# Operator-valued $\left(L^{p}, L^{q}\right)$ Fourier multipliers 

Jan Rozendaal, joint work with Mark Veraar (TU Delft)

August 1, 2016

## Table of contents

(1) Introduction
(2) Main result
(3) Proof

4 Applications

## Notation

Fix $d \in \mathbb{N}$ and Banach spaces $X$ and $Y$. Let $m: \mathbb{R}^{d} \rightarrow \mathcal{L}(X, Y)$ be strongly measurable.
The Fourier multiplier operator $T_{m}: \mathcal{S}\left(\mathbb{R}^{d} ; X\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d} ; Y\right)$ associated with $m$ is given by

$$
T_{m}(f):=\mathcal{F}^{-1}(m \mathcal{F}(f)) \quad\left(f \in \mathcal{S}\left(\mathbb{R}^{d} ; X\right)\right)
$$

Under which conditions is $T_{m}: L^{P}\left(\mathbb{R}^{d} ; X\right) \rightarrow L^{q}\left(\mathbb{R}^{d} ; Y\right)$ bounded for $1 \leq p<q \leq \infty$ ?

## Notation

Fix $d \in \mathbb{N}$ and Banach spaces $X$ and $Y$. Let $m: \mathbb{R}^{d} \rightarrow \mathcal{L}(X, Y)$ be strongly measurable.
The Fourier multiplier operator $T_{m}: \mathcal{S}\left(\mathbb{R}^{d} ; X\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d} ; Y\right)$ associated with $m$ is given by

$$
T_{m}(f):=\mathcal{F}^{-1}(m \mathcal{F}(f)) \quad\left(f \in \mathcal{S}\left(\mathbb{R}^{d} ; X\right)\right)
$$

Under which conditions is $T_{m}: L^{p}\left(\mathbb{R}^{d} ; X\right) \rightarrow L^{q}\left(\mathbb{R}^{d} ; Y\right)$ bounded for $1 \leq p<q \leq \infty$ ?

## Scalar case

Let $X=Y=\mathbb{C}$ and $p \leq 2 \leq q$. Suppose that

$$
\sup \left\{\left.|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)}|m(\xi)| \right\rvert\, \xi \in \mathbb{R}^{d}\right\}<\infty
$$

## Scalar case

Let

$$
\begin{aligned}
m_{1}(\xi) & :=|\xi|^{-d\left(\frac{1}{p}-\frac{1}{2}\right)} \\
m_{2}(\xi) & :=|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \\
m_{3}(\xi) & :=|\xi|^{-d\left(\frac{1}{2}-\frac{1}{q}\right)}
\end{aligned}
$$

## Then, using Sobolev embeddings,



## Scalar case

Let

$$
\begin{aligned}
m_{1}(\xi) & :=|\xi|^{-d\left(\frac{1}{p}-\frac{1}{2}\right)} \\
m_{2}(\xi) & :=|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \\
m_{3}(\xi) & :=|\xi|^{-d\left(\frac{1}{2}-\frac{1}{q}\right)}
\end{aligned}
$$

Then, using Sobolev embeddings,

$$
\begin{gathered}
L^{p}\left(\mathbb{R}^{d}\right) \xrightarrow{T_{m_{1}}} \dot{H}_{p}^{d\left(\frac{1}{p}-\frac{1}{2}\right)}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right) \\
{ }^{T_{m}}{ }^{\downarrow}{ }^{\downarrow}{ }^{T_{m_{2}}} \\
\left.\mathbb{R}^{q}\right) \longleftarrow{ }_{T_{m_{3}}} \dot{H}_{q}^{d\left(\frac{1}{2}-\frac{1}{q}\right)}\left(\mathbb{R}^{d}\right) \longleftarrow L^{2}\left(\mathbb{R}^{d}\right)
\end{gathered}
$$

## Banach space case

For general Banach spaces, this approach requires restrictions on $X, Y$ and $m$.
$X$ and $Y$ should be UMD spaces. That is, $\operatorname{sign}(\cdot)$ should be a bounded $L^{2}$-multiplier.
Boundedness on $L^{2}$ uses Mikhlin's Theorem and requires smoothness of $m_{2}$ :

$$
\sup _{\xi \in \mathbb{R}^{d}}|\xi|^{|\alpha|}\left\|m_{2}^{(\alpha)}(\xi)\right\|<\infty
$$

## Today's talk

For $p<q$ other conditions on $X$ and $Y$ can be used, and no smoothness is required of $m$.

## Why might this interest you?

Applications to:

- Stability theory for semigroups;
- functional calculus theory;
- Schur multipliers;
- and more.


## Gaussian sequence

Let $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent complex Gaussian random variables on some probability space $(\Omega, \mathbb{P})$.

## Type and cotype

$X$ has type $p \in[1,2]$ if

$$
\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{X}^{p}\right)^{1 / p} \lesssim\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$.
$X$ has cotype $q \in[2, \infty)$ if

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$.

## Type and cotype

$X$ has type $p \in[1,2]$ if

$$
\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{X}^{p}\right)^{1 / p} \lesssim\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$.
$X$ has cotype $q \in[2, \infty)$ if

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{1 / q} \lesssim\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{X}^{q}\right)^{1 / q}
$$

for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$.

## Type and cotype

Each Banach space has type 1 and cotype $\infty$. $X$ has type 2 and cotype 2 if and only if $X$ is isomorphic to a Hilbert space. For $r \in[1, \infty), L^{r}(\Omega)$ has type $\min (r, 2)$ and cotype $\max (r, 2)$.

## $\gamma$-boundedness

A collection $\mathcal{T} \subseteq \mathcal{L}(X, Y)$ is $\gamma$-bounded if

$$
\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} T_{k} x_{k}\right\|_{Y}^{2}\right)^{1 / 2} \lesssim\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{X}^{2}\right)^{1 / 2}
$$

for all $n \in \mathbb{N}, T_{1}, \ldots, T_{n} \in \mathcal{L}(X, Y)$ and all $x_{1}, \ldots, x_{n} \in X$.
Each $\gamma$-bounded collection is uniformly bounded.
Each uniformly bounded collection $\mathcal{T} \subseteq \mathbb{C} \subseteq \mathcal{L}(X)$ is $\gamma$-bounded.

## $\gamma$-boundedness

A collection $\mathcal{T} \subseteq \mathcal{L}(X, Y)$ is $\gamma$-bounded if

$$
\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} T_{k} x_{k}\right\|_{Y}^{2}\right)^{1 / 2} \lesssim\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{X}^{2}\right)^{1 / 2}
$$

for all $n \in \mathbb{N}, T_{1}, \ldots, T_{n} \in \mathcal{L}(X, Y)$ and all $x_{1}, \ldots, x_{n} \in X$.
Each $\gamma$-bounded collection is uniformly bounded.
Each uniformly bounded collection $\mathcal{T} \subseteq \mathbb{C} \subseteq \mathcal{L}(X)$ is $\gamma$-bounded.

## Theorem

Suppose that $X$ has type $p_{0} \in(1,2]$ and $Y$ cotype $q_{0} \in[2, \infty)$, and let $p \in\left(1, p_{0}\right), q \in\left(q_{0}, \infty\right)$. Suppose that

$$
\left\{\left.|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \right\rvert\, \xi \in \mathbb{R}^{d} \backslash\{0\}\right\} \subseteq \mathcal{L}(X, Y)
$$

is $\gamma$-bounded.
Then $T_{m}: L^{p}\left(\mathbb{R}^{d} ; X\right) \rightarrow L^{q}\left(\mathbb{R}^{d} ; Y\right)$ is bounded.

## Other results

Sharp results hold for Banach lattices and in the Besov scale.
For smoother multipliers the boundedness results extrapolate to all $(p, q)$ with $\frac{1}{p}-\frac{1}{q}$ constant.
Using a transference principle, one obtains results for multipliers on the torus $\mathbb{T}^{d}$.

## $\gamma$-radonifying operators (Kalton, Weis (2002))

Let $H$ be a Hilbert space. Then $\gamma(H, X)$ is the closure of $H \otimes X \subseteq \mathcal{L}(H, X)$ in the norm

$$
\left\|\sum_{k=1}^{n} h_{k} \otimes x_{k}\right\|_{\gamma(H, X)}:=\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_{k} x_{k}\right\|_{x}^{2}\right)^{1 / 2}
$$

for $h_{1}, \ldots, h_{n} \in H$ orthonormal.

## Ideal property

If $R \in \mathcal{L}(X), S \in \gamma(H, X)$ and $T \in \mathcal{L}(H)$ then $R S T \in \gamma(H, X)$ and

$$
\|R S T\|_{\gamma(H, X)} \leq\|R\|_{\mathcal{L}(X)}\|S\|_{\gamma(H, X)}\|T\|_{\mathcal{L}(H)} .
$$

## Square functions

Let $\gamma\left(\mathbb{R}^{d} ; \boldsymbol{X}\right)$ consist of all strongly measurable, weakly $L^{2}$ functions $f: \mathbb{R}^{d} \rightarrow X$ such that

$$
g \mapsto \int_{\mathbb{R}^{d}} g(s) f(s) \mathrm{d} s
$$

is an element of $\gamma\left(L^{2}\left(\mathbb{R}^{d}\right), X\right)$.
If $f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ then $\mathcal{F} f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ and

$$
\|\mathcal{F} f\|_{\gamma}=\|f\|_{\gamma} .
$$

## Square functions

Let $\gamma\left(\mathbb{R}^{d} ; \boldsymbol{X}\right)$ consist of all strongly measurable, weakly $L^{2}$ functions $f: \mathbb{R}^{d} \rightarrow X$ such that

$$
g \mapsto \int_{\mathbb{R}^{d}} g(s) f(s) \mathrm{d} s
$$

is an element of $\gamma\left(L^{2}\left(\mathbb{R}^{d}\right), X\right)$.
If $f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ then $\mathcal{F} f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ and

$$
\|\mathcal{F} f\|_{\gamma}=\|f\|_{\gamma}
$$

## $\gamma$-multiplier theorem

If $\left\{m(s) \mid s \in \mathbb{R}^{d}\right\} \subseteq \mathcal{L}(X, Y)$ is $\gamma$-bounded and $f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ then $m f \in \gamma\left(\mathbb{R}^{d} ; Y\right)$ and

$$
\|m f\|_{\gamma\left(\mathbb{R}^{d} ; \gamma\right)} \leq \gamma\left(\left\{m(s) \mid s \in \mathbb{R}^{d}\right\}\right)\|f\|_{\gamma\left(\mathbb{R}^{d} ; X\right)} .
$$

## Fourier multipliers on $\gamma\left(\mathbb{R}^{d} ; \boldsymbol{X}\right)$

If $\left\{m(s) \mid s \in \mathbb{R}^{d}\right\} \subseteq \mathcal{L}(X, Y)$ is $\gamma$-bounded and $f \in \gamma\left(\mathbb{R}^{d} ; X\right)$ then $\mathcal{F}^{-1}(m \mathcal{F} f) \in \gamma\left(\mathbb{R}^{d} ; Y\right)$ and

$$
\begin{aligned}
\left\|\mathcal{F}^{-1}(m \mathcal{F} f)\right\|_{\gamma\left(\mathbb{R}^{d} ; Y\right)} & =\|m \mathcal{F} f\|_{\gamma\left(\mathbb{R}^{d} ; Y\right)} \\
& \leq \gamma\left(\left\{m(s) \mid s \in \mathbb{R}^{d}\right\}\right)\|\mathcal{F} f\|_{\gamma\left(\mathbb{R}^{d} ; X\right)} \\
& =\gamma\left(\left\{m(s) \mid s \in \mathbb{R}^{d}\right\}\right)\|f\|_{\gamma\left(\mathbb{R}^{d} ; X\right)}
\end{aligned}
$$

## Embeddings

For $s \in \mathbb{R}$ and $p \in[1, \infty]$ let $\dot{H}_{p}^{s}\left(\mathbb{R}^{d} ; X\right)$ consist of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d} ; X\right)$ such that

$$
\mathcal{F}^{-1}\left(|\xi|^{s} \mathcal{F} f(\xi)\right) \in L^{p}\left(\mathbb{R}^{d} ; X\right)
$$

Then

$$
\dot{H}_{p}^{d\left(\frac{1}{p}-\frac{1}{2}\right)}\left(\mathbb{R}^{d} ; X\right) \subseteq \gamma\left(\mathbb{R}^{d} ; X\right)
$$

and

$$
\gamma\left(\mathbb{R}^{d} ; Y\right) \subseteq \dot{H}_{q}^{d\left(\frac{1}{q}-\frac{1}{2}\right)}\left(\mathbb{R}^{d} ; Y\right)
$$

## Embeddings

For $s \in \mathbb{R}$ and $p \in[1, \infty]$ let $\dot{H}_{p}^{s}\left(\mathbb{R}^{d} ; X\right)$ consist of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d} ; X\right)$ such that

$$
\mathcal{F}^{-1}\left(|\xi|^{s} \mathcal{F} f(\xi)\right) \in L^{p}\left(\mathbb{R}^{d} ; X\right)
$$

Then

$$
\dot{H}_{p}^{d\left(\frac{1}{p}-\frac{1}{2}\right)}\left(\mathbb{R}^{d} ; X\right) \subseteq \gamma\left(\mathbb{R}^{d} ; X\right)
$$

and

$$
\gamma\left(\mathbb{R}^{d} ; Y\right) \subseteq \dot{H}_{q}^{d\left(\frac{1}{q}-\frac{1}{2}\right)}\left(\mathbb{R}^{d} ; Y\right)
$$

## Proof

Let

$$
\begin{aligned}
m_{1}(\xi) & :=|\xi|^{-d\left(\frac{1}{p}-\frac{1}{2}\right)} \\
m_{2}(\xi) & :=|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \\
m_{3}(\xi) & :=|\xi|^{-d\left(\frac{1}{2}-\frac{1}{q}\right)}
\end{aligned}
$$

## Then, using $\gamma$-embeddings,



## Proof

Let

$$
\begin{aligned}
& m_{1}(\xi):=|\xi|^{-d\left(\frac{1}{p}-\frac{1}{2}\right)} \\
& m_{2}(\xi):=|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \\
& m_{3}(\xi):=|\xi|^{-d\left(\frac{1}{2}-\frac{1}{q}\right)}
\end{aligned}
$$

Then, using $\gamma$-embeddings,

$$
\begin{aligned}
& L^{p}\left(\mathbb{R}^{d} ; X\right) \xrightarrow{T_{m_{1}}} \dot{H}_{p}^{d\left(\frac{1}{p}-\frac{1}{2}\right)}\left(\mathbb{R}^{d} ; X\right) \longrightarrow \gamma\left(\mathbb{R}^{d} ; X\right)
\end{aligned}
$$

## Theorem

Suppose that $X$ has type $p_{0} \in(1,2]$ and $Y$ cotype $q_{0} \in[2, \infty)$, and let $p \in\left(1, p_{0}\right), q \in\left(q_{0}, \infty\right)$. Suppose that

$$
\left\{\left.|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \right\rvert\, \xi \in \mathbb{R}^{d} \backslash\{0\}\right\} \subseteq \mathcal{L}(X, Y)
$$

is $\gamma$-bounded.
Then $T_{m}: L^{p}\left(\mathbb{R}^{d} ; X\right) \rightarrow L^{q}\left(\mathbb{R}^{d} ; Y\right)$ is bounded and

$$
\left\|T_{m}\right\| \lesssim \gamma\left(\left\{\left.|\xi|^{d\left(\frac{1}{p}-\frac{1}{q}\right)} m(\xi) \right\rvert\, \xi \in \mathbb{R}^{d} \backslash\{0\}\right\}\right) .
$$

## Proof of embeddings

- First prove inclusions for $f$ with compact Fourier support;
- Obtain from this embeddings between vector-valued Besov spaces and $\gamma$-spaces (Kalton, van Neerven, Veraar, Weis (2008));
- Use embeddings between vector-valued Bessel spaces and Besov spaces.


## Stability for semigroups

Let $A$ generate a $C_{0}$-semigroup $(T(t))_{t \geq 0}$ on $X$. Suppose

$$
\sigma(A) \subseteq\{z \in \mathbb{C} \mid \operatorname{Re}(z) \leq-\epsilon\}
$$

for some $\epsilon>0$, with appropriate resolvent bounds.
Let $\alpha \geq 0$. If $(-A)^{-\alpha} R(-\delta+\mathrm{i} \cdot, A)$ is a bounded
$\left(L^{p}(\mathbb{R} ; X), L^{q}(\mathbb{R} ; X)\right)$ Fourier multiplier for some $p, q \in[1, \infty]$ and all $\delta \in(0, \epsilon)$, then $T(t) x=O\left(\mathrm{e}^{-\delta t}\right)$ for all $x \in D\left((-A)^{\alpha}\right)$ and all
$\delta \in(0, \epsilon)$.

## Stability for semigroups

Let $A$ generate a $C_{0}$-semigroup $(T(t))_{t \geq 0}$ on $X$. Suppose

$$
\sigma(A) \subseteq\{z \in \mathbb{C} \mid \operatorname{Re}(z) \leq-\epsilon\}
$$

for some $\epsilon>0$, with appropriate resolvent bounds.
Let $\alpha \geq 0$. If $(-A)^{-\alpha} R(-\delta+\mathrm{i}, A)$ is a bounded $\left(L^{p}(\mathbb{R} ; X), L^{q}(\mathbb{R} ; X)\right)$ Fourier multiplier for some $p, q \in[1, \infty]$ and all $\delta \in(0, \epsilon)$, then $T(t) x=O\left(\mathrm{e}^{-\delta t}\right)$ for all $x \in D\left((-A)^{\alpha}\right)$ and all $\delta \in(0, \epsilon)$.

## Stability for semigroups

## Theorem (van Neerven (2009))

Suppose that $X$ has type $p \in[1,2]$ and cotype $q \in[2, \infty)$ and that $\{R(z, A) \mid \operatorname{Re}(z)>\epsilon\} \subseteq \mathcal{L}(X)$ is $\gamma$-bounded. Then $T(t) x=O\left(\mathrm{e}^{-\delta t}\right)$ for all $x \in D\left((-A)^{\frac{1}{p}-\frac{1}{q}}\right)$ and all $\delta \in(0, \epsilon)$.

## Functional calculus theory

Let $A$ generate a $C_{0}$-group on $X$. For $f$ a bounded holomorphic function on a large enough strip $\mathrm{St}_{\omega}$, define $f(A)$ on $X$ by the holomorphic functional calculus.
Modulo technicalities:
$f(A)$ can be factorized via an $\left(L^{p}(\mathbb{R} ; X), L^{q}(\mathbb{R} ; X)\right)$ Fourier multiplier with symbol $f( \pm \omega+\mathrm{i} \cdot)$, for $p, q \in[1, \infty]$.

## Functional calculus theory

Let $A$ generate a $C_{0}$-group on $X$. For $f$ a bounded holomorphic function on a large enough strip $\mathrm{St}_{\omega}$, define $f(A)$ on $X$ by the holomorphic functional calculus.
Modulo technicalities:
$f(A)$ can be factorized via an $\left(L^{p}(\mathbb{R} ; X), L^{q}(\mathbb{R} ; X)\right)$ Fourier multiplier with symbol $f( \pm \omega+\mathrm{i} \cdot)$, for $p, q \in[1, \infty]$.

## Functional calculus theory

## Theorem

Suppose that $X$ has type $p \in[1,2]$ and cotype $q \in[2, \infty)$. If $f(z)=O\left(|z|^{-\alpha}\right)$ as $|z| \rightarrow \infty$ for $\alpha>\frac{1}{p}-\frac{1}{q}$, then $f(A) \in \mathcal{L}(X)$.

For $s \in(1, \infty) \backslash\{2\}$, let $\mathscr{C}^{s}$ be the Schatten $s$-class of matrices with $s$-summable singular values. Let $m: \mathbb{Z} \rightarrow \mathbb{C}$.

## Theorem

Let $r \in[1, \infty)$ be such that $\frac{1}{r}<\left|\frac{1}{s}-\frac{1}{2}\right|$. Suppose that $\sup _{k \in \mathbb{Z}}\left(1+|k|^{1 / r}\right)\left|m_{k}\right|<\infty$. Then $\left(a_{i j}\right)_{i j} \mapsto\left(m_{i-j} a_{i j}\right)_{i j}$ is a bounded map on $\mathscr{C}^{s}$

For $s \in(1, \infty) \backslash\{2\}$, let $\mathscr{C}^{s}$ be the Schatten s-class of matrices with $s$-summable singular values. Let $m: \mathbb{Z} \rightarrow \mathbb{C}$.

## Theorem

Let $r \in[1, \infty)$ be such that $\frac{1}{r}<\left|\frac{1}{s}-\frac{1}{2}\right|$. Suppose that $\sup _{k \in \mathbb{Z}}\left(1+|k|^{1 / r}\right)\left|m_{k}\right|<\infty$. Then $\left(a_{i j}\right)_{i j} \mapsto\left(m_{i-j} a_{i j}\right)_{i j}$ is a bounded map on $\mathscr{C}^{s}$.

## References

( J. Rozendaal and M. Veraar. Fourier multiplier theorems involving type and cotype, http://arxiv.org/abs/1605.09340.

囯 J. Rozendaal and M. Veraar. Fourier multiplier theorems on Besov spaces using type and cotype, http://arxiv.org/abs/1606.03272.

目 J. Rozendaal. Functional calculus for $C_{0}$-groups using (co)type, http://arxiv.org/abs/1508.02036.

