{\left(e^{0}\right)}: \mathbb{R} \rightarrow A, \quad \rho_{\left(e^{0}\right)}(x)=x 1, \\
& \rho_{\left(e^{1}\right)}: \mathbb{R} \rightarrow A, \quad \rho_{\left(e^{1}\right)}(x)=x e .
\end{aligned}
$$

The extension is given by

$$
\begin{aligned}
f(u) & =\rho_{\left(e^{0}\right)} f_{0}\left(\pi_{D_{0}}(u)\right)+G_{\left(e^{0}\right)}^{1}\left(D f_{0}\left(\pi_{D_{0}}(u)\right)\left(u-\rho_{D_{0}} \pi_{D_{0}} u\right)+\rho_{\left(e^{1}\right)} f_{1}\left(\pi_{D_{1}}(u)\right)\right. \\
& =f_{0}\left(u_{2}\left[e_{2}\right]\right) 1+u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right) e+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) e .
\end{aligned}
$$

The extension is given by

$$
\begin{aligned}
f(u) & =\rho_{\left(e^{0}\right)} f_{0}\left(\pi_{D_{0}}(u)\right)+G_{\left(e^{0}\right)}^{1}\left(D f_{0}\left(\pi_{D_{0}}(u)\right)\left(u-\rho_{D_{0}} \pi_{D_{0}} u\right)+\rho_{\left(e^{1}\right)} f_{1}\left(\pi_{D_{1}}(u)\right)\right. \\
& =f_{0}\left(u_{2}\left[e_{2}\right]\right) 1+u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right) e+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) e .
\end{aligned}
$$

Thus

$$
v(u)=\phi(f(u))=u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right)
$$

The extension is given by

$$
\begin{aligned}
f(u) & =\rho_{\left(e^{0}\right)} f_{0}\left(\pi_{D_{0}}(u)\right)+G_{\left(e^{0}\right)}^{1}\left(D f_{0}\left(\pi_{D_{0}}(u)\right)\left(u-\rho_{D_{0}} \pi_{D_{0}} u\right)+\rho_{\left(e^{1}\right)} f_{1}\left(\pi_{D_{1}}(u)\right)\right. \\
& =f_{0}\left(u_{2}\left[e_{2}\right]\right) 1+u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right) e+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) e .
\end{aligned}
$$

Thus

$$
v(u)=\phi(f(u))=u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) .
$$

Therefore any solution to the equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$ is of the form

$$
\begin{aligned}
& v(u)=\phi(f(u))=u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right), \\
& w(u)=\phi\left(M^{\top} f(u)\right)=f_{0}\left(u_{2}\left[e_{2}\right]\right)+\lambda u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+\lambda f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) .
\end{aligned}
$$

The extension is given by

$$
\begin{aligned}
f(u) & =\rho_{\left(e^{0}\right)} f_{0}\left(\pi_{D_{0}}(u)\right)+G_{\left(e^{0}\right)}^{1}\left(D f_{0}\left(\pi_{D_{0}}(u)\right)\left(u-\rho_{D_{0}} \pi_{D_{0}} u\right)+\rho_{\left(e^{1}\right)} f_{1}\left(\pi_{D_{1}}(u)\right)\right. \\
& =f_{0}\left(u_{2}\left[e_{2}\right]\right) 1+u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right) e+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) e .
\end{aligned}
$$

Thus

$$
v(u)=\phi(f(u))=u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right)
$$

Therefore any solution to the equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$ is of the form

$$
\begin{aligned}
& v(u)=\phi(f(u))=u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right), \\
& w(u)=\phi\left(M^{\top} f(u)\right)=f_{0}\left(u_{2}\left[e_{2}\right]\right)+\lambda u_{3} \frac{\partial f_{0}}{\partial x_{2}}\left(u_{2}\left[e_{2}\right]\right)+\lambda f_{1}\left(u_{1}\left[e_{1}\right]+u_{2}\left[e_{2}\right]\right) .
\end{aligned}
$$

We see that there is a unique solution v of generalized Laplace equations such that it has fixed values on $\overline{\rho_{D_{1}} \pi_{D_{1}}(U)}$ and such that $w-\lambda v$ has fixed, up to a constant, values on $\rho_{D_{0}} \pi_{D_{0}}(U)$.

Boundary value problem

$U \subset \mathbb{R}^{n}$ - convex, open and bounded set, $t \geq 2$. Then for any functions

$$
f_{i} \in C_{\mathbb{F}}^{t+l-1-i}\left(\overline{\pi_{D_{i}}(U)}, \mathbb{F}\right), i=0, \ldots, l-1
$$

there exists a unique $v \in C^{t}(\bar{U})$ such that

$$
\begin{aligned}
& D^{2} v(\cdot)\left(M^{\top} x, y\right)=D^{2} v(\cdot)\left(x, M^{\top} y\right) \\
& \left.v\right|_{\rho_{D_{l-1}} \pi_{D_{l-1}}(U)}\left(U \mu_{\mathbb{F}} f_{l-1} \circ \pi_{D_{l-1}}\right. \\
& \left.D v(\cdot)\left(\left(M^{\top}-\lambda I\right)^{l-1-i} x\right)\right|_{\overline{\rho_{D_{i}} \pi_{D_{i}}(U)}}=\mu_{\mathbb{F}} D\left(f_{i} \circ \pi_{D_{i}}\right)(\cdot)(x), \\
& x \in \rho_{D_{i}} \pi_{D_{i}}(B), i=0, \ldots, I-2
\end{aligned}
$$

Boundary value problem

$U \subset \mathbb{R}^{n}$ - convex, open and bounded set, $t \geq 2$. Then for any functions

$$
f_{i} \in C_{\mathbb{F}}^{t+l-1-i}\left(\overline{\pi_{D_{i}}(U)}, \mathbb{F}\right), i=0, \ldots, l-1
$$

there exists a unique $v \in C^{t}(\bar{U})$ such that

$$
\begin{aligned}
& D^{2} v(\cdot)\left(M^{\top} x, y\right)=D^{2} v(\cdot)\left(x, M^{\top} y\right) \\
& v \left\lvert\, \frac{\rho_{D_{l-1}} \pi_{D_{l-1}}(U)}{}=\mu_{\mathbb{F}} f_{l-1} \circ \pi_{D_{l-1}}\right. \\
& \left.D v(\cdot)\left(\left(M^{\top}-\lambda I\right)^{l-1-i} x\right)\right|_{\overline{\rho_{D_{i}} \pi_{D_{i}}(U)}}=\mu_{\mathbb{F}} D\left(f_{i} \circ \pi_{D_{i}}\right)(\cdot)(x), \\
& x \in \rho_{D_{i}} \pi_{D_{i}}(B), i=0, \ldots, I-2
\end{aligned}
$$

The unique solution is given by $v=\phi_{\mathbb{F}}(T f)$, where
$T f=\sum_{k=0}^{I-1}\left(\rho_{\left(e^{k}\right)} f_{k}\left(\pi_{D_{k}}(u)\right)+\sum_{j=1}^{I-1-k} \frac{1}{j!} G_{\left(e^{k}\right)}^{j} D^{j} f_{k}\left(\pi_{D_{k}}(u)\right)\left(\left(u-\rho_{D_{k}} \pi_{D_{k}}(u)\right)^{j}\right)\right)$

Thank you for your attention!

K.C. Differentiable functions on modules and the equation $\operatorname{grad}(w)=\operatorname{Mgrad}(v)$, http://arxiv.org/abs/1607.05624

