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m Study principal circle bundles and the associated Gysin sequence.
m Line bundles and the associated bundle construction.
m Recipe to compute the K-theory groups

Also has applications in mathematical physics (T-duality, Chern-Simons

theories).
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Motivation
The classical Gysin sequence for circle bundles

The classical Gysin sequence in K-theory for circle bundles has the form of a

cyclic six term exact sequence:

KO(X) —2— KO(X) ——— K°(P)

sr0] [s0n (1)

KY(P) «+—— K'(X) «—— K'(X)

where « is the mutiliplication by the Euler class

x(L) =111 (2)

of the line bundle L — X with associated circle bundle 7 : P — X.
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Pimsner algebras

Pimsner algebras and circle bundles
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Pimsner algebras
Noncommutative line bundles

Definition
A self Morita equivalence bimodule (SMEB) over B is a pair (E, ¢) where E is
a full right Hilbert C*-module over B and

¢: B — K(E)
is an isomorphism.

Example: A= C(X) and E = I'(£) the module of sections of a Hermitian line
bundle £ — X.

Self Morita equivalences over B form a group named the Picard group of B,
denoted Pic(B).
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Pimsner algebras
Pimsner algebras

Universal C*-algebras constructed out of a C*-correspondence. Defined in

terms of creation and annihilation operators on the module

Fe ::B@@E®"

n>1

Quotient in a short exact sequence:

0 —— K(Fe) Te — O¢ 0. (3)

Generalise: Cuntz and Cuntz-Krieger algebras, Graph algebras, crossed

products by Z, crossed products by a partial automorphism.
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Pimsner algebras

Pimsner algebras

In the case of a self-Morita equivalence bimodule the Pismer algebras can be

represented on the module

Fez=EPE"

nEZ

where E®" = (E*)®" for n > 0, as the smallest C*-algebra generated by

creation and annihilation operators thereon.
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Pimsner algebras
Pimsner algebras

For a SMEB (more generally for any f.g.p. module): realisation in terms of
generators and relations.

Let {ni}i_; be a finite frame for E, i.e.
€= mn,&s,  VEEE.
j=1

Then Ok is the universal C*-algebra generated by B together with n operators
Si1,...,S,, satisfying

SiSp = (mi,mj)e Z S5 =1, and bS= Z,- Si(ni, #(b)nj) e,

forbeB,andj=1,...,n
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Pimsner algebras
The gauge action

We have a circle action v on O called the gauge action.

This is defined on generators by
v.Si=2zS5, VYi=1,...,n

We denote by OF the fixed point for this action.

We have a natural Of-valued conditional expectation.

o) = [ (e ®)

Proposition

E is a self-Morita equivalence bimodule if and only if O} ~ B.
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Pimsner algebras
Pimsner algebras from circle actions

Let A be a C*-algebra with an action {o.},cs1.

For each n € Z, one can define the spectral subspaces
Am ={6€A|0(6)=2"¢ forallze S'}.
It is easy to check that AE*,,) = A(—n) and that A Aim) € A(nsm).-

Theorem ([AKL16])

Suppose that the circle action {o,} satisfies
AnAn) = Ae) = AwAQ)-

Then the Pimsner algebra Ony, is isomorphic to A.
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Pimsner algebras

Connection with commutative principal circle bundes

Proposition (Gabriel-Grensing)
Let A be a unital, commutative C"-algebra. Suppose that the first spectral
subspace E = A1) generates A as a C"-algebra, and that it is finitely generated
projective over B = A(q).
Then the following facts hold

B = C(X) for some compact space X;

B E =T (L) for some line bundle L — X;

A = C(P), where P — X is the principal S* bundle over X associated to

the line bundle L.
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Gysin Sequences

Gysin Sequences
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Gysin Sequences
Pimsner’s exact sequences

[Pim97]: The defining extension is semi-split. Hence it induces six term
exact sequences in KK-theory.
These simplify by using:

m The class of the correspondence E € KK(B, B);

m The class of the Morita equivalence [Fg] € KK(Kg(FE), B);

m The class of the KK-equivalence [a] ™! € KK(Tg, B), which is the inverse

to the class of the inclusion o : B — TEg.

These satisfy:
[Fel @6 (1 - [E]) = []] @7 [o] "

Radboud University Nijmegen
10 /29
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Gysin Sequences
Pimsner’s exact sequences

Let [ext] be the class of the defining extension and
[0] := [ext] ®x(F) [Fe] € KK1(Ok, B) the class of the product.

For C = C we get exact sequences in K-theory

L[l Ko(B) j—*> KO(OE)

and in K-homology

KO(B) ﬁ KO(B) — KO(OE)
_ I

l[a} [a]T . (5)
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Gysin Sequences
About the connecting homomorphism

In the case of a self-Morita equivalence bimodule, the conditional expectation p
defines a B-valued inner product on Ok.

We denote the completion with =g.

Then the generator of the circle action, i.e the the number operator, defines an
unbounded self-adjoint regular operator D on =g.

Well defined unbounded Kasparov module (Og, =g, D)

The connecting homomorphism is realised as a Kasparov product with the class

[(Og,Z5, D)] € KK (OE, B).
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Gysin Sequences
Summing up

m In the case of SMEBs, the Pimsner algebra can be thought of as a
noncommutative associated circle bundle construction.

m The corresponding six-term exact can be interpreted as a Gysin sequence
in K-theory and K-homology for the ‘line bundle’ E over the
‘noncommutative base space’ B.

m Multiplication by the Euler class is replaced with the Kasparov product
with 1 — [E].
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Mapping cones

@ Mapping cone exact sequences for Pimsner algebras
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Mapping cones
Some contingent evidence

Aim: ccompare the Gysin exact sequences with the exact sequences associated

to the mapping cone of the inclusion B — Ok.

Jx

0 SO M(B, Og) —> B ——0, (6)

where ev(f) = £(0) and j(g ® b)(t) = g(t)b.

Ko(B) oy Ko(SOk) LG Ki(M) (7)

evi T iev*

Ko (M) <T K1(SOk) <T Ki(B)
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Mapping cones
Looking for the missing map

We use the identification Bott : Kj(Og) — Kj+1(SOg) to define a map
J8 : Ki(Og) — Kiz1(M) given by j. o Bott.

We now compare the six term exact sequences induced by the mapping cone of

the inclusion with the Gysin six term exact sequences

.B B
s KO(OE) L> K1(M) A K1(B) s Kl(OE) L) e o

bk

" Ko(OF) —2 = Ki(B) — = Ki(B) —== Ky(Op) — 2= -

(8)
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Mapping cones
KK is a triangulated category

Meyer & Nest ([MR06]): the KK category is a triangulated category, whose
exact triangles are mapping cone triangles with isomorphisms given by
KK-equivalence (cf. [MRO6]). Indeed, for every semisplit extension with
quotient map 7, one has an isomorphism of triangles where all vertical arrows
are KK-equivalences.

The KK-equivalence between B and T¢ and the natural Morita equivalence
between B and K(Fg), together with the axioms of a triangulated category
which imply that the mapping cone of B — Of is unique up to a

(non-canonical) isomorphism in KK.
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Mapping cones
An explicit isomorphism

The operator D in the extension class has discrete spectrum and commutes
with the left action of B, hence we have 1 o [(Of,=5, D)] = 0.

There is a class [5] € KK(M(B, Ok), B) such that jB*[B] = [(Og, =5, D)].
An explicit unbounded representative for the class [5] provided by the main

result of [CPR10]. One obtains commutativity of

- — Ko(OF) _, Ki(M) —> ... (9)
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Mapping cones
Commutative of the right diagrams

Js evy L

—— Ki(M) ——= Ki(B) —— ... (10)
1-[E] Ly
LK

m We use the characterisation of the K-theory group Ko(M) due to Putnam.

m For any v € K.(M), we need to evaluate the product
[v] ®og [5] ®g ([Idkk(s,8)] — [E])- Our strategy is to use [CPR10], to find
that the latter product is given by an index.

m This works for i = 0. For i = 1 we have to adapt the argument to

suspended algebras.
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Mapping cones

Main result

Theorem (A.-Rennie 16)

Let (Og, =g, D) be the unbounded representative of the defining extension and
(M(B, Ok), éB, 5) the lift to the mapping cone.
Then

- ®wu(s.00) (M(B,OF), 25, D)] : K.(M(B, OF)) = K-(B)

is an isomorphism that makes diagrams in K-theory commute.

If furthermore the algebra B belongs to the Bootstrap class, the Kasparov
product with the class [(M(B, Ok), =g, D)] € KK(M(B, Of), Og) is a
KK-equivalence.
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Mapping cones

Main result

m The result is valid for more general bimodules: bi-Hilbertian bimodules of

finite Jones-Watatani index, satisfying some additional assumption.

m Relies on results by Goffeng, Mesland, Rennie ([GMR15]) on unbounded
representatives for the extension class.

m In order to deal with suspensions we generalised their construction to
nonunital C*-algebras.
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Weighted lens spaces

H Computing the K-theory of weighted lens spaces
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Weighted lens spaces

The C*-algebra of the odd-dimensional quantum sphere C(Sg"“) is the

universal C*-algebra generated by n+ 1 elements {z}i=o,...,» and relations:
zizi=q ‘zz 0<i<j<n,
7' zj = qzz] 77,

[z2,22] =0,  [z,2]=(1-¢°) > zz  i=0,...,n—1,

j=i+1

and a sphere relation:
* * *
z0zg + 2121 + ...+ 2zhz, = 1.

This C*-algebra can be realised as a graph C*-algebra.
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Weighted lens spaces

Let m = (mo, ..., m,) any weight vector.
Weighted circle action on C(Sg”“), whose fixed point algebra is the algebra of

functions on the weighted projective spaces C(WP"(m)):

0’2“(2,‘) = fmiZ1 f c Tl. (11)

Brzezinski-Szymanski (BS16): let m be a weight vector such that there exists
0 <j < n—1 with m; coprime with m,. Then there exists an exact sequence

of C*-algebras
0 K@mn - C(an(m)) —_— C(WPZ_I(mn)) —=> 07 (12)

where m, denotes the weight vector (mo, ..., m,_1).
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Weighted lens spaces

Let E denote the Hilbert C*-module given by the first spectral subspace for the

weighted circle action on C(S2™1).
The Pimsner algebra over B = C(WP") for the module E€9 is the C*-algebra

of the quantum lens space, i.e.

Orsy C(Ltzvnﬂ(d - N;m))

Free action (principal circle bundle) for N =TT/, m;.
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Weighted lens spaces

For any separable C*-algebra C, Pimsner exact sequences:

Kko(C. C(WEL(m))) " Lkko(C, C(WE(m))) —> KKo(C, C(Lq(d)))

KK (C, C(Lo(d)) = KKa(C, C(WEY(m))) =< KKa(C, CWEG(m))

and

KKo(C(WEI(m)), €F S ko C(WES(m)), €) < KKo(C(La(d)), €)

KK1(C(Lq(d)), C€) —— KKi(C(WP3(m)), C) —> KKi(C(WP3(m)), C)
i B[S
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Weighted lens spaces

Proposition ([BS16, Corollary 3.2])

Let m be a weight vector with the property that for each j > 1 there exists
i < j such that gcd(mj, m;) = 1. Then the K-theory groups of the quantum

weighted projective spaces are given by

Ko(C(WPI(m)) = ZME5= ™ K (C(WPS(m)) = 0.

Proposition

Let m be a weight vector satisfying the assumptions of Proposition 5.1,

M :=my +---+ m,. Then the C'-algebra C(WP"(m)) is KK-equivalent to
cHM.
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Weighted lens spaces

Let [/] € KK(CM*, C(WP}(m))) and [N] € KK(C(WPj(m)),C") implement

the KK-equivalence between C"™* and C(WPj(m)), i.e.

[ ®cewenmy) [M] = Lekemsz emiay,  [N] @cmia [1] = Lk(cwen(my), cowpamy))-

(13)
Simplify the exact sequences (24) and (24):
M1 M+1
KKi(C,C")~ @ K'(C) and KK;(C",C) @ Ki(C), i=0,1.
k=0
Replace [E] by the class
[1] @ cowenim)) [E] @cemengmy [M] € KK(CMHE, CMH). (14)
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Weighted lens spaces

The six term exact sequence in (24) becomes

_Ad
BMITKO(C) ——> BMETKO(C) — KKo(C, C(Lo(d)))

| |

KK1(C. C(Lo(d))) =—— M5 KH(C) =——— @5 K} (C)

while, denoting with A* the transpose of A, the six term exact sequence in (24)

becomes

B 5 Ko(C) o ML Ko(C) <—— KKo(C(Lg(d)), C)

1—
\L M+1 =AY m ﬁ
KK1(C(Lq(d)), C) —— @M K1 (C) ——— = @5 K1 (C)
Where A € Matpy1(Z) is the map implementing the tensor product with [E].
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Weighted lens spaces

For C = C, using the fact that Ki(WPj(m)) = K*(WPj(m) = 0, we obtain

exact sequences

0= Ki (C(Ly(d)) — zM+1 1AL g Ko(C(Ly(d)) —>0
and
0 <—— K'(C(Lq(d))) Mt e A K°(C(Lq(d))) =——0 .

Computation of the K-theory and K-homology groups of the quantum lens

spaces.
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Weighted lens spaces

Theorem

Let m be a weight vector satisfying the assumptions of Proposition 5.1. Then

for any d € N we have that
Ko(C(Lq(d))) =~ Coker(1 — A?), Ki(C(Lq(d))) ~ Ker(1 — A?)

and

K (C(Lq(dlk; k, 1)) =~ Ker(1—(A")),  K'(C(Lq(d))) ~ Coker(1—(A")7).

It remains an open problem to describe the precise relationship of our matrix A
with the matrix used in [BS16] to compute the K-theory of quantum lens

spaces.
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Conclusions

Summing up

m Pimsner algebras for SMEBs are the analogue of associated circle bundles.

m We made the relationship between Pimsner's exact sequences and

mapping cone exact sequences explicit.

m We showed how Pimsner's exact sequences allow us to compute the
K-theory and K-homology of quantum lens spaces using a different

Cuntz-Pimsner model.
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Conclusions
Summing up
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