The Riesz transform, quantitative rectifiability, and a two-phase problem for harmonic measure

Xavier Tolsa

<u>*icrea</u> UAB

3 August 2016

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure

3 August 2016 1 / 19

Let μ be a Borel measure in \mathbb{R}^d . Example: the Hausdorff measure \mathcal{H}_F^n , where $\mathcal{H}^n(E) < \infty$.

Let μ be a Borel measure in \mathbb{R}^d . Example: the Hausdorff measure \mathcal{H}_F^n , where $\mathcal{H}^n(E) < \infty$.

In \mathbb{R}^d , the *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\epsilon \searrow 0} \mathcal{R}_{\mu,\epsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

Let μ be a Borel measure in \mathbb{R}^d . Example: the Hausdorff measure \mathcal{H}^n_E , where $\mathcal{H}^n(E) < \infty$.

In \mathbb{R}^d , the *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\epsilon \searrow 0} \mathcal{R}_{\mu,\epsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} rac{x-y}{|x-y|^{n+1}} f(y) \, d\mu(y).$$

In \mathbb{C} , the Cauchy transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{C}_{\mu}f(z) = \lim_{\varepsilon \searrow 0} \mathcal{C}_{\mu,\varepsilon}f(z)$, where

$$\mathcal{C}_{\mu,\varepsilon}f(z) = \int_{|z-\xi|>\varepsilon} \frac{f(\xi)}{z-\xi} d\mu(\xi).$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 2 / 19

Let μ be a Borel measure in \mathbb{R}^d . Example: the Hausdorff measure \mathcal{H}^n_E , where $\mathcal{H}^n(E) < \infty$.

In \mathbb{R}^d , the *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\epsilon \searrow 0} \mathcal{R}_{\mu,\epsilon}f(x)$, where

$$\mathcal{R}_{\mu,arepsilon}f(x)=\int_{|x-y|>arepsilon}rac{x-y}{|x-y|^{n+1}}f(y)\,d\mu(y).$$

In \mathbb{C} , the Cauchy transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{C}_{\mu}f(z) = \lim_{\varepsilon \searrow 0} \mathcal{C}_{\mu,\varepsilon}f(z)$, where

$$\mathcal{C}_{\mu,\varepsilon}f(z) = \int_{|z-\xi|>\varepsilon} rac{f(\xi)}{z-\xi} \, d\mu(\xi).$$

The existence of principal values is not guarantied, in general.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016

2 / 19

We say that \mathcal{R}_{μ} is bounded in $L^{2}(\mu)$ if the operators $\mathcal{R}_{\mu,\varepsilon}$ are bounded in $L^{2}(\mu)$ uniformly on $\varepsilon > 0$.

We say that \mathcal{R}_{μ} is bounded in $L^{2}(\mu)$ if the operators $\mathcal{R}_{\mu,\varepsilon}$ are bounded in $L^{2}(\mu)$ uniformly on $\varepsilon > 0$. Analogously for \mathcal{C}_{μ} .

We say that \mathcal{R}_{μ} is bounded in $L^{2}(\mu)$ if the operators $\mathcal{R}_{\mu,\varepsilon}$ are bounded in $L^{2}(\mu)$ uniformly on $\varepsilon > 0$. Analogously for \mathcal{C}_{μ} .

We also denote

$$\mathcal{R}\mu = \mathcal{R}_{\mu}\mathbf{1}, \qquad \mathcal{C}\mu = \mathcal{C}_{\mu}\mathbf{1}.$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016

3 / 19

Rectifiability

We say that *E* is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

Rectifiability

We say that *E* is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

Question: Let $E \subset \mathbb{R}^d$ with $\mathcal{H}^n(E) < \infty$, and $\mu = \mathcal{H}^n_E$. If $\mathcal{R}_\mu : L^2(\mu) \to L^2(\mu)$ is bounded, is then *E n*-rectifiable?

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 4 / 19

The Cauchy transform, curvature, and rectifiability

Theorem (David, Léger, 1998) Let $E \subset \mathbb{C}$ with $\mathcal{H}^1(E) < \infty$, and $\mu = \mathcal{H}^1_E$. If \mathcal{C}_{μ} is bounded in $L^2(\mu)$, then E is rectifiable.

5 / 19

The Cauchy transform, curvature, and rectifiability

Theorem (David, Léger, 1998)

Let $E \subset \mathbb{C}$ with $\mathcal{H}^1(E) < \infty$, and $\mu = \mathcal{H}^1_E$. If \mathcal{C}_{μ} is bounded in $L^2(\mu)$, then E is rectifiable.

• It involves ideas from quantitative rectifiability which go back to the Jones' traveling salesman theorem.

The Cauchy transform, curvature, and rectifiability

Theorem (David, Léger, 1998) Let $E \subset \mathbb{C}$ with $\mathcal{H}^1(E) < \infty$, and $\mu = \mathcal{H}^1_E$. If \mathcal{C}_{μ} is bounded in $L^2(\mu)$, then E is rectifiable.

 The proof relies on the relationship between Menger curvature and the Cauchy kernel, found by Melnikov.

The curvature of μ is

$$c^2(\mu) := \iiint rac{1}{R(x,y,z)^2} d\mu(x) d\mu(y) d\mu(z).$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure

The David - Léger theorem

Melnikov (1995) found that:

$$\frac{1}{R(z_1, z_2, z_3)^2} = \sum_{s \in S_3} \frac{1}{(z_{s_2} - z_{s_1})\overline{(z_{s_3} - z_{s_1})}}.$$

Melnikov and Verdera (1995): If $\mu(B(z,r)) \leq c r$ for all $z \in \mathbb{C}$, r > 0, then

$$\|\mathcal{C}_{\mu}1\|_{L^{2}(\mu)}^{2} = \frac{1}{6}c^{2}(\mu) + O(\mu(\mathbb{C})).$$

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 6 / 19

The David - Léger theorem

Melnikov (1995) found that:

$$\frac{1}{R(z_1, z_2, z_3)^2} = \sum_{s \in S_3} \frac{1}{(z_{s_2} - z_{s_1})(z_{s_3} - z_{s_1})}.$$

Melnikov and Verdera (1995): If $\mu(B(z, r)) \leq c r$ for all $z \in \mathbb{C}$, r > 0, then

$$\|\mathcal{C}_{\mu}1\|_{L^{2}(\mu)}^{2} = \frac{1}{6}c^{2}(\mu) + O(\mu(\mathbb{C})).$$

The preceding theorem of David and Léger follows from the next one: Theorem (David, Léger) If $\mathcal{H}^1(E) < \infty$ and $c^2(\mathcal{H}^1_{|E}) < \infty$, then E is rectifiable.

X. Tolsa (ICREA / UAB)

The quantitative David - Léger theorem on curvature

In fact, the following quantitative version holds:

The quantitative David - Léger theorem on curvature

In fact, the following quantitative version holds:

Theorem (David, Léger)

Let μ be a Radon measure in \mathbb{R}^2 such that $\mu(B(x,r)) \leq C_0 r$ for all x, r. Let $B \subset \mathbb{R}^2$ be a ball such that $C_0^{-1}r(B) \leq \mu(B) \leq C_0r(B)$. If

$$c^2(\mu|_B) \leq arepsilon \, \mu(B)$$
 for some $arepsilon > 0$ small enough,

then there exists a (possibly rotated) Lipschitz graph Γ with slope $\leq 1/10$ such that

$$\mu(\Gamma \cap B) \geq \frac{99}{100}\,\mu(B).$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 7 / 19

The quantitative David - Léger theorem on curvature

In fact, the following quantitative version holds:

Theorem (David, Léger)

Let μ be a Radon measure in \mathbb{R}^2 such that $\mu(B(x,r)) \leq C_0 r$ for all x, r. Let $B \subset \mathbb{R}^2$ be a ball such that $C_0^{-1}r(B) \leq \mu(B) \leq C_0r(B)$. If

$$c^2(\mu|_B) \leq arepsilon\,\mu(B)$$
 for some $arepsilon > 0$ small enough,

then there exists a (possibly rotated) Lipschitz graph Γ with slope $\leq 1/10$ such that

$$\mu(\Gamma \cap B) \geq \frac{99}{100}\,\mu(B).$$

 We are interested in finding a version of this result valid in higher dimensions replacing curvature by "the L²(μ) norm of Rμ".

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 7 / 19

Theorem (Nazarov, T., Volberg, 2012) Let $E \subset \mathbb{R}^{n+1}$ with $\mathcal{H}^n(E) < \infty$, and $\mu = \mathcal{H}^n_E$. If $\mathcal{R}_\mu : L^2(\mu) \to L^2(\mu)$ is bounded, then E n-rectifiable.

Theorem (Nazarov, T., Volberg, 2012) Let $E \subset \mathbb{R}^{n+1}$ with $\mathcal{H}^n(E) < \infty$, and $\mu = \mathcal{H}^n_E$. If $\mathcal{R}_\mu : L^2(\mu) \to L^2(\mu)$ is bounded, then E n-rectifiable.

• The proof only works in codimension 1. In \mathbb{R}^d , for 1 < n < d - 1, the result is open.

Theorem (Nazarov, T., Volberg, 2012) Let $E \subset \mathbb{R}^{n+1}$ with $\mathcal{H}^n(E) < \infty$, and $\mu = \mathcal{H}^n_E$. If $\mathcal{R}_\mu : L^2(\mu) \to L^2(\mu)$ is bounded, then E n-rectifiable.

- The proof only works in codimension 1. In \mathbb{R}^d , for 1 < n < d 1, the result is open.
- In the case that μ is AD-regular, i.e.,

$$\mu(B(x, r)) \approx r^n$$
 for all $x \in \operatorname{supp} \mu$, $0 < r \le \operatorname{diam}(E)$,

it follows that E is uniformly *n*-rectifiable.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 8 / 19

Theorem (Nazarov, T., Volberg, 2012) Let $E \subset \mathbb{R}^{n+1}$ with $\mathcal{H}^n(E) < \infty$, and $\mu = \mathcal{H}^n_E$. If $\mathcal{R}_\mu : L^2(\mu) \to L^2(\mu)$ is bounded, then E n-rectifiable.

- The proof only works in codimension 1. In \mathbb{R}^d , for 1 < n < d 1, the result is open.
- In the case that μ is AD-regular, i.e.,

 $\mu(B(x, r)) \approx r^n$ for all $x \in \operatorname{supp} \mu$, $0 < r \le \operatorname{diam}(E)$,

it follows that E is uniformly *n*-rectifiable.

• A previous case solved by Hofmann, Martell, Mayboroda: For $\mu = \mathcal{H}^n|_{\partial\Omega}$, where Ω is a uniform domain, using harmonic measure.

Uniform rectifiability

Let $E \subset \mathbb{R}^d$. *E* is uniformly *n*-rectifiable if it is AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \leq \text{diam}(E)$, there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \to \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 9 / 19

Uniform rectifiability

Let $E \subset \mathbb{R}^d$. *E* is uniformly *n*-rectifiable if it is AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \leq \text{diam}(E)$, there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \to \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

Uniform *n*-rectifiability is a quantitative version of *n*-rectifiability introduced by David and Semmes.

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 9 / 19

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

10 / 19

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform. Recall:

Theorem (David, Léger)

Let μ be a Radon measure in \mathbb{R}^2 such that $\mu(B(x,r)) \leq C_0 r$ for all x, r. Let $B \subset \mathbb{R}^2$ such that $C_0^{-1}r(B) \leq \mu(B) \leq C_0r(B)$. If

 $c^2(\mu|_B) \leq \varepsilon \, \mu(B)$ for some $\varepsilon > 0$ small enough,

then there exists a (possibly rotated) Lipschitz graph Γ with slope $\leq 1/10$ such that

$$\mu(\Gamma \cap B) \geq rac{99}{100}\,\mu(B).$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 10 / 19

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

Let μ be a Radon measure on \mathbb{R}^{n+1} and $B \subset \mathbb{R}^{n+1}$ a ball satisfying:

(a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

- (a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.
- (b) $\mu(B(x,r)) \leq C_0 r^n$ for all x, r.

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

- (a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.
- (b) $\mu(B(x,r)) \leq C_0 r^n$ for all x, r.
- (c) There is some n-plane L passing through the center of B such that for some $0 < \delta \ll 1$, it holds $\beta_{\mu,1}^{L}(B) \leq \delta$.

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

- (a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.
- (b) $\mu(B(x,r)) \leq C_0 r^n$ for all x, r.
- (c) There is some n-plane L passing through the center of B such that for some $0 < \delta \ll 1$, it holds $\beta_{\mu,1}^{L}(B) \leq \delta$.
- (d) $\mathcal{R}_{\mu|_B}$ is bounded in $L^2(\mu|_B)$.

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

Let μ be a Radon measure on \mathbb{R}^{n+1} and $B \subset \mathbb{R}^{n+1}$ a ball satisfying:

(a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.

(b)
$$\mu(B(x,r)) \leq C_0 r^n$$
 for all x, r .

- (c) There is some n-plane L passing through the center of B such that for some $0 < \delta \ll 1$, it holds $\beta_{\mu,1}^{L}(B) \leq \delta$.
- (d) $\mathcal{R}_{\mu|_B}$ is bounded in $L^2(\mu|_B)$.

(e) For some
$$0 < \varepsilon \ll 1$$
, $\int_{B} |\mathcal{R}\mu(x) - m_{\mu,B}(\mathcal{R}\mu)|^2 d\mu(x) \le \varepsilon \mu(B)$.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 10 / 19

Up to now there was not any result analogous to the quantitative David-Léger theorem valid for the Riesz transform.

Theorem (Girela-Sarrión, T.)

Let μ be a Radon measure on \mathbb{R}^{n+1} and $B \subset \mathbb{R}^{n+1}$ a ball satisfying:

(a) For some $C_0 > 0$, $C_0^{-1}r(B)^n \le \mu(B) \le C_0 r(B)^n$.

(b)
$$\mu(B(x,r)) \leq C_0 r^n$$
 for all x, r .

(c) There is some n-plane L passing through the center of B such that for some $0 < \delta \ll 1$, it holds $\beta_{\mu,1}^{L}(B) \leq \delta$.

(d)
$$\mathcal{R}_{\mu|_B}$$
 is bounded in $L^2(\mu|_B)$.

(e) For some
$$0 < \varepsilon \ll 1$$
, $\int_{B} |\mathcal{R}\mu(x) - m_{\mu,B}(\mathcal{R}\mu)|^2 d\mu(x) \le \varepsilon \mu(B)$.

Then there exists some $\tau > 0$ such that if δ, ε are small enough, then there is a uniformly n-rectifiable set $\Gamma \subset \mathbb{R}^{n+1}$ such that

$$\mu(B\cap \Gamma) \geq \tau \ \mu(B).$$

X. Tolsa (ICREA / UAB)

Remarks

• We have denoted

$$\beta_{\mu,1}^L(B) = \frac{1}{r(B)^n} \int_B \frac{\operatorname{dist}(x,L)}{r(B)} \, d\mu(x).$$

11 / 19

Remarks

• We have denoted

$$\beta_{\mu,1}^L(B) = \frac{1}{r(B)^n} \int_B \frac{\operatorname{dist}(x,L)}{r(B)} \, d\mu(x).$$

• We don't know if the theorem holds without assuming $\beta_{\mu,1}^{L}(B) \leq \delta$.

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 11 / 19

Remarks

• We have denoted

$$\beta_{\mu,1}^L(B) = \frac{1}{r(B)^n} \int_B \frac{\operatorname{dist}(x,L)}{r(B)} \, d\mu(x).$$

We don't know if the theorem holds without assuming β^L_{μ,1}(B) ≤ δ.
It is not natural to assume

$$\int |\mathcal{R}\mu(x)|^2 \, d\mu(x) \leq arepsilon \, \|\mu\|$$

instead of (e).

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 11 / 19

1. Let *LD* be the union of the cubes in *B* with low density, and assume *B* is a cube. We show first that $\mu(LD)$ is small.

12 / 19

- 1. Let *LD* be the union of the cubes in *B* with low density, and assume *B* is a cube. We show first that $\mu(LD)$ is small.
- 2. Approximate μ on B by an AD-regular measure and apply:

Theorem (Nazarov, T., Volberg)

Let $E \subset \mathbb{R}^{n+1}$ be AD-regular, and let $\mu = \mathcal{H}_E^n$. Then: \mathcal{R}_{μ} is bounded in $L^2(\mu) \iff E$ is uniformly n-rectifiable.

- 1. Let *LD* be the union of the cubes in *B* with low density, and assume *B* is a cube. We show first that $\mu(LD)$ is small.
- 2. Approximate μ on B by an AD-regular measure and apply:

Theorem (Nazarov, T., Volberg)

Let $E \subset \mathbb{R}^{n+1}$ be AD-regular, and let $\mu = \mathcal{H}_E^n$. Then: \mathcal{R}_{μ} is bounded in $L^2(\mu) \iff E$ is uniformly n-rectifiable.

- 3. For the step 1.:
 - We approximate μ by a periodic measure ν .

- 1. Let *LD* be the union of the cubes in *B* with low density, and assume *B* is a cube. We show first that $\mu(LD)$ is small.
- 2. Approximate μ on B by an AD-regular measure and apply:

Theorem (Nazarov, T., Volberg)

Let $E \subset \mathbb{R}^{n+1}$ be AD-regular, and let $\mu = \mathcal{H}_E^n$. Then: \mathcal{R}_{μ} is bounded in $L^2(\mu) \iff E$ is uniformly n-rectifiable.

- 3. For the step 1.:
 - We approximate μ by a periodic measure ν .
 - We apply a variational argument (inspired by Eiderman, Nazarov, Volberg), by taking a minimizer of:

$$F(b) = c \, \|b\|_{\infty} \, \nu(B) + \int_{B} |\mathcal{R}_{\nu} b|^2 \, b \, d\nu,$$

with $b \in L^{\infty}(\nu)$, periodic, such that $\nu(B) = \int_{B} b \, d\nu$. Applying a maximum principle we get a contradiction if $\nu(LD)$ is big.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open and connected.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p.

 $\Omega \subset \mathbb{R}^{n+1}$ open and connected.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p.

That is, for $E \subset \partial \Omega$, $\omega^p(E)$ is the value at p of the harmonic extension of χ_E to Ω .

13 / 19

 $\Omega \subset \mathbb{R}^{n+1}$ open and connected.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p.

That is, for $E \subset \partial \Omega$, $\omega^p(E)$ is the value at p of the harmonic extension of χ_E to Ω .

Question:

When $\mathcal{H}^n \approx \omega^p$? Which is the connection with rectifiability?

 $\Omega \subset \mathbb{R}^{n+1}$ open and connected.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p. That is, for $E \subset \partial \Omega$, $\omega^p(E)$ is the value at p of the harmonic extension of

 χ_E to Ω .

Question:

When $\mathcal{H}^n \approx \omega^p$? Which is the connection with rectifiability?

- In the plane if Ω is simply connected and $\mathcal{H}^1(\partial\Omega) < \infty$, then $\mathcal{H}^n \approx \omega^p$. (F.& M. Riesz)
- Many classical results in $\mathbb C$ using complex analysis.
- In higher dimension, real analysis techniques. Connection with uniform rectifiability studied recently by Hofmann, Martell, Uriarte-Tuero, Mayboroda, Badger, Bortz, Akman, etc.

Let $\mathcal{E}(x)$ the fundamental solution of the Laplacian in \mathbb{R}^{n+1} :

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

Let $\mathcal{E}(x)$ the fundamental solution of the Laplacian in \mathbb{R}^{n+1} :

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \,\nabla \mathcal{E}(x).$$

Let $\mathcal{E}(x)$ the fundamental solution of the Laplacian in \mathbb{R}^{n+1} :

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \,\nabla \mathcal{E}(x).$$

The Green function $G(\cdot, \cdot)$ of Ω is

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y).$$

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 14 / 19

Let $\mathcal{E}(x)$ the fundamental solution of the Laplacian in \mathbb{R}^{n+1} :

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \,\nabla \mathcal{E}(x).$$

The Green function $G(\cdot, \cdot)$ of Ω is

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y).$$

Therefore, for $x \in \Omega$:

$$c \nabla_x G(x,p) = K(x-p) - \int K(x-y) d\omega^p(y).$$

 $\mathcal{R}\omega^p(x) = K(x-p) - c \nabla_x G(x,p).$

X. Tolsa (ICREA / UAB)

That is.

Riesz transform, rectifiability, and harmonic measure

Harmonic measure and rectifiability

By using the Nazarov-T.-Volberg theorem on Riesz transforms and rectifiability, we get a converse to the the F.&M. Riesz theorem:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain. Suppose that there exists $E \subset \partial \Omega$ with $0 < \mathcal{H}^n(E) < \infty$. If $\omega|_E \approx \mathcal{H}^n|_E$, then E is n-rectifiable.

- Proof by [Azzam, Mourgoglou, T.]
 + [Hofmann, Martell, Mayboroda, T., Volberg].
- It solves a question posed by Bishop in the 1990's.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 15 / 19

Application to a two-phase problem

We say that $\Omega \subset \mathbb{R}^{n+1}$ satisfies the CDC if

 $\mathcal{H}^{s}_{\infty}(\Omega^{c} \cap B(x,r)) \approx r^{s} \quad \text{for all } x \in \partial \Omega \text{ and } 0 < r \leq r_{0}, \qquad (1)$

for some fixed $s \in (n-1, n+1)$, $r_0 > 0$.

Application to a two-phase problem

We say that $\Omega \subset \mathbb{R}^{n+1}$ satisfies the CDC if

 $\mathcal{H}^s_\infty(\Omega^c \cap B(x,r)) pprox r^s \quad ext{ for all } x \in \partial \Omega ext{ and } 0 < r \leq r_0,$ (1)

for some fixed $s \in (n - 1, n + 1)$, $r_0 > 0$.

Theorem (Azzam, Mourgoglou, T.)

Let $\Omega_1 \subset \mathbb{R}^{n+1}$ and $\Omega_2 = ext(\Omega_1)$ be disjoint connected domains satisfying (1), with $\partial \Omega_1 = \partial \Omega_2$, with harmonic measures ω^1, ω^2 . Let $E \subseteq \partial \Omega_1 \cap \partial \Omega_2$ be such that $\omega^1 \ll \omega^2 \ll \omega^1$ on E.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 16 / 19

Application to a two-phase problem

We say that $\Omega \subset \mathbb{R}^{n+1}$ satisfies the CDC if

 $\mathcal{H}^s_\infty(\Omega^c \cap B(x,r)) pprox r^s$ for all $x \in \partial \Omega$ and $0 < r \le r_0$, (1)

for some fixed $s \in (n-1, n+1)$, $r_0 > 0$.

Theorem (Azzam, Mourgoglou, T.)

Let $\Omega_1 \subset \mathbb{R}^{n+1}$ and $\Omega_2 = ext(\Omega_1)$ be disjoint connected domains satisfying (1), with $\partial \Omega_1 = \partial \Omega_2$, with harmonic measures ω^1, ω^2 . Let $E \subseteq \partial \Omega_1 \cap \partial \Omega_2$ be such that $\omega^1 \ll \omega^2 \ll \omega^1$ on E. Then E contains an n-rectifiable subset F with $\omega^1(E \setminus F) = \omega^2(E \setminus F) = 0$ on which $\omega^1 \ll \omega^2 \ll \mathcal{H}^n \ll \omega^1$.

X. Tolsa (ICREA / UAB)

Remarks

• The NTA domains of Jerison and Kenig satisfy the CDC (1). Also the simply connected domains in the plane.

Remarks

- The NTA domains of Jerison and Kenig satisfy the CDC (1). Also the simply connected domains in the plane.
- Up to now, the theorem was only known when Ω_1 , Ω_2 are planar domains by Bishop. Previous case of Jordan domains by Bishop, Carleson, Garnett, Jones.

Remarks

- The NTA domains of Jerison and Kenig satisfy the CDC (1). Also the simply connected domains in the plane.
- Up to now, the theorem was only known when Ω_1 , Ω_2 are planar domains by Bishop. Previous case of Jordan domains by Bishop, Carleson, Garnett, Jones.
- A partial result in higher dimensions by Kenig, Preiss and Toro: harmonic measure is concentrated in a subset of dimension *n*.

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 17 / 19

Main steps of the proof

• By a blow up argument inspired by Kenig-Preiss-Toro, it follows that all tangent measures in *E* are flat.

Main steps of the proof

- By a blow up argument inspired by Kenig-Preiss-Toro, it follows that all tangent measures in *E* are flat.
- By a monotonicity formula of Alt-Caffarelli-Friedman, for ω^1 -a.e. $x \in E$,

$$rac{\omega^1(B(x,r))}{r^n}\lesssim 1$$
 for all $0< r\leq r_0(x).$

X. Tolsa (ICREA / UAB) Riesz transform, rectifiability, and harmonic measure 3 August 2016 18 / 19

Main steps of the proof

- By a blow up argument inspired by Kenig-Preiss-Toro, it follows that all tangent measures in *E* are flat.
- By a monotonicity formula of Alt-Caffarelli-Friedman, for ω^1 -a.e. $x \in E$, $\omega^1(B(x,r)) \leq 1 - \xi = 0$

$$\frac{\sigma^{r}(B(x,r))}{r^{n}} \lesssim 1 \quad \text{ for all } 0 < r \le r_{0}(x).$$

To show that ω¹ ≈ Hⁿ on E we apply the Girela-Sarrión - T theorem with μ = ω¹|_G, for suitable subsets G ⊂ E, and we deduce that ω¹ ≈ Hⁿ on E.

X. Tolsa (ICREA / UAB)

Thank you. Happy birthday Sasha!

X. Tolsa (ICREA / UAB)

Riesz transform, rectifiability, and harmonic measure 3 August 2016 19 / 19