## Sum rules and Killip-Simon problem

Peter Yuditskii

Harmonic analysis, complex analysis, spectral theory and all that

Bedlewo, August 2016

## On generalized sum rules for Jacobi matrices

Peter Yuditskii

Operator theory and applications in mathematical physics

Bedlewo, July 2004

 $\Sigma = \{ \sigma \text{ is compactly supp. prob. measure on } \mathbb{R}, \ \# \text{supp}(\sigma) = \infty \}$ 

 $\Sigma = \{ \sigma \text{ is compactly supp. prob. measure on } \mathbb{R}, \ \# \text{supp}(\sigma) = \infty \}$  Let  $\{ P_n \}$  be orthonormal polynomials w.r.t.  $\sigma$ .

 $\Sigma = \{ \sigma \text{ is compactly supp. prob. measure on } \mathbb{R}, \ \# \text{supp}(\sigma) = \infty \}$ 

Let  $\{P_n\}$  be orthonormal polynomials w.r.t.  $\sigma$ .

Well known three term recurrence relation

$$x P_n(x) = a(n)P_{n-1}(x) + b(n)P_n(x) + a(n+1)P_{n+1}(x), \quad x \cdot L_{\sigma}^2 \to L_{\sigma}^2.$$

 $\Sigma = \{ \sigma \text{ is compactly supp. prob. measure on } \mathbb{R}, \ \# \text{supp}(\sigma) = \infty \}$ 

Let  $\{P_n\}$  be orthonormal polynomials w.r.t.  $\sigma$ .

Well known three term recurrence relation

$$x P_n(x) = a(n)P_{n-1}(x) + b(n)P_n(x) + a(n+1)P_{n+1}(x), \quad x \cdot L_{\sigma}^2 \to L_{\sigma}^2.$$

Jacobi matrix:

Let

$$\mathcal{J} = \{J_+ - \text{Jacobi matrix} : ||J_+|| < \infty, \ a(n) > 0\}$$

 $\Sigma = \{ \sigma \text{ is compactly supp. prob. measure on } \mathbb{R}, \ \# \text{supp}(\sigma) = \infty \}$ 

Let  $\{P_n\}$  be orthonormal polynomials w.r.t.  $\sigma$ .

Well known three term recurrence relation

$$x P_n(x) = a(n)P_{n-1}(x) + b(n)P_n(x) + a(n+1)P_{n+1}(x), \quad x \cdot L^2_{\sigma} \to L^2_{\sigma}.$$

Jacobi matrix:

Let

$$\mathcal{J} = \{J_+ - \text{Jacobi matrix} : ||J_+|| < \infty, \ a(n) > 0\}$$

## Spectral Theorem

We have one-to-one correspondence between  $\Sigma$  and  $\mathcal{J}$ ,  $\sigma \mapsto J_+$ .

3 / 18

#### General Problem

Find correspondence between subclasses of  $\mathcal J$  and  $\Sigma$ . Which properties of  $\sigma$  are responsible for this or that properties of  $J_+$  and vice versa?



T. Tao and Ch. Thiele, Nonlinear Fourier Analysis.

Using this allusion

## Killip-Simon Theorem [Annals, 2003]:

 $\ell^2$  perturbation of the matrix with constant coefficients

Let

$$\overset{\circ}{J}_{+} = egin{bmatrix} 0 & 1 & & & & \\ 1 & 0 & 1 & & & \\ & \ddots & \ddots & \ddots & \end{bmatrix}, \quad J_{+} = egin{bmatrix} b(0) & a(1) & & & \\ a(1) & b(1) & a(2) & & & \\ & \ddots & \ddots & \ddots & \end{bmatrix}.$$

Then

$$(\text{op-c}) \quad \sum (a(n)-1)^2 < \infty, \quad \sum b(n)^2 < \infty.$$

if and only if support of  $\sigma$  is  $E \cup X$ , E = [-2, 2],  $X = \{x_k\}$ , and

$$(\text{sp-c}) \quad \int_E |\log \sigma_{a.c.}'(x)| \sqrt{4-x^2} dx < \infty, \quad \sum_X \sqrt{(x_k^2-4)^3} < \infty.$$

#### Remarks:

1. **Von Neumann Theorem**. For an arbitrary self-adjoint A there exists B of the Hilbert-Schmidt class,  $B \in HS$ , such that  $\sigma_{a.c.}(A + B) = \emptyset$ .

Since 
$$\int_E |\log \sigma'_{a.c.}(x)| \sqrt{4-x^2} dx < \infty$$
, we get 
$$\sigma'_{a.c.} \neq 0 \text{ a.e. on } [-2,2],$$

although  $J_+ - \overset{\circ}{J}_+ \in \mathit{HS}$  (an arbitrary Jacobi matrix of the class).

- Proved by Deift and Killip in 1999 (Comm. Math. Phys.)
- 2. Actually Killip and Simon proved "Parseval's identity" for this "non-linear Fourier transform" (**sum rule**).

# Nazarov, Peherstorfer, Volberg, Yuditskii [IMNR, 2005]: sum rules in a very general form

Let for a nonnegative polynomial A(x)

$$\Lambda_{A}(\sigma) = \sum_{X} F(x_{k}) + \frac{1}{2\pi} \int_{-2}^{2} \log \left( \frac{\sqrt{4 - x^{2}}}{2\pi \sigma'_{a.c.}(x)} \right) A(x) \sqrt{4 - x^{2}} dx,$$

$$F(x) = \begin{cases} \int_{2}^{x} A(x) \sqrt{x^{2} - 4} dx, & x > 2\\ -\int_{-2}^{x} A(x) \sqrt{x^{2} - 4} dx, & x < -2 \end{cases}$$

**Theorem**.  $\Lambda_A(\sigma) < \infty$  if and only if the "naive trace" of

$$\Phi(J_+) - \Phi(\overset{\circ}{J}_+) - \operatorname{diag}\{a \log a(m)\}$$

is finite, where

$$\Phi'(z) = zA(z) - \frac{1}{\pi} \int_{-2}^{2} \frac{A(x) - A(z)}{x - z} \sqrt{4 - x^{2}} dx, \ \ a = \frac{1}{\pi} \int_{-2}^{2} A(x) \sqrt{4 - x^{2}} dx$$

#### Remarks.

- 1. This generalization has sense only if A(x) has zeros on E = [-2, 2].
- 2. Nobody knows what the "trace condition" means in terms of  $\{a(n), b(n)\}$  except for a few special cases.
- 3. The method is absolutely restricted to the case of perturbations with the "constant background".
- 4. An extremely interesting probabilistic interpretation via the Large Deviations Principle (LDP).



## Gamboa, Nagel, Rouault, JFA, 2016.

Distribution on the set of random matrices

$$\frac{1}{Z_{\Phi}^{n}}e^{-n\beta'\sum_{k=1}^{n}\Phi(\lambda_{k})}\prod_{1\leq i< j\leq n}|\lambda_{i}-\lambda_{j}|^{\beta}d\lambda_{1}\cdots d\lambda_{n}\quad (*)$$

can be reduced to the distribution on (finite dimensional) Jacobi matrices  $J^{(n)}$  (proportional to):

$$e^{-n\beta'\left[\operatorname{tr}\Phi(J^{(n)})-2\sum_{k=1}^{n-1}(1-\frac{k}{n}-\frac{1}{n\beta})\log a(k)
ight]}$$

or in terms of measures  $\sigma(\lambda_k) = \sigma_k$ : (\*) plus

$$\frac{1}{Y_{\beta'}^n}(\sigma_1\cdots\sigma_n)^{\beta'-1}, \quad \sum \sigma_k=1.$$

Thus, for a fixed n we have the **probability** written in the **two coordinate systems** (spectral and coefficients).

**Definition.** We say that a sequence  $(\mathcal{P}_n)_n$  of probability measures on  $(U, \mathcal{F})$  satisfies (LDP) with speed  $\tau_n$  and rate function  $\mathcal{I}: U \to [0, \infty]$  if:

- (i)  $\mathcal{I}$  is lower semicontinuous.
- (ii) For all closed set  $F \subset U$ :

$$\limsup_{n\to\infty}\frac{1}{\tau_n}\log\mathcal{P}_n(F)\leq -\inf_{x\in F}\mathcal{I}(x)$$

(iii) For all open sets  $O \subset U$ :

$$\liminf_{n\to\infty}\frac{1}{\tau_n}\log\mathcal{P}_n(O)\geq -\inf_{x\in O}\mathcal{I}(x)$$

#### **GNR** Theorem

The sum rule identity reflects the fact that (LDP) holds (with speed  $\beta' n^2$ ) and we can write the *rate function*  $\mathcal{I}$  either in the spectral  $(\sigma)$  or the coefficient sequences  $(J_+)$  "coordinates".

# Damanik-Killip-Simon Theorem [Annals, 2010]: periodic background

In the periodic case, a(k + N) = a(k), b(k + N) = b(k), it is natural and very convenient consider two sided Jacobi matrices

Isospectral set:

$$J(E) = \{ \overset{\circ}{J} : \sigma(\overset{\circ}{J}) = E \}.$$

#### Two facts:

1. E is the spectral set of a periodic Jacobi matrix if and only if

$$\exists T_N : E = T_N^{(-1)}([-2,2]) \text{ (in } \mathbb{C}).$$

2. For the given E there exist two special functions  $\mathcal{A}(\alpha)$  and  $\mathcal{B}(\alpha)$  on

 $\mathbb{T}^{\mathbf{g}}\simeq\mathbb{R}^{\mathbf{g}}/\mathbb{Z}^{\mathbf{g}}$  and  $\mu\in\mathbb{R}^{\mathbf{g}}/\mathbb{Z}^{\mathbf{g}}$ ,  $\mathit{N}\mu=\mathsf{0}_{\mathbb{R}^{\mathbf{g}}/\mathbb{Z}^{\mathbf{g}}}$ , s.t.

$$J(E) = \{ J(\alpha) : \alpha \in \mathbb{R}^g / \mathbb{Z}^g \}$$

where the coefficients of  $J(\alpha)$  are of the form

$$a_{\alpha}(n) = \mathcal{A}(\alpha - n\mu), \ b_{\alpha}(n) = \mathcal{B}(\alpha - n\mu)$$

So, usually we say J(E) is an isospectral torus.

4D + 4A + 4B + B + 990

Non-degenerated case g = N, also

$$E = T_g^{(-1)}([-2,2]) = [\mathbf{b}_0, \mathbf{a}_0] \setminus \cup_{j=1}^g (\mathbf{a}_j, \mathbf{b}_j).$$

### **DKS** spectral condition:

 $\sigma$  is supported on  $E \cup X$ ,  $X = \{x_k\}$ , and

$$(\text{p-sp-c}) \ \int_E |\log \sigma'_{a.c.}(x)| \mathrm{dist}(x,\mathbb{R}\setminus E)^{1/2} dx < \infty, \ \sum_X \mathrm{dist}(x_k,E)^{3/2} < \infty.$$

Non-degenerated case g = N, also

$$E = T_g^{(-1)}([-2,2]) = [\mathbf{b}_0, \mathbf{a}_0] \setminus \bigcup_{j=1}^g (\mathbf{a}_j, \mathbf{b}_j).$$

### **DKS** spectral condition:

 $\sigma$  is supported on  $E \cup X$ ,  $X = \{x_k\}$ , and

$$(\text{p-sp-c}) \ \int_E |\log \sigma'_{a.c.}(x)| \mathrm{dist}(x,\mathbb{R}\setminus E)^{1/2} dx < \infty, \ \sum_X \mathrm{dist}(x_k,E)^{3/2} < \infty.$$

Compere to

(sp-c) 
$$\int_{E} |\log \sigma'_{a.c.}(x)| \sqrt{4-x^2} dx < \infty, \quad \sum_{X} (x_k^2-4)^{3/2} < \infty,$$

for E = [-2, 2].

#### In terms of coefficients:

Let

$$\begin{split} \operatorname{dist}^2(J_+^{(1)},J_+^{(2)}) &:= \sum_{n \in \mathbb{Z}_+} \{(a_n^{(1)} - a_n^{(2)})^2 + (b_n^{(1)} - b_n^{(2)})^2\} 2^{-n} \\ \operatorname{dist}(J_+,J(E)) &:= \inf_{\stackrel{\circ}{J} \in J(E)} \operatorname{dist}(J_+,\stackrel{\circ}{J}_+) \end{split}$$

#### **Theorem**

The spectral condition (p-sp-c) is equivalent to

$$(\text{p-op-c}) \quad \sum_{m \in \mathbb{Z}^+} \operatorname{dist}^2((S_+^m)^* J_+ S_+^m, J(E)) < \infty.$$

## Main result

Let  $E = [\mathbf{b}_0, \mathbf{a}_0] \setminus \cup_{j=1}^g (\mathbf{a}_j, \mathbf{b}_j)$  be an arbitrary system of intervals.

## Finite gap Jacobi matrices:

[Akhiezer, Novikov, Dubrovin, Its, Matveev, Krichever, Aptekarev,.....]

$$J(E) = \{ \overset{\circ}{J} \text{ is almost periodic} : \sigma(\overset{\circ}{J}) = \sigma_{a.c.}(\overset{\circ}{J}) = E \}$$

Still we have an isospectral torus: for the given E there exist two special functions  $\mathcal{A}(\alpha)$  and  $\mathcal{B}(\alpha)$  on  $\mathbb{R}^g/\mathbb{Z}^g$  and  $\mu \in \mathbb{R}^g/\mathbb{Z}^g$ , s.t.

$$J(E) = \{ J(\alpha) : \alpha \in \mathbb{R}^g / \mathbb{Z}^g \}$$

where the coefficients of  $J(\alpha)$  are of the form

$$\overset{\circ}{\mathsf{a}}(\mathsf{n}) = \mathcal{A}(\alpha - \mathsf{n}\mu), \ \overset{\circ}{\mathsf{b}}(\mathsf{n}) = \mathcal{B}(\alpha - \mathsf{n}\mu)$$



**Definition** (copy and paste (p-sp-c)).  $J_+ \in KS(E)$  if  $\sigma(J_+) = E \cup X$  and

$$(\text{f.g.-sp-c}) \ \int_E |\log \sigma'(x)| \mathrm{dist}^{1/2}(x,\mathbb{R}\setminus E) dx + \sum_{x_k \in X} \mathrm{dist}^{3/2}(x_k,E) < \infty.$$

#### Theorem

 $J_+$  belongs to KS(E) if and only if there exist  $\epsilon_{\alpha}(n) \in \ell_+^2(\mathbb{R}^g)$  and  $\epsilon_a(n) \in \ell_+^2$ ,  $\epsilon_b(n) \in \ell_+^2$  such that

$$a(n) = \mathcal{A}(\alpha(n) - n\mu) + \epsilon_a(n), \quad \alpha(n) = \sum_{k=0}^n \epsilon_\alpha(k)$$
  
$$b(n) = \mathcal{B}(\alpha(n) - n\mu) + \epsilon_b(n),$$

## Two words about the method

1. DKS was based on the Magic Formula:  $E = T_g^{-1}([-2,2])$ 

$$\overset{\circ}{J} \in J(E) \Leftrightarrow T_g(\overset{\circ}{J}) = S^{g+1} + S^{-(g+1)}$$

and reduction to the block-matrix Jacobi matrix with constant coefficients

$$T_g(J_+) - (S_+^{g+1} + (S_+^*)^{g+1}) \in HS.$$

2. For an arbitrary E there exists a unique

$$\Delta(x) = \lambda_0 x + \mathbf{c}_0 + \sum_{j=1}^g \frac{\lambda_j}{\mathbf{c}_j - x}, \ \lambda_j > 0,$$

such that

$$E = \Delta^{-1}([-2,2])$$

3. Orthogonalization of the family w.r.t.  $\sigma$ 

$$1, \frac{1}{\mathbf{c}_g - x}, \dots, \frac{1}{\mathbf{c}_1 - x}, x, \frac{1}{(\mathbf{c}_g - x)^2}, \dots, \frac{1}{(\mathbf{c}_1 - x)^2}, \dots$$

generates **GMP** matrices  $A_{+}$ .

4. Magic formula for them

$$\overset{\circ}{A} \in A(E) \Leftrightarrow \Delta(\overset{\circ}{A}) = S^{g+1} + S^{-(g+1)}$$

5. Back to Jacobi via Jacobi flow on GMP matrices (a new integrable system)