Nodal sets of Laplace Eigenfunctions: pursuing the conjectures by Yau and Nadirashvili.

> A.Logunov (TAU \& Chebyshev Laboratory)

Harmonic Analysis, Complex Analysis, Spectral Theory and all that.
1.08.2016-5.08.2016 - Bedlewo

August 5, 2016

- Let u be a non-constant harmonic function in \mathbb{R}^{3}.
- Nadirashvili's conjecture. Then

$$
\operatorname{Area}(\{u=0\})=\infty
$$

- Let u be a non-constant harmonic function in \mathbb{R}^{3}.
- Nadirashvili's conjecture. Then

$$
\operatorname{Area}(\{u=0\})=\infty
$$

- Thm (A.L). Assume that $u(0)=0$, then

$$
\text { Area }\left(\{u=0\} \cap B_{1}(0)\right) \geq c>0
$$

where c is a universal constant (independent of u).

- Let u be a non-constant harmonic function in \mathbb{R}^{3}.
- Nadirashvili's conjecture. Then

$$
\operatorname{Area}(\{u=0\})=\infty
$$

- Thm(A.L). Assume that $u(0)=0$, then

$$
\text { Area }\left(\{u=0\} \cap B_{1}(0)\right) \geq c>0,
$$

where c is a universal constant (independent of u).

- Rescaled version in \mathbb{R}^{n} :

$$
\text { Area }\left(\{u=0\} \cap B_{R}(0)\right) \geq c R^{n-1}
$$

Motivation: Yau's conjecture

- Let (M, g) be a compact C^{∞}-smooth Riemannian manifold (without boundary) of dimension n and let φ_{λ} be an eigenfunction of the Laplacian on $M: \Delta \varphi=-\lambda \varphi$.

The nodal set $Z_{\varphi_{\lambda}}=\{\varphi=0\}$.
Yau's conjecture:
$c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$
for some c, C depending on
(M, g) only and independent of λ

Sign of a spherical
harmonic of degree 40.
Picture by Alex Barnett.

Yau's conjecture

- Yau's conjecture: $c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$
- Thm(Donnelly \& Fefferman). True for real analytic metrics.
- In dimension $n=2$ the upper bound is open.
$n=2: c \sqrt{\lambda} \leq H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{3 / 4}$,
The lower bound ($\mathrm{n}=2$): Brunning + Yau.
The upper (non-sharp) bound was obtained Donnelly \&
Fefferman via Carleman estimates, different proof by Dong.
- Dong's inequality for $F=|\nabla \varphi|^{2}+\frac{\lambda}{2} \varphi^{2}$:

$$
\Delta \log F \geq-\lambda+2 \min (K, 0)
$$

where K is the Gaussian curvature of the manifold.

Yau's conjecture

- Yau's conjecture: $c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$
- Thm(Donnelly \& Fefferman). True for real analytic metrics.
- In dimension $n=2$ the upper bound is open.
$n=2: c \sqrt{\lambda} \leq H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{3 / 4}$,
The lower bound ($\mathrm{n}=2$): Brunning + Yau.
The upper (non-sharp) bound was obtained Donnelly \&
Fefferman via Carleman estimates, different proof by Dong.
- Dong's inequality for $F=|\nabla \varphi|^{2}+\frac{\lambda}{2} \varphi^{2}$:

$$
\Delta \log F \geq-\lambda+2 \min (K, 0)
$$

where K is the Gaussian curvature of the manifold.

- $\operatorname{Thm}\left(A . L\right.$, Eu.Malinnikova): $H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{3 / 4-\varepsilon}, \varepsilon>1 / 10^{10}$.

Bounds for Yau's conjecture, $n \geq 3$.

- Yau's conjecture:

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}
$$

- The previous known estimates:

$$
c \lambda^{\frac{3-n}{4}} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{C \sqrt{\lambda}}
$$

The upper bound is due to Hardt\&Simon. The lower bound was proved by Colding\&Minicozzi and Sogge\&Zelditch.

Bounds for Yau's conjecture, $n \geq 3$.

- Yau's conjecture:

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq c \sqrt{\lambda}
$$

- The previous known estimates:

$$
c \lambda^{\frac{3-n}{4}} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{C \sqrt{\lambda}}
$$

The upper bound is due to Hardt\&Simon. The lower bound was proved by Colding\&Minicozzi and Sogge\&Zelditch.

- Thm(A.L.):

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{c} .
$$

From Nadirashvili's conjecture to Yau's conjecture

$$
\Delta \varphi+\lambda \varphi=0 \quad \text { vs } \quad \Delta u=0
$$

From Nadirashvili's conjecture to Yau's conjecture

$$
\Delta \varphi+\lambda \varphi=0 \quad \text { vs } \quad \Delta u=0
$$

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}. Standard trick: define a harmonic function u in \mathbb{R}^{n+1} by

$$
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t), \quad Z_{u}=Z_{\varphi} \times \mathbb{R}
$$

Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?

From Nadirashvili's conjecture to Yau's conjecture

$$
\Delta \varphi+\lambda \varphi=0 \quad \text { vs } \quad \Delta u=0
$$

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}.

Standard trick: define a harmonic function u in \mathbb{R}^{n+1} by

$$
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t), \quad Z_{u}=Z_{\varphi} \times \mathbb{R}
$$

Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?

- Projecting Nadirashvili's conjecture:

If $\varphi(x)=0$, then $H^{n-1}\left(Z_{\varphi} \cap B_{1}(x)\right) \geq c$ (not enough). Rescaling and projecting Nadirashvili's conjecture:

$$
H^{n-1}\left(Z_{\varphi} \cap B_{1 / \sqrt{\lambda}}(x)\right) \geq c\left(\frac{1}{\sqrt{\lambda}}\right)^{n-1}
$$

From Nadirshvili's conjecture to Yau's conjecture

$$
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t), \quad Z_{u}=Z_{\varphi} \times \mathbb{R}
$$

Harnack's inequlaity: Z_{u} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n+1}.
Z_{φ} is also $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.

From Nadirshvili's conjecture to Yau's conjecture

$$
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t), \quad Z_{u}=Z_{\varphi} \times \mathbb{R}
$$

Harnack's inequlaity: Z_{u} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n+1}.
Z_{φ} is also $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.
One can find $\sim \lambda^{n / 2}$ disjoint balls $B\left(x_{i}, \frac{1}{\sqrt{\lambda}}\right)$ in B_{1} such that $\varphi\left(x_{i}\right)=0$. Rescaling (and projecting) Nadirashvili's conjectrure:

$$
H^{n-1}\left(Z_{\varphi} \cap B_{1 / \sqrt{\lambda}}\left(x_{i}\right)\right) \geq c\left(\frac{1}{\sqrt{\lambda}}\right)^{n-1} .
$$

Thus $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$.

Growth of Laplace eigenfunctions on compact manifolds

$$
\Delta \varphi+\lambda \varphi=0
$$

Donnelly-Fefferman growth estimate for Laplace eigenfunctions on compact Riemannian manifolds:
For any geodesic ball $B_{r}(x)$

$$
\frac{\sup _{B_{2 r}(x)}|\varphi|}{\sup _{B_{r}(x)}|\varphi|} \leq 2^{C \sqrt{\lambda}}
$$

Old question for elliptic PDE:
Estimates for the zero set in terms of growth.

Zeroes and growth of harmonic functions on the plane.

Let u be a harmonic function in \mathbb{R}^{2}.
Doubling index:

$$
N\left(B_{r}\right)=\log \frac{\max _{B_{2 r}}|u|}{\max _{B_{r}}|u|}
$$

Theorem(Nadirashvili, Robertson, Gelfond)

$$
c N\left(B_{1 / 2}\right)-C \leq H^{1}\left(Z_{u} \cap B_{1}\right) \leq C N\left(B_{2}\right)+C
$$

Nadirashvili's conjecture(true): Zero set of a non-constant harmonic function in \mathbb{R}^{3} has infinite area.

Frequency

- Let $H(x, r)=\frac{\int_{\partial B_{r}(x)} u^{2}}{\left|\partial B_{r}\right|}$ be the meanvalue of u^{2} over $\partial B_{r}(x)$.
- Frequency of a harmonic function:

$$
N\left(B_{r}(x)\right)=\frac{r H^{\prime}(x, r)}{H(x, r)}
$$

- Frequency is comparable to doubling index.
- Growth of harmonic functions:

$$
\frac{H(1)}{H(1 / 2)} \leq 2^{N(1)} \leq \frac{H(2)}{H(1)} \leq 2^{N(2)} .
$$

- Q. Estimates of $H^{n-1}\left(Z_{u}\right)$ in terms of the frequency.

Frequency is monotonic

$$
N\left(B_{r}\right)=\frac{r H^{\prime}(r)}{H(r)}, H(r)=\frac{\int_{\partial B_{r}} u^{2}}{\left|\partial B_{r}\right|}
$$

- Frequency is a monotonic function of r.
- If u is a homogeneous harmonic polynomial, then N is exactly twice the degree of u.
- $\lim _{r \rightarrow+0} N\left(B_{r}\right)=$ twice the vanishing order of u at 0 . If $u(x)=0$, then $N\left(B_{r}(x)\right) \geq 2$.

Is the frequency "additive" in some sense?

Goal:To show that if the $H^{n-1}\left(Z_{u} \cap B\right)$ is big, then $N(2 B)$ is also big.

- Model question: Given many disjoint balls $B_{1}, B_{2}, \ldots, B_{k}$ with $N\left(B_{i}\right) \geq 1$ for each i, how large must be the frequency for a giant ball B, which contains all small balls B_{i} ? Monotonicity of the frequency: if $r \leq 1$, then

$$
N(r B) \leq N(B)
$$

Is the frequency "additive" in some sense?

Goal:To show that if the $H^{n-1}\left(Z_{u} \cap B\right)$ is big, then $N(2 B)$ is also big.

- Model question: Given many disjoint balls $B_{1}, B_{2}, \ldots, B_{k}$ with $N\left(B_{i}\right) \geq 1$ for each i, how large must be the frequency for a giant ball B, which contains all small balls B_{i} ?
Monotonicity of the frequency: if $r \leq 1$, then

$$
N(r B) \leq N(B)
$$

- Suppose that $N\left(B_{1}\right)=N\left(B_{2}\right)=N$.

It is not true that if a ball B contains $B_{1} \cup B_{2}$, then $N(B)>N$.
For instance, if $u(x, y, z)=\Re(x+i y)^{n}$ and a point p lies on the z-axis, then $N\left(B_{r}(p)\right)=2 n$ for any $r>0$.

4 balls are enough in \mathbb{R}^{3}

> Blue balls B_{i} are disjoint balls with the same radii and centers at the vertices of the equilateral simplex.
> Simplex Lemma:
> If for each blue ball
> $N\left(B_{i}\right) \geq A>1000, n=1,2,3,4$, then the frequency of the giant red ball $N(B)>A(1+c), c>0$.

Hint.
Euclidean geometry fact: with four unit balls in \mathbb{R}^{3} one can cover a slightly bigger ball with radius $1+\varepsilon$.
Tools: Three spheres theorem + monotonicity of the frequency

Is the frequency "additive" in some sense?

Let $x_{1}, x_{2}, \ldots, x_{n+1}$ be the vertices of a non-degenerate simplex S in \mathbb{R}^{n}. The relative width $w(S)$ is defined as $\frac{\operatorname{width}(S)}{\operatorname{diam}(S)}$. Let x_{0} be the barycenter of S.

Simplex lemma.

Let $r \leq \operatorname{diam}(S)$ and $B_{i}=B\left(x_{i}, r\right)$.
If $N\left(B_{i}\right) \geq N, i=1, \ldots, n+1$, then

$$
N\left(x_{0}, A \operatorname{diam}(S)\right) \geq(1+c) N-C .
$$

Where $c=c(w(S), n)>0, A=A(w(S), n)>1$ and $C=C(w(s), n)>0$.

Is the frequency "additive" in some sense?

What happens if the balls are concentrated near the hyperplane?
Fix $n=3$.
Hyperplane lemma
If $N\left(B_{1}(i, j, 0)\right) \geq N$ for $i=-100, \ldots, 100, j=-100, \ldots, 100$, then

$$
N\left(B_{100}\right) \geq 2 N-C
$$

Hint.
The quantitative version of the Cauchy uniqueness theorem: Let u be a harmonic function in the unit cube Q such that $|u|<1$ in Q. Let F be one face of Q. If $|u|$ and $|\nabla u|$ are smaller than ε on F, then

$$
|u| \leq \varepsilon^{\alpha}
$$

in $\frac{1}{2} Q, \alpha=1 / 100$.

For a given cube Q define $N(Q)=\sup _{B \subset 2 Q} N(B)$.
Simplex lemma + hyperplane lemma imply
Lemma. There exist an integer A depending on n only such that the following holds. Let Q be a cube in \mathbb{R}^{n}, which is partitioned into A^{n} equal subcubes Q_{i}. If there are $\frac{1}{2} A^{n-1}$ subcubes Q_{i} with $N\left(Q_{i}\right) \geq N$, then $N(Q) \geq N(1+c)-C$.

Iterations of the lemma are used in the proof of the polynomial upper bound

$$
H^{n-1}\left(Z_{u} \cap Q\right) \leq C N^{C}(Q) \quad \Longrightarrow \quad H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{C}
$$

and in the proof of the lower bound:

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \geq c 2^{\frac{\operatorname{cog} N}{\log \log N}} \quad\left(\text { for } N=N\left(B_{1 / 2}\right)>C\right)
$$

Lower bounds for harmonic functions.

- If $N\left(B_{1 / 2}\right)=N>C$, then

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \geq c 2^{\frac{c \log N}{\log N}}
$$

- In particular, if $u(0)=0$, then

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \geq c
$$

- This estimate is sufficient for the lower bound in Yau's conjecture

$$
H^{n-1}\left(Z_{\varphi}\right) \geq c \sqrt{\lambda}
$$

Lower bounds for harmonic functions.

- If $N\left(B_{1 / 2}\right)=N>C$, then

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \geq c 2^{\frac{c \log N}{\log N}}
$$

- In particular, if $u(0)=0$, then

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \geq c
$$

- This estimate is sufficient for the lower bound in Yau's conjecture

$$
H^{n-1}\left(Z_{\varphi}\right) \geq c \sqrt{\lambda}
$$

- Assuming the upper bound $H^{n-1}\left(Z_{\varphi}\right) \leq C \sqrt{\lambda}$:
- Most of the balls $B_{\frac{1}{\sqrt{\lambda}}}\left(x_{i}\right)$,covering the manifold, satisfy

$$
N\left(B_{\frac{1}{\sqrt{\lambda}}}\left(x_{i}\right)\right)<C .
$$

If Yau's conjecture is true:

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}
$$

Then $\quad c \leq \frac{H_{n}(\varphi>0)}{H_{n}(\varphi<0)} \leq C$.

Happy Birthday Sasha!!

