Ratios of harmonic functions

Eugenia Malinnikova NTNU (Trondheim, Norway)

joint work with A. Logunov (St.Petersburg/Tel Aviv)

Harmonic Analysis, Complex Analysis, Spectral Theory and all that Bedlewo, August 2, 2016

Ratios of harmonic functions and Harnack's inequalities

Let $\Omega \subset \mathbb{R}^{n}, u, v: \Omega \rightarrow \mathbb{R}, \Delta u=\Delta v=0$. Suppose that the zero sets of u and v coincide: $Z(u)=Z(v)=Z$. We consider $f=u / v$.

Claim: f is a real-analytic function which satisfies

$$
\begin{aligned}
& \sup _{K}|f| \leq C_{1} \inf _{K}|f|, \\
& \sup _{K}|\nabla f| \leq C_{2} \inf _{K}|f|,
\end{aligned}
$$

where $K \subset \subset \Omega$ and the constants C_{1}, C_{2} depend on K and the nodal set Z only.

The result was proved by Dan Mangoubi (Jerusalem) for $n=2$ in 2014. Dan also conjectured that it holds in higher dimensions and that in dimension two the constants depend only on the number of nodal domains.

Examples in dimension two

Let $f: \Omega \rightarrow \mathbb{D}$ be a bounded analytic function and $h: \mathbb{D} \rightarrow \mathbb{R}$ is a harmonic function such that $h(x+i y)>0$ if and only if $x>0$. then

$$
u=\Re(f), \quad v=h(f)
$$

is a pair of harmonic functions with a common zero set.
If we fix a harmonic function u in Ω and let $Z=Z(u)$, we can find a large family of functions with this zero set. It is a local property of functions on a bounded domain Ω.

Globally, if three harmonic functions in \mathbb{R}^{2} have the same zero set then they are linearly dependent.

More specific examples in dimension two
Let $u=\Im z^{k}$ and $\Omega=\mathbb{D}, \mathrm{Z}(\mathrm{u})$ is

Suppose that $c_{j} \in \mathbb{R}$ are small $\left(\sum_{j}\left|c_{j}\right|<1\right)$ and choose

$$
v=u+\Im\left(\sum_{j=2}^{\infty} c_{j} \Im z^{j k}\right) .
$$

Then $Z(v)=Z(u)$ and

$$
f=v / u=1+\sum_{j=2}^{\infty} c_{j} \sum_{m=0}^{[(j-1) / 2]}(-1)^{m} u^{2 m} \tilde{u}^{j-2 m-1}, \quad z^{k}=\tilde{u}+i u
$$

Compactness of the family of functions with bounded number of nodal domains

Lemma (N. Nadirashvili, 1991)
Let u_{n} be a sequence of harmonic functions in \mathbb{D} and let $N \in \mathbb{N}$. Suppose that the number of nodal domains of each u_{n} is less than N. Then there exist a subsequence $u_{n_{k}}$, a sequence $\alpha_{n_{k}}$ of real numbers and a non-zero function u such that $\alpha_{n_{k}} u_{n_{k}}$ converge to u uniformly on compact subsets of \mathbb{D}. Clearly, u is harmonic in \mathbb{D}.

It follows from the fact that given a sequence of continuous functions on $[0,1]$ with uniformly bounded number of zero points, one can choose a subsequence that after a renormalization converges to a non-zero distribution.

Structure results

Lemma
Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be sequences of harmonic functions in \mathbb{D} such that $Z\left(u_{n}\right)=Z\left(v_{n}\right), u_{n}=f_{n} v_{n}, f_{n}>0$ and $u_{n} \rightrightarrows u, v_{n} \rightrightarrows v$ in \mathbb{D}, where u and v are non-zero functions. Then $Z(u)=Z(v)$.

Proposition
Let U and V be analytic functions in \mathbb{D} such that $Z(\Im U)=Z(\Im V)$. Assume also that $\Omega=V^{-1}\left\{r_{1}<|z|<r_{2}\right\}$ is connected for some $r_{1}<r_{2}$ and there exists integer k such that $\left.V\right|_{\Omega}$ is a k-cover of $\left\{r_{1}<|z|<r_{2}\right\}$. Then we have $U(z)=g \circ V(z)$ when $z \in \Omega$, where g is an analytic function on $\left\{|z|<r_{2}\right\}$ with real coefficients.

Theorem (L-M,2016)
Let u and v be harmonic functions in the unit disc $\mathbb{D} \subset \mathbb{R}^{2}$ such that $Z(u)=Z(v)$ and suppose the number of nodal domains of u (and v) is less than a fixed number N. Let f be the ratio of u and v, then for any compact set $K \subset \mathbb{D}$ there exist constants $C_{1}=C_{1}(K, N)$ and $C_{2}=C_{2}(K, N)$ depending on K and N only such that the Harnack inequality

$$
\begin{equation*}
\sup _{K}|f| \leq C_{1} \inf _{K}|f| ; \tag{1}
\end{equation*}
$$

and the following gradient estimate

$$
\begin{equation*}
\sup _{K}|\nabla f| \leq C_{2} \inf _{K}|f|, \tag{2}
\end{equation*}
$$

hold.

Harmonic polynomials and Brelot-Choquet theorem

Harmonic functions are better than real analytic!
Lemma (Division Lemma)
Suppose Q is a homogeneous harmonic polynomial and P is a polynomial such that $Z(Q) \subset Z(P)$. Then $P=Q R$ for some $R \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

Let u be real analytic and v be harmonic

$$
u=\sum_{i=k}^{\infty} u_{i}, \quad v=\sum_{i=l}^{\infty} v_{i},
$$

where u_{i} and v_{i} denote homogeneous polynomials of degree $i ; u_{k}$ and v_{l} are non-zero polynomials.

Lemma
If $Z(v) \subset Z(u)$, then $Z\left(v_{l}\right) \subset Z\left(u_{k}\right)$.

Division by power series in higher dimensions

Theorem (L-M, 2015)
Suppose that v is harmonic, u is real analytic and $Z(v) \subset Z(u)$. If $Z(v) \subset Z(u)$, then there exist a real-analytic function f in Ω such that $u=v f$.
If u is also harmonic then f satisfies the maximum and minimum principles.

The proof also implies the estimates

$$
\sup _{K} D^{\alpha} f \leq C_{\alpha, K} \sup _{K} f
$$

Thus the Harnack principle for the ratios would imply the gradient estimate.

Boundary Harnack Principle

Let Ω be a good domain in \mathbb{R}^{n} and $\Gamma \subset \partial \Omega$. If u, v are positive harmonic in Ω, $u, v \in C\left(\Omega \cup \Gamma\right.$ and $\left.u\right|_{\Gamma}=\left.v\right|_{\Gamma}=0$, then

$$
\inf _{K}|u / v| \geq C(K, \Omega) \sup _{K}|u / v|
$$

when $K \subset \Omega \cup \Gamma$.

Kemper, Ancona, Wu, Aikawa, Bass, Burdzy, Bañuelos, Popovici, Volberg

Example 1

$$
Z_{1}=Z(u)=\left\{x^{2}+y^{2}-2 z^{2}=0\right\}, \text { does }
$$

$$
\text { there exist a harmonic function } v \text { in the }
$$

$$
\text { unit ball such that } v \neq c u \text { and }
$$

$$
Z(v)=Z(u) ?
$$

Example 2
$Z_{2}=\left\{x^{2}-y^{2}+z^{3}-3 x^{2} z=0\right\}$, some sections of Z_{2} :

$$
z<0
$$

$$
z=0
$$

$$
z>0
$$

$\Omega=\left\{x^{2}-y^{2}+z^{3}-3 x^{2} z>0\right\}$ is a very bad domain (violates the Harnack chain condition)

Examples in higher dimensions: good news (no pictures)

Example 3 (Axially symmetric harmonic functions in \mathbb{R}^{4})

$$
u_{k}\left(x, x_{4}\right)=\frac{\Im\left(x_{4}+i|x|\right)^{3 k}}{|x|}, \quad x \in \mathbb{R}^{3}, \quad k \in \mathbb{N},
$$

$Z\left(u_{k}\right) \supset Z\left(u_{1}\right), u_{1}=3 x_{4}^{2}-|x|^{2}$, and we have local families of harmonic functions with the same zero set.

Example 4 (A family of harmonic functions in \mathbb{R}^{9})
$h_{k}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\sin \left(3 k\left|x_{1}\right|\right) \sin \left(4 k\left|x_{2}\right|\right) \sinh \left(5 k\left|x_{3}\right|\right)}{\left|x_{1}\right|\left|x_{2}\right|\left|x_{3}\right|}, \quad x_{1}, x_{2}, x_{3} \in \mathbb{R}^{3}$,
once again, $Z\left(h_{k}\right) \supset Z\left(h_{1}\right)$ for $k \in \mathbb{N}$.

For any function f, real analytic in B_{1}, with $Z(f) \neq \emptyset$ there exist constants $I, L, \gamma>0$ depending on f such that

$$
L \cdot d(x, Z(f)) \geq|f(x)| \geq I \cdot d(x, Z(f))^{\gamma}
$$

for any $x \in B_{1 / 2}, \gamma$ is called the Łojasiewicz exponent of f.

Main lemma 1

We fix a harmonic function v and assume that $\sup _{B_{1 / 2}}|v|=1$, let u be another harmonic function (varying) with $Z(u)=Z(v)=Z$. We denote $d(x, Z)=\delta(x)$.

Lemma
There exists a constant $C=C(v)>1$ such that for any $x \in B_{1 / 4}$ with $v(x) \neq 0$ there is $\tilde{x} \in B_{1 / 2}$ with $|x-\tilde{x}| \leq \frac{3}{4} \delta(x)$ and $|v(\tilde{x})| \geq C|v(x)|$.

Using this lemma and starting with some $x_{1} \in B_{1 / 4}$ we construct a sequence x_{1}, \ldots, x_{m} with $x_{m} \in B_{1 / 2} \backslash B_{1 / 4}$.

First chain

We have $1 \geq\left|v\left(x_{m}\right)\right| \geq C^{m}\left|v\left(x_{1}\right)\right|$. Using the Łojasiewiecz exponent we can also show that $\delta\left(x_{m}\right)>c=c(v)$.

Now if we consider the values of u along this sequence, we see by the usual Harnack inequality that

$$
\left|u\left(x_{m}\right)\right| \geq q^{m}\left|u\left(x_{1}\right)\right| .
$$

Then $\left|u\left(x_{m}\right)\right| \geq\left|u\left(x_{1}\right)\right|\left|v\left(x_{1}\right)\right|^{\alpha}$.
Thus for every $x \in B_{1 / 4}$ there exists $y \in B_{1 / 2}$ such that

$$
|u(y)| \geq|u(x)||v(x)|^{\alpha}, \delta(y)>c
$$

Main lemma 2 and the second chain

Lemma

There exists a constant $K>1$ depending on the dimension n only such that for any function u harmonic in B_{1} with $Z(u) \cap B_{1 / 2} \neq \emptyset$ and any $x \in B_{1 / 4}$ with $u(x) \neq 0$ and $\delta_{u}(x)<(4 K)^{-1}$ there exists a point \tilde{x} for which $|\tilde{x}-x| \leq K \delta(x)$ and $|u(\tilde{x})| \geq 2|u(x)|$.

Suppose that $\sup _{\delta(x)>c, x \in B_{1 / 2}}|u|=1$ but $u\left(x_{0}\right)=M \gg 1$ for some $x_{0} \in B_{1 / 8}$. We construct points x_{j} applying the second lemma.
For each such x_{j} we can find y_{j} with $1 \geq\left|u\left(y_{j}\right)\right| \geq\left|u\left(x_{j}\right)\right|\left|v\left(x_{j}\right)\right|^{\alpha}$ and $\left|u\left(x_{j}\right)\right|>2^{j} M$. Therefore $\left|v\left(x_{j}\right)\right| \leq 2^{-j / \alpha} M^{-1 / \alpha}$ and

$$
\delta\left(x_{j}\right) \leq C_{v} M^{-\beta} 2^{-j \beta}
$$

by the Łojasiewicz inequality! Contradiction.

We have the following inequality now

$$
\sup _{B_{1 / 8}}|u| \leq C(v) \sup _{x \in B_{1 / 2}, \delta(x)>c}|u| .
$$

The estimates for the ratio follow now from the usual Harnack inequality inside the nodal domains and a simple compactness argument.

