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I Let u be a non-constant harmonic function in R3.

I Nadirashvili’s conjecture. Then

Area({u = 0}) =∞.

I Thm(A.L). Assume that u(0) = 0, then

Area({u = 0} ∩ B1(0)) ≥ c > 0,

where c is a universal constant (independent of u).

I Rescaled version in Rn:

Area({u = 0} ∩ BR(0)) ≥ cRn−1.
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Motivation: Yau’s conjecture

I Let (M, g) be a compact C∞-smooth Riemannian manifold
(without boundary) of dimension n and let ϕλ be an
eigenfunction of the Laplacian on M: ∆ϕ = −λϕ.

Sign of a spherical
harmonic of degree 40.
Picture by Alex Barnett.

The nodal set Zϕλ = {ϕ = 0}.

Yau’s conjecture:
c
√
λ ≤ Hn−1(Zϕλ) ≤ C

√
λ

for some c ,C depending on
(M, g) only and independent of λ



Yau’s conjecture

I Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ) ≤ C

√
λ

I Thm(Donnelly & Fefferman). True for real analytic metrics.

I In dimension n = 2 the upper bound is open.
n = 2: c

√
λ ≤ H1(Zϕλ) ≤ Cλ3/4,

The lower bound (n=2): Brunning + Yau.
The upper (non-sharp) bound was obtained Donnelly &
Fefferman via Carleman estimates, different proof by Dong.

I Dong’s inequality for F = |∇ϕ|2 + λ
2ϕ

2:

∆ log F ≥ −λ+ 2 min(K , 0),

where K is the Gaussian curvature of the manifold.

I Thm(A.L, Eu.Malinnikova): H1(Zϕλ) ≤ Cλ3/4−ε, ε > 1/1010.
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Bounds for Yau’s conjecture, n ≥ 3.

I Yau’s conjecture:

c
√
λ ≤ Hn−1(Zϕλ) ≤ C

√
λ

I The previous known estimates:

cλ
3−n
4 ≤ Hn−1(Zϕλ) ≤ CλC

√
λ

The upper bound is due to Hardt&Simon. The lower bound
was proved by Colding&Minicozzi and Sogge&Zelditch.

I Thm(A.L.):
c
√
λ ≤ Hn−1(Zϕλ) ≤ CλC .
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From Nadirashvili’s conjecture to Yau’s conjecture

I

∆ϕ+ λϕ = 0 vs ∆u = 0.

I Let ϕ satisfy ∆ϕ+ λϕ = 0 in Rn.
Standard trick: define a harmonic function u in Rn+1 by

u(x , t) = ϕ(x) exp(
√
λt), Zu = Zϕ × R.

Why Hn−1(Zϕ ∩ {|x | < 1}) ≥ c
√
λ for λ > λ0?

I Projecting Nadirashvili’s conjecture:
If ϕ(x) = 0, then Hn−1(Zϕ ∩ B1(x)) ≥ c (not enough).
Rescaling and projecting Nadirashvili’s conjecture:

Hn−1(Zϕ ∩ B1/
√
λ(x)) ≥ c

(
1√
λ

)n−1
.
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From Nadirshvili’s conjecture to Yau’s conjecture

u(x , t) = ϕ(x) exp(
√
λt), Zu = Zϕ × R

Harnack’s inequlaity: Zu is C√
λ

dense in Rn+1.

Zϕ is also C√
λ

dense in Rn.

One can find ∼ λn/2 disjoint balls B(xi ,
1√
λ

) in B1 such that

ϕ(xi ) = 0. Rescaling (and projecting) Nadirashvili’s conjectrure:

Hn−1(Zϕ ∩ B1/
√
λ(xi )) ≥ c

(
1√
λ

)n−1
.

Thus Hn−1(Zϕ ∩ {|x | < 1}) ≥ c
√
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Growth of Laplace eigenfunctions on compact manifolds

∆ϕ+ λϕ = 0

Donnelly-Fefferman growth estimate for Laplace eigenfunctions on
compact Riemannian manifolds:
For any geodesic ball Br (x)

supB2r (x) |ϕ|
supBr (x) |ϕ|

≤ 2C
√
λ.

Old question for elliptic PDE:
Estimates for the zero set in terms of growth.



Zeroes and growth of harmonic functions on the plane.

Let u be a harmonic function in R2.
Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Theorem(Nadirashvili, Robertson, Gelfond)

cN(B1/2)− C ≤ H1(Zu ∩ B1) ≤ CN(B2) + C

Nadirashvili’s conjecture(true): Zero set of a non-constant
harmonic function in R3 has infinite area.



Frequency

I Let H(x , r) =

∫
∂Br (x)

u2

|∂Br | be the meanvalue of u2 over ∂Br (x).

I Frequency of a harmonic function:

N(Br (x)) =
rH ′(x , r)

H(x , r)
.

I Frequency is comparable to doubling index.

I Growth of harmonic functions:

H(1)
H(1/2) ≤ 2N(1) ≤ H(2)

H(1) ≤ 2N(2).

I Q. Estimates of Hn−1(Zu) in terms of the frequency.



Frequency is monotonic

N(Br ) = rH′(r)
H(r) ,H(r) =

∫
∂Br

u2

|∂Br | .

I Frequency is a monotonic function of r .

I If u is a homogeneous harmonic polynomial, then N is exactly
twice the degree of u.

I lim
r→+0

N(Br ) = twice the vanishing order of u at 0.

If u(x) = 0, then N(Br (x)) ≥ 2.



Is the frequency ”additive” in some sense?

Goal:To show that if the Hn−1(Zu ∩ B) is big,
then N(2B) is also big.

I Model question: Given many disjoint balls B1, B2,. . . , Bk

with N(Bi ) ≥ 1 for each i , how large must be the frequency
for a giant ball B, which contains all small balls Bi?
Monotonicity of the frequency: if r ≤ 1, then

N(rB) ≤ N(B).

I Suppose that N(B1) = N(B2) = N.
It is not true that if a ball B contains B1 ∪ B2, then
N(B) > N.
For instance, if u(x , y , z) = <(x + iy)n and a point p lies on
the z-axis, then N(Br (p)) = 2n for any r > 0.
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4 balls are enough in R3

Blue balls Bi are disjoint balls
with the same radii and centers
at the vertices of the equilateral
simplex.
Simplex Lemma:
If for each blue ball
N(Bi ) ≥ A > 1000, n = 1, 2, 3, 4,
then the frequency of the giant
red ball N(B) > A(1 + c), c > 0.

Hint.
Euclidean geometry fact: with four unit balls in R3 one can cover a
slightly bigger ball with radius 1 + ε.
Tools: Three spheres theorem + monotonicity of the frequency



Is the frequency ”additive” in some sense?

Let x1, x2, . . . , xn+1 be the vertices of a non-degenerate simplex S

in Rn. The relative width w(S) is defined as width(S)
diam(S) . Let x0 be

the barycenter of S .

Simplex lemma.

Let r ≤ diam(S) and Bi = B(xi , r).
If N(Bi ) ≥ N, i = 1,. . . ,n + 1, then

N(x0,A diam(S)) ≥ (1 + c)N − C .

Where c = c(w(S), n) > 0, A = A(w(S), n) > 1 and
C = C (w(s), n) > 0.



Is the frequency ”additive” in some sense?

What happens if the balls are concentrated near the hyperplane?
Fix n = 3.

Hyperplane lemma

If N(B1(i , j , 0)) ≥ N for i = −100, . . . , 100, j = −100, . . . , 100,
then

N(B100) ≥ 2N − C .

Hint.
The quantitative version of the Cauchy uniqueness theorem:
Let u be a harmonic function in the unit cube Q such that |u| < 1
in Q. Let F be one face of Q. If |u| and |∇u| are smaller than ε
on F , then

|u| ≤ εα

in 1
2Q, α = 1/100.



For a given cube Q define N(Q) = sup
B⊂2Q

N(B).

Simplex lemma + hyperplane lemma imply
Lemma. There exist an integer A depending on n only such that
the following holds. Let Q be a cube in Rn, which is partitioned
into An equal subcubes Qi . If there are 1

2A
n−1 subcubes Qi with

N(Qi ) ≥ N, then N(Q) ≥ N(1 + c)− C .

Iterations of the lemma are used in the proof of the polynomial
upper bound

Hn−1(Zu ∩ Q) ≤ CNC (Q) =⇒ Hn−1(Zϕλ) ≤ CλC

and in the proof of the lower bound:

Hn−1(Zu ∩ B1) ≥ c2
c log N
log log N (for N = N(B1/2) > C ).



Lower bounds for harmonic functions.

I If N(B1/2) = N > C , then

Hn−1(Zu ∩ B1) ≥ c2
c log N
log log N .

I In particular, if u(0) = 0, then

Hn−1(Zu ∩ B1) ≥ c.

I This estimate is sufficient for the lower bound in Yau’s
conjecture

Hn−1(Zϕ) ≥ c
√
λ.

I Assuming the upper bound Hn−1(Zϕ) ≤ C
√
λ:

I Most of the balls B 1√
λ

(xi ),covering the manifold, satisfy

N(B 1√
λ

(xi )) < C .
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If Yau’s conjecture is true:

c
√
λ ≤ Hn−1(Zϕλ) ≤ C

√
λ.

Then c ≤ Hn(ϕ > 0)

Hn(ϕ < 0)
≤ C .



Happy Birthday Sasha!!


