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Ratios of harmonic functions and Harnack’s inequalities

Let Ω ⊂ Rn, u, v : Ω→ R, ∆u = ∆v = 0. Suppose that the zero
sets of u and v coincide: Z (u) = Z (v) = Z . We consider f = u/v .

Claim: f is a real-analytic function which satisfies

sup
K
|f | ≤ C1 inf

K
|f |,

sup
K
|∇f | ≤ C2 inf

K
|f |,

where K ⊂⊂ Ω and the constants C1,C2 depend on K and the
nodal set Z only.

The result was proved by Dan Mangoubi (Jerusalem) for n = 2 in
2014. Dan also conjectured that it holds in higher dimensions and
that in dimension two the constants depend only on the number of
nodal domains.



Examples in dimension two

Let f : Ω→ D be a bounded analytic function and h : D→ R is a
harmonic function such that h(x + iy) > 0 if and only if x > 0.
then

u = <(f ), v = h(f )

is a pair of harmonic functions with a common zero set.

If we fix a harmonic function u in Ω and let Z = Z (u), we can find
a large family of functions with this zero set. It is a local property
of functions on a bounded domain Ω.

Globally, if three harmonic functions in R2 have the same zero set
then they are linearly dependent.



More specific examples in dimension two

Let u = =zk and Ω = D, Z(u) is

Suppose that cj ∈ R are small (
∑

j |cj | < 1) and choose

v = u + =

 ∞∑
j=2

cj=z jk

 .

Then Z (v) = Z (u) and

f = v/u = 1 +
∞∑
j=2

cj

[(j−1)/2]∑
m=0

(−1)mu2mũj−2m−1, zk = ũ + iu.



Compactness of the family of functions with bounded
number of nodal domains

Lemma (N. Nadirashvili, 1991)

Let un be a sequence of harmonic functions in D and let N ∈ N.
Suppose that the number of nodal domains of each un is less than
N. Then there exist a subsequence unk , a sequence αnk of real
numbers and a non-zero function u such that αnk unk converge to u
uniformly on compact subsets of D. Clearly, u is harmonic in D.

It follows from the fact that given a sequence of continuous
functions on [0, 1] with uniformly bounded number of zero points,
one can choose a subsequence that after a renormalization
converges to a non-zero distribution.



Structure results

Lemma

Let {un} and {vn} be sequences of harmonic functions in D such
that Z (un) = Z (vn), un = fnvn, fn > 0 and un ⇒ u, vn ⇒ v in D,
where u and v are non-zero functions. Then Z (u) = Z (v).

Proposition

Let U and V be analytic functions in D such that
Z (=U) = Z (=V ). Assume also that Ω = V−1{r1 < |z | < r2} is
connected for some r1 < r2 and there exists integer k such that
V |Ω is a k-cover of {r1 < |z | < r2}. Then we have
U(z) = g ◦ V (z) when z ∈ Ω, where g is an analytic function on
{|z | < r2} with real coefficients.



Refinement of the result for n = 2

Theorem (L-M,2016)

Let u and v be harmonic functions in the unit disc D ⊂ R2 such
that Z (u) = Z (v) and suppose the number of nodal domains of u
(and v) is less than a fixed number N. Let f be the ratio of u and
v, then for any compact set K ⊂ D there exist constants
C1 = C1(K ,N) and C2 = C2(K ,N) depending on K and N only
such that the Harnack inequality

sup
K
|f | ≤ C1 inf

K
|f |; (1)

and the following gradient estimate

sup
K
|∇f | ≤ C2 inf

K
|f |, (2)

hold.



Harmonic polynomials and Brelot-Choquet theorem

Harmonic functions are better than real analytic!

Lemma (Division Lemma)

Suppose Q is a homogeneous harmonic polynomial and P is a
polynomial such that Z (Q) ⊂ Z (P). Then P = QR for some
R ∈ R[x1, x2, . . . , xn]

Let u be real analytic and v be harmonic

u =
∞∑
i=k

ui , v =
∞∑
i=l

vi ,

where ui and vi denote homogeneous polynomials of degree i ; uk

and vl are non-zero polynomials.

Lemma

If Z (v) ⊂ Z (u), then Z (vl) ⊂ Z (uk).



Division by power series in higher dimensions

Theorem (L-M, 2015)

Suppose that v is harmonic, u is real analytic and Z (v) ⊂ Z (u). If
Z (v) ⊂ Z (u), then there exist a real-analytic function f in Ω such
that u = vf .
If u is also harmonic then f satisfies the maximum and minimum
principles.

The proof also implies the estimates

sup
K

Dαf ≤ Cα,K sup
K

f

Thus the Harnack principle for the ratios would imply the gradient
estimate.



Boundary Harnack Principle

Ω

K Γ

Let Ω be a good domain in Rn and
Γ ⊂ ∂Ω. If u, v are positive harmonic in Ω,
u, v ∈ C (Ω ∪ Γ and u|Γ = v |Γ = 0, then

inf
K
|u/v | ≥ C (K ,Ω) sup

K
|u/v |

when K ⊂ Ω ∪ Γ.

Kemper, Ancona, Wu, Aikawa, Bass, Burdzy, Bañuelos, Popovici,
Volberg



Examples in dimension three: bad news

Example 1

Z1 = Z (u) = {x2 + y 2 − 2z2 = 0}, does
there exist a harmonic function v in the
unit ball such that v 6= cu and
Z (v) = Z (u)?

Example 2
Z2 = {x2 − y 2 + z3 − 3x2z = 0}, some sections of Z2:

z = 0z < 0 z > 0

Ω = {x2 − y 2 + z3 − 3x2z > 0} is a very bad domain (violates the
Harnack chain condition)



Examples in higher dimensions: good news (no pictures)

Example 3 (Axially symmetric harmonic functions in R4)

uk(x , x4) =
=(x4 + i |x |)3k

|x |
, x ∈ R3, k ∈ N,

Z (uk) ⊃ Z (u1) , u1 = 3x2
4 − |x |2, and we have local families of

harmonic functions with the same zero set.

Example 4 (A family of harmonic functions in R9)

hk(x1, x2, x3) =
sin(3k |x1|) sin(4k|x2|) sinh(5k |x3|)

|x1||x2||x3|
, x1, x2, x3 ∈ R3,

once again, Z (hk) ⊃ Z (h1) for k ∈ N.



 Lojasiewicz exponent

For any function f , real analytic in B1, with Z (f ) 6= ∅ there exist
constants l , L, γ > 0 depending on f such that

L · d(x ,Z (f )) ≥ |f (x)| ≥ l · d(x ,Z (f ))γ

for any x ∈ B1/2, γ is called the  Lojasiewicz exponent of f .



Main lemma 1

We fix a harmonic function v and assume that supB1/2
|v | = 1, let

u be another harmonic function (varying) with Z (u) = Z (v) = Z .
We denote d(x ,Z ) = δ(x).

Lemma

There exists a constant C = C (v) > 1 such that for any x ∈ B1/4

with v(x) 6= 0 there is x̃ ∈ B1/2 with |x − x̃ | ≤ 3
4δ(x) and

|v(x̃)| ≥ C |v(x)|.

Using this lemma and starting with some x1 ∈ B1/4 we construct a
sequence x1, ..., xm with xm ∈ B1/2 \ B1/4.



First chain

We have 1 ≥ |v(xm)| ≥ Cm|v(x1)|. Using the  Lojasiewiecz
exponent we can also show that δ(xm) > c = c(v).

Now if we consider the values of u along this sequence, we see by
the usual Harnack inequality that

|u(xm)| ≥ qm|u(x1)|.

Then |u(xm)| ≥ |u(x1)||v(x1)|α.

Thus for every x ∈ B1/4 there exists y ∈ B1/2 such that

|u(y)| ≥ |u(x)||v(x)|α, δ(y) > c .



Main lemma 2 and the second chain

Lemma

There exists a constant K > 1 depending on the dimension n only
such that for any function u harmonic in B1 with Z (u) ∩ B1/2 6= ∅
and any x ∈ B1/4 with u(x) 6= 0 and δu(x) < (4K )−1 there exists
a point x̃ for which |x̃ − x | ≤ Kδ(x) and |u(x̃)| ≥ 2|u(x)|.

Suppose that supδ(x)>c,x∈B1/2
|u| = 1 but u(x0) = M >> 1 for

some x0 ∈ B1/8. We construct points xj applying the second
lemma.
For each such xj we can find yj with 1 ≥ |u(yj)| ≥ |u(xj)||v(xj)|α
and |u(xj)| > 2jM.Therefore |v(xj)| ≤ 2−j/αM−1/α and

δ(xj) ≤ CvM−β2−jβ

by the  Lojasiewicz inequality! Contradiction.



Final step

We have the following inequality now

sup
B1/8

|u| ≤ C (v) sup
x∈B1/2,δ(x)>c

|u|.

The estimates for the ratio follow now from the usual Harnack
inequality inside the nodal domains and a simple compactness
argument.


