Operator-valued (L^p, L^q) Fourier multipliers

Jan Rozendaal, joint work with Mark Veraar (TU Delft)

August 1, 2016

Table of contents

- Introduction
- 2 Main result
- 3 Proof
- 4 Applications

Notation

Fix $d \in \mathbb{N}$ and Banach spaces X and Y. Let $m : \mathbb{R}^d \to \mathcal{L}(X, Y)$ be strongly measurable.

The Fourier multiplier operator $T_m: \mathcal{S}(\mathbb{R}^d;X) \to \mathcal{S}'(\mathbb{R}^d;Y)$ associated with m is given by

$$T_m(f) := \mathcal{F}^{-1}(m\mathcal{F}(f)) \qquad (f \in \mathcal{S}(\mathbb{R}^d; X)).$$

Under which conditions is $T_m: L^p(\mathbb{R}^d; X) \to L^q(\mathbb{R}^d; Y)$ bounded for $1 \le p < q \le \infty$?

Notation

Fix $d \in \mathbb{N}$ and Banach spaces X and Y. Let $m : \mathbb{R}^d \to \mathcal{L}(X, Y)$ be strongly measurable.

The Fourier multiplier operator $T_m: \mathcal{S}(\mathbb{R}^d; X) \to \mathcal{S}'(\mathbb{R}^d; Y)$ associated with m is given by

$$T_m(f) := \mathcal{F}^{-1}(m\mathcal{F}(f)) \qquad (f \in \mathcal{S}(\mathbb{R}^d; X)).$$

Under which conditions is $T_m: L^p(\mathbb{R}^d;X) \to L^q(\mathbb{R}^d;Y)$ bounded for $1 \leq p < q \leq \infty$?

Scalar case

Let
$$X=Y=\mathbb{C}$$
 and $p\leq 2\leq q$. Suppose that
$$\sup\{|\xi|^{d(\frac{1}{p}-\frac{1}{q})}|m(\xi)|\mid \xi\in\mathbb{R}^d\}<\infty.$$

Scalar case

Let

$$m_1(\xi) := |\xi|^{-d(\frac{1}{p} - \frac{1}{2})},$$

 $m_2(\xi) := |\xi|^{d(\frac{1}{p} - \frac{1}{q})} m(\xi),$
 $m_3(\xi) := |\xi|^{-d(\frac{1}{2} - \frac{1}{q})}.$

Then, using Sobolev embeddings,

$$L^{p}(\mathbb{R}^{d}) \xrightarrow{T_{m_{1}}} \dot{H}_{p}^{d(\frac{1}{p} - \frac{1}{2})}(\mathbb{R}^{d}) \longrightarrow L^{2}(\mathbb{R}^{d})$$

$$T_{m} \downarrow \qquad \qquad \downarrow T_{m_{2}}$$

$$L^{q}(\mathbb{R}^{d}) \longleftarrow_{T_{m_{2}}} \dot{H}_{q}^{d(\frac{1}{2} - \frac{1}{q})}(\mathbb{R}^{d}) \longleftarrow L^{2}(\mathbb{R}^{d})$$

Scalar case

Let

$$m_1(\xi) := |\xi|^{-d(\frac{1}{p} - \frac{1}{2})},$$

$$m_2(\xi) := |\xi|^{d(\frac{1}{p} - \frac{1}{q})} m(\xi),$$

$$m_3(\xi) := |\xi|^{-d(\frac{1}{2} - \frac{1}{q})}.$$

Then, using Sobolev embeddings,

$$L^{p}(\mathbb{R}^{d}) \xrightarrow{T_{m_{1}}} \dot{H}_{p}^{d(\frac{1}{p}-\frac{1}{2})}(\mathbb{R}^{d}) \longrightarrow L^{2}(\mathbb{R}^{d})$$

$$\downarrow^{T_{m}} \qquad \qquad \downarrow^{T_{m_{2}}}$$

$$L^{q}(\mathbb{R}^{d}) \leftarrow_{T_{m_{3}}} \dot{H}_{q}^{d(\frac{1}{2}-\frac{1}{q})}(\mathbb{R}^{d}) \leftarrow_{L^{2}}(\mathbb{R}^{d})$$

Banach space case

For general Banach spaces, this approach requires restrictions on X, Y and m.

X and Y should be UMD spaces. That is, $sign(\cdot)$ should be a bounded L^2 -multiplier.

Boundedness on L^2 uses Mikhlin's Theorem and requires smoothness of m_2 :

$$\sup_{\xi\in\mathbb{R}^d}|\xi|^{|\alpha|}\|m_2^{(\alpha)}(\xi)\|<\infty.$$

Today's talk

For p < q other conditions on X and Y can be used, and no smoothness is required of m.

Why might this interest you?

Applications to:

- Stability theory for semigroups;
- functional calculus theory;
- Schur multipliers;
- and more.

Gaussian sequence

Let $(\gamma_k)_{k\in\mathbb{N}}$ be a sequence of independent complex Gaussian random variables on some probability space (Ω, \mathbb{P}) .

Type and cotype

X has $type p \in [1, 2]$ if

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_k x_k\right\|_X^{\rho}\right)^{1/\rho} \lesssim \left(\sum_{k=1}^{n} \|x_k\|_X^{\rho}\right)^{1/\rho}$$

for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$.

X has *cotype* $q \in [2, \infty)$ if

$$\left(\sum_{k=1}^{n} \|x_k\|_X^q\right)^{1/q} \lesssim \left(\mathbb{E} \left\|\sum_{k=1}^{n} \gamma_k x_k\right\|_X^q\right)^{1/q}$$

for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$.

Type and cotype

X has $type p \in [1, 2]$ if

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n} \gamma_k x_k\right\|_X^p\right)^{1/p} \lesssim \left(\sum_{k=1}^{n} \|x_k\|_X^p\right)^{1/p}$$

for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$.

X has *cotype* $q \in [2, \infty)$ if

$$\left(\sum_{k=1}^{n} \|x_k\|_X^q\right)^{1/q} \lesssim \left(\mathbb{E} \left\|\sum_{k=1}^{n} \gamma_k x_k\right\|_X^q\right)^{1/q}$$

for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$.

Type and cotype

Each Banach space has type 1 and cotype ∞ . X has type 2 and cotype 2 if and only if X is isomorphic to a Hilbert space. For $r \in [1, \infty)$, $L^r(\Omega)$ has type $\min(r, 2)$ and cotype $\max(r, 2)$.

γ -boundedness

A collection $\mathcal{T} \subseteq \mathcal{L}(X, Y)$ is γ -bounded if

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\gamma_{k}T_{k}x_{k}\right\|_{Y}^{2}\right)^{1/2}\lesssim\left(\mathbb{E}\left\|\sum_{k=1}^{n}\gamma_{k}x_{k}\right\|_{X}^{2}\right)^{1/2}$$

for all $n \in \mathbb{N}$, $T_1, \ldots, T_n \in \mathcal{L}(X, Y)$ and all $x_1, \ldots, x_n \in X$.

Each γ -bounded collection is uniformly bounded.

Each uniformly bounded collection $\mathcal{T} \subseteq \mathbb{C} \subseteq \mathcal{L}(X)$ is γ -bounded.

γ -boundedness

A collection $\mathcal{T} \subseteq \mathcal{L}(X, Y)$ is γ -bounded if

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\gamma_{k}T_{k}x_{k}\right\|_{Y}^{2}\right)^{1/2}\lesssim\left(\mathbb{E}\left\|\sum_{k=1}^{n}\gamma_{k}x_{k}\right\|_{X}^{2}\right)^{1/2}$$

for all $n \in \mathbb{N}$, $T_1, \ldots, T_n \in \mathcal{L}(X, Y)$ and all $x_1, \ldots, x_n \in X$.

Each γ -bounded collection is uniformly bounded.

Each uniformly bounded collection $\mathcal{T} \subseteq \mathbb{C} \subseteq \mathcal{L}(X)$ is γ -bounded.

Theorem

Suppose that X has type $p_0 \in (1,2]$ and Y cotype $q_0 \in [2,\infty)$, and let $p \in (1,p_0)$, $q \in (q_0,\infty)$. Suppose that

$$\{|\xi|^{d(\frac{1}{p}-\frac{1}{q})}m(\xi)\mid \xi\in\mathbb{R}^d\setminus\{0\}\}\subseteq\mathcal{L}(X,Y)$$

is γ -bounded.

Then $T_m: L^p(\mathbb{R}^d; X) \to L^q(\mathbb{R}^d; Y)$ is bounded.

Other results

Sharp results hold for Banach lattices and in the Besov scale.

For smoother multipliers the boundedness results extrapolate to all (p,q) with $\frac{1}{p}-\frac{1}{q}$ constant.

Using a transference principle, one obtains results for multipliers on the torus \mathbb{T}^d .

γ -radonifying operators (Kalton, Weis (2002))

Let H be a Hilbert space. Then $\gamma(H,X)$ is the closure of $H\otimes X\subseteq \mathcal{L}(H,X)$ in the norm

$$\left\| \sum_{k=1}^{n} h_k \otimes x_k \right\|_{\gamma(H,X)} := \left(\mathbb{E} \left\| \sum_{k=1}^{n} \gamma_k x_k \right\|_X^2 \right)^{1/2}$$

for $h_1, \ldots, h_n \in H$ orthonormal.

Ideal property

If
$$R \in \mathcal{L}(X)$$
, $S \in \gamma(H, X)$ and $T \in \mathcal{L}(H)$ then $RST \in \gamma(H, X)$ and
$$\|RST\|_{\gamma(H, X)} \leq \|R\|_{\mathcal{L}(X)} \|S\|_{\gamma(H, X)} \|T\|_{\mathcal{L}(H)}.$$

Square functions

Let $\gamma(\mathbb{R}^d; X)$ consist of all strongly measurable, weakly L^2 functions $f: \mathbb{R}^d \to X$ such that

$$g\mapsto \int_{\mathbb{R}^d}g(s)f(s)\mathrm{d}s$$

is an element of $\gamma(L^2(\mathbb{R}^d), X)$.

If
$$f \in \gamma(\mathbb{R}^d; X)$$
 then $\mathcal{F}f \in \gamma(\mathbb{R}^d; X)$ and

$$\|\mathcal{F}f\|_{\gamma} = \|f\|_{\gamma}.$$

Square functions

Let $\gamma(\mathbb{R}^d; X)$ consist of all strongly measurable, weakly L^2 functions $f: \mathbb{R}^d \to X$ such that

$$g\mapsto \int_{\mathbb{R}^d}g(s)f(s)\mathrm{d}s$$

is an element of $\gamma(L^2(\mathbb{R}^d), X)$. If $f \in \gamma(\mathbb{R}^d; X)$ then $\mathcal{F}f \in \gamma(\mathbb{R}^d; X)$ and

$$\|\mathcal{F}f\|_{\gamma} = \|f\|_{\gamma}.$$

γ -multiplier theorem

If
$$\{m(s) \mid s \in \mathbb{R}^d\} \subseteq \mathcal{L}(X, Y)$$
 is γ -bounded and $f \in \gamma(\mathbb{R}^d; X)$ then $mf \in \gamma(\mathbb{R}^d; Y)$ and
$$\|mf\|_{\gamma(\mathbb{R}^d; Y)} \leq \gamma(\{m(s) \mid s \in \mathbb{R}^d\}) \|f\|_{\gamma(\mathbb{R}^d; X)}.$$

Fourier multipliers on $\gamma(\mathbb{R}^d; X)$

If
$$\{m(s) \mid s \in \mathbb{R}^d\} \subseteq \mathcal{L}(X, Y)$$
 is γ -bounded and $f \in \gamma(\mathbb{R}^d; X)$ then $\mathcal{F}^{-1}(m\mathcal{F}f) \in \gamma(\mathbb{R}^d; Y)$ and
$$\|\mathcal{F}^{-1}(m\mathcal{F}f)\|_{\gamma(\mathbb{R}^d; Y)} = \|m\mathcal{F}f\|_{\gamma(\mathbb{R}^d; Y)}$$
$$\leq \gamma(\{m(s) \mid s \in \mathbb{R}^d\}) \|\mathcal{F}f\|_{\gamma(\mathbb{R}^d; X)}$$
$$= \gamma(\{m(s) \mid s \in \mathbb{R}^d\}) \|f\|_{\gamma(\mathbb{R}^d; X)}.$$

Embeddings

For $s \in \mathbb{R}$ and $p \in [1, \infty]$ let $\dot{H}_p^s(\mathbb{R}^d; X)$ consist of all $f \in \mathcal{S}'(\mathbb{R}^d; X)$ such that

$$\mathcal{F}^{-1}(|\xi|^s\mathcal{F}f(\xi))\in L^p(\mathbb{R}^d;X).$$

Then

$$\dot{H}_{p}^{d(\frac{1}{p}-\frac{1}{2})}(\mathbb{R}^{d};X)\subseteq\gamma(\mathbb{R}^{d};X)$$

and

$$\gamma(\mathbb{R}^d; Y) \subseteq \dot{H}_q^{d(\frac{1}{q} - \frac{1}{2})}(\mathbb{R}^d; Y).$$

Embeddings

For $s \in \mathbb{R}$ and $p \in [1, \infty]$ let $\dot{H}_p^s(\mathbb{R}^d; X)$ consist of all $f \in \mathcal{S}'(\mathbb{R}^d; X)$ such that

$$\mathcal{F}^{-1}(|\xi|^s\mathcal{F}f(\xi))\in L^p(\mathbb{R}^d;X).$$

Then

$$\dot{H}_p^{d(\frac{1}{p}-\frac{1}{2})}(\mathbb{R}^d;X)\subseteq\gamma(\mathbb{R}^d;X)$$

and

$$\gamma(\mathbb{R}^d;Y)\subseteq \dot{H}_q^{d(\frac{1}{q}-\frac{1}{2})}(\mathbb{R}^d;Y).$$

Proof

Let

$$m_1(\xi) := |\xi|^{-d(\frac{1}{p} - \frac{1}{2})},$$

 $m_2(\xi) := |\xi|^{d(\frac{1}{p} - \frac{1}{q})} m(\xi),$
 $m_3(\xi) := |\xi|^{-d(\frac{1}{2} - \frac{1}{q})}.$

Then, using γ -embeddings,

$$L^{p}(\mathbb{R}^{d};X) \stackrel{T_{m_{1}}}{\longrightarrow} \dot{H}_{p}^{d(\frac{1}{p}-\frac{1}{2})}(\mathbb{R}^{d};X) \longrightarrow \gamma(\mathbb{R}^{d};X)$$

$$\downarrow T_{m} \qquad \qquad \downarrow T_{m_{2}}$$

$$L^{q}(\mathbb{R}^{d};Y) \longleftarrow_{T_{m_{3}}} \dot{H}_{q}^{d(\frac{1}{2}-\frac{1}{q})}(\mathbb{R}^{d};Y) \longleftarrow \gamma(\mathbb{R}^{d};Y)$$

Proof

Let

$$m_1(\xi) := |\xi|^{-d(\frac{1}{p} - \frac{1}{2})},$$

 $m_2(\xi) := |\xi|^{d(\frac{1}{p} - \frac{1}{q})} m(\xi),$
 $m_3(\xi) := |\xi|^{-d(\frac{1}{2} - \frac{1}{q})}.$

Then, using γ -embeddings,

$$L^{p}(\mathbb{R}^{d};X) \xrightarrow{T_{m_{1}}} \dot{H}_{p}^{d(\frac{1}{p}-\frac{1}{2})}(\mathbb{R}^{d};X) \longrightarrow \gamma(\mathbb{R}^{d};X)$$

$$\downarrow T_{m} \qquad \qquad \downarrow T_{m_{2}}$$

$$L^{q}(\mathbb{R}^{d};Y) \longleftarrow T_{m_{3}} \dot{H}_{q}^{d(\frac{1}{2}-\frac{1}{q})}(\mathbb{R}^{d};Y) \longleftarrow \gamma(\mathbb{R}^{d};Y)$$

Theorem

Suppose that X has type $p_0 \in (1,2]$ and Y cotype $q_0 \in [2,\infty)$, and let $p \in (1,p_0)$, $q \in (q_0,\infty)$. Suppose that

$$\{|\xi|^{d(\frac{1}{p}-\frac{1}{q})}m(\xi)\mid \xi\in\mathbb{R}^d\setminus\{0\}\}\subseteq\mathcal{L}(X,Y)$$

is γ -bounded.

Then $T_m: L^p(\mathbb{R}^d;X) \to L^q(\mathbb{R}^d;Y)$ is bounded and

$$||T_m|| \lesssim \gamma(\{|\xi|^{d(\frac{1}{p}-\frac{1}{q})}m(\xi) \mid \xi \in \mathbb{R}^d \setminus \{0\}\}).$$

Proof of embeddings

- First prove inclusions for *f* with compact Fourier support;
- Obtain from this embeddings between vector-valued Besov spaces and γ -spaces (Kalton, van Neerven, Veraar, Weis (2008));
- Use embeddings between vector-valued Bessel spaces and Besov spaces.

Stability for semigroups

Let A generate a C_0 -semigroup $(T(t))_{t\geq 0}$ on X. Suppose

$$\sigma(A) \subseteq \{z \in \mathbb{C} \mid \mathsf{Re}(z) \le -\epsilon\}$$

for some $\epsilon > 0$, with appropriate resolvent bounds.

Let $\alpha \geq 0$. If $(-A)^{-\alpha}R(-\delta+\mathrm{i}\cdot,A)$ is a bounded $(L^p(\mathbb{R};X),L^q(\mathbb{R};X))$ Fourier multiplier for some $p,q\in[1,\infty]$ and all $\delta\in(0,\epsilon)$, then $T(t)x=O(\mathrm{e}^{-\delta t})$ for all $x\in D((-A)^\alpha)$ and all $\delta\in(0,\epsilon)$.

Stability for semigroups

Let A generate a C_0 -semigroup $(T(t))_{t\geq 0}$ on X. Suppose

$$\sigma(A) \subseteq \{z \in \mathbb{C} \mid \operatorname{Re}(z) \le -\epsilon\}$$

for some $\epsilon>0$, with appropriate resolvent bounds. Let $\alpha\geq 0$. If $(-A)^{-\alpha}R(-\delta+\mathrm{i}\cdot,A)$ is a bounded $(L^p(\mathbb{R};X),L^q(\mathbb{R};X))$ Fourier multiplier for some $p,q\in[1,\infty]$ and all $\delta\in(0,\epsilon)$, then $T(t)x=O(\mathrm{e}^{-\delta t})$ for all $x\in D((-A)^\alpha)$ and all $\delta\in(0,\epsilon)$.

Stability for semigroups

Theorem (van Neerven (2009))

Suppose that X has type $p \in [1,2]$ and cotype $q \in [2,\infty)$ and that $\{R(z,A) \mid \text{Re}(z) > \epsilon\} \subseteq \mathcal{L}(X)$ is γ -bounded. Then $T(t)x = O(\mathrm{e}^{-\delta t})$ for all $x \in D((-A)^{\frac{1}{p}-\frac{1}{q}})$ and all $\delta \in (0,\epsilon)$.

Functional calculus theory

Let A generate a C_0 -group on X. For f a bounded holomorphic function on a large enough strip $\operatorname{St}_{\omega}$, define f(A) on X by the holomorphic functional calculus.

Modulo technicalities:

f(A) can be factorized via an $(L^p(\mathbb{R};X),L^q(\mathbb{R};X))$ Fourier multiplier with symbol $f(\pm\omega+\mathrm{i}\cdot)$, for $p,q\in[1,\infty]$.

Functional calculus theory

Let A generate a C_0 -group on X. For f a bounded holomorphic function on a large enough strip $\operatorname{St}_{\omega}$, define f(A) on X by the holomorphic functional calculus.

Modulo technicalities:

f(A) can be factorized via an $(L^p(\mathbb{R};X),L^q(\mathbb{R};X))$ Fourier multiplier with symbol $f(\pm\omega+\mathrm{i}\cdot)$, for $p,q\in[1,\infty]$.

Functional calculus theory

Theorem

Suppose that X has type $p \in [1,2]$ and cotype $q \in [2,\infty)$. If $f(z) = O(|z|^{-\alpha})$ as $|z| \to \infty$ for $\alpha > \frac{1}{p} - \frac{1}{q}$, then $f(A) \in \mathcal{L}(X)$.

For $s \in (1, \infty) \setminus \{2\}$, let \mathscr{C}^s be the Schatten *s*-class of matrices with *s*-summable singular values. Let $m : \mathbb{Z} \to \mathbb{C}$.

Theorem

Let $r \in [1, \infty)$ be such that $\frac{1}{r} < |\frac{1}{s} - \frac{1}{2}|$. Suppose that $\sup_{k \in \mathbb{Z}} (1 + |k|^{1/r}) |m_k| < \infty$. Then $(a_{ij})_{ij} \mapsto (m_{i-j}a_{ij})_{ij}$ is a bounded map on \mathscr{C}^s .

For $s \in (1, \infty) \setminus \{2\}$, let \mathscr{C}^s be the Schatten s-class of matrices with s-summable singular values. Let $m : \mathbb{Z} \to \mathbb{C}$.

Theorem

Let $r \in [1, \infty)$ be such that $\frac{1}{r} < |\frac{1}{s} - \frac{1}{2}|$. Suppose that $\sup_{k \in \mathbb{Z}} (1 + |k|^{1/r}) |m_k| < \infty$. Then $(a_{ij})_{ij} \mapsto (m_{i-j}a_{ij})_{ij}$ is a bounded map on \mathscr{C}^s .

References

J. Rozendaal and M. Veraar. Fourier multiplier theorems on Besov spaces using type and cotype, http://arxiv.org/abs/1606.03272.

J. Rozendaal. Functional calculus for C₀-groups using (co)type, http://arxiv.org/abs/1508.02036.