Topology and K-theory of noncommutative weighted projective spaces

Tomasz Brzeziński

Swansea University
Uniwersytet w Białymstoku

Simons Semester Workshop, Warsaw 2016
Reference:

- TB \& W Szymański, The C^{*}-algebras of quantum lens and weighted projective spaces, arXiv:1603:04678

Main objectives

- To identify the algebras of continuous functions on quantum weighted projective and lens spaces as graph C^{*}-algebras.
- To use the above identification to compute the K-theory of these spaces in cases that have not been computed yet.

Graph C^{*}-algebras and their K-theory

- A directed graph $G=\left(G^{0}, G^{1}, \varrho, \sigma\right)$ consists of two sets G^{0} and G^{1} and two mappings $\varrho, \sigma: G^{1} \rightarrow G^{0}$.
- $C^{*}(G)$ is the universal C^{*}-algebra generated by
- mutually orthogonal projections $P_{v}, v \in G^{0}$,
- partial isometries $S_{e}, e \in G^{1}$,
subject to the following relations, for all $e \neq f \in G^{1}$ and all $v \in G^{0}$ emitting a finite number of edges,

$$
\begin{gathered}
S_{e}^{*} S_{f}=0, \quad S_{e}^{*} S_{e}=P_{\varrho(e)}, \quad S_{e} S_{e}^{*} \leq P_{\sigma(e)} \\
P_{v}=\sum_{e \in G^{1}: \sigma(e)=v} S_{e} S_{e}^{*}
\end{gathered}
$$

Graph C^{*}-algebras and their K-theory

- Set:

$$
V_{G}:=\left\{v \in G^{0} \mid v \text { emits a finite non-zero \# of edges }\right\} .
$$

- Define:

$$
\Phi: \mathbb{Z} V_{G} \longrightarrow \mathbb{Z} G^{0}, \quad v \longmapsto \sum_{e \in G^{1}, \sigma(e)=v} \varrho(e)-v
$$

- Then:

$$
K^{0}\left(C^{*}(G)\right)=\operatorname{coker} \Phi, \quad K^{1}\left(C^{*}(G)\right)=\operatorname{ker} \Phi
$$

The circle group actions on quantum spheres

- $C\left(S_{q}^{2 n+1}\right)$ is the universal C^{*}-algebra with generators $z_{0}, z_{1}, \ldots, z_{n}$, subject to the following relations:

$$
\begin{aligned}
& z_{i} z_{j}=q z_{j} z_{i} \quad \text { for } i<j, \quad z_{i} z_{j}^{*}=q z_{j}^{*} z_{i} \quad \text { for } i \neq j, \\
& z_{i} z_{i}^{*}=z_{i}^{*} z_{i}+\left(q^{-2}-1\right) \sum_{j=i+1}^{n} z_{j} z_{j}^{*}, \quad \sum_{j=0}^{n} z_{j} z_{j}^{*}=1,
\end{aligned}
$$

where $q \in(0,1)$.

- Fix a sequence of positive integers $\mathrm{m}:=m_{0}, \ldots, m_{n}$.
- $C\left(S_{q}^{2 n+1}\right)$ admits the circle group action ϱ_{m},

$$
\varrho_{\mathrm{m}}: z_{i} \mapsto \xi^{m_{i}} z_{i}, \quad i=0, \ldots, n,
$$

where ξ is the unitary generator of \mathbb{T} (of infinite order).

Quantum weighted projective and lens spaces

- Continuous functions on the q weighted projective space $C\left(\mathbb{W P}_{q}^{n}(\mathrm{~m})\right) \equiv$ fixed points of the \mathbb{T}-action ϱ_{m}.
- Continuous functions on the quantum lens space $C\left(L_{q}^{2 n+1}(N ; m)\right) \equiv$ all the elements $\sum_{i} x_{i}$ of $C\left(S_{q}^{2 n+1}\right)$ that transform according to the rule

$$
\sum_{i} x_{i} \mapsto \sum_{i} \xi^{r_{i} N} x_{i}, \quad r_{i} \in \mathbb{Z}
$$

- Equivalently, $C\left(L_{q}^{2 n+1}(N ; m)\right) \equiv$ fixed points of the \mathbb{Z}_{N}-action on $C\left(L_{q}^{2 n+1}(N ; m)\right)$,

$$
\varrho_{\mathrm{m}}^{N}: z_{i} \mapsto \zeta^{m_{i}} z_{i},
$$

where ζ is a generator of \mathbb{Z}_{N}.

Quantum weighted projective vs lens spaces

- The action ϱ_{m} gives rise to the \mathbb{T}-action ϱ_{m} on $C\left(L_{q}^{2 n+1}(N ; m)\right)$ with fixed points being again $C\left(\mathbb{W P}_{q}^{n}(m)\right)$: an element $x \in C\left(L_{q}^{2 n+1}(N ; m)\right)$ transforms under $\hat{\varrho}_{m}$ as $x \mapsto \xi^{r} x$ provided it transforms as $x \mapsto \xi^{r N} x$ under ϱ_{m}.

What has been known?

Special cases:

- [Hong-Szymański '03] $\operatorname{gcd}\left(m_{i}, N\right)=1$:
$C\left(L_{q}^{2 n+1}(N ; m)\right)$ are graph C^{*}-algebras,

$$
K_{1}\left(C\left(L_{q}^{2 n+1}(N ; m)\right)\right)=\mathbb{Z} ;
$$

Some examples of K_{0} have been calculated.

- [Hong-Szymański '02] $m_{0}=\ldots=m_{n}=1$:
$C\left(W_{P} \mathbb{P}_{q}^{n}(\mathrm{~m})\right)$ are graph C^{*}-algebras,

$$
K_{0}\left(C\left(\mathbb{W} \mathbb{P}_{q}^{n}(\mathrm{~m})\right)\right)=\mathbb{Z}^{n+1}, \quad K_{1}\left(C\left(\mathbb{W}_{q}^{1}(\mathrm{~m})\right)\right)=0 .
$$

- [Brzeziński-Fairfax '12] $\operatorname{gcd}\left(m_{0}, m_{1}\right)=1$:

$$
\mathcal{C}\left(\mathbb{W P}_{q}^{1}(\mathrm{~m})\right) \cong \mathbb{C} \oplus \mathcal{K}^{m_{1}}, \quad \text { hence }
$$

$$
K_{0}\left(C\left(\mathbb{W P}_{q}^{1}(\mathrm{~m})\right)\right)=\mathbb{Z}^{m_{1}+1}, \quad K_{1}\left(C\left(\mathbb{W} \mathbb{P}_{q}^{1}(\mathrm{~m})\right)\right)=0 .
$$

What has been known?

- [D'Andrea-Landi '15] $m_{i}=\prod_{j \neq i} p_{j}$, for some pairwise coprime p_{0}, \ldots, p_{n} :
The generators of the coordinate algebra of $\mathbb{W P}_{q}^{n}(m)$ and irreducible representations are known, Fredholm modules have been constructed. Also:

$$
\mathbb{Z}^{1+\sum_{k=1}^{n} p_{0} \cdots p_{k-1}} \subseteq K_{0}\left(C\left(\mathbb{W}_{q}^{n}(\mathrm{~m})\right)\right)
$$

- [Arici-Brain-Landi '15] $m_{0}=\ldots=m_{n}=1$: K_{0}-groups of $C\left(L_{q}^{2 n+1}(N ; m)\right)$ for $n=1,2,3,4$ have been calculated.

Quantum spheres as graph C^{*}-algebras

- Hong and Szymański have shown that $C\left(S_{q}^{2 n+1}\right)$ is the C^{*}-algebra associated to a graph $L_{2 n+1}$ defined as follows.
- $L_{2 n+1}$ has $n+1$ vertices $v_{0}, v_{1}, \ldots, v_{n}$, and $(n+1)(n+2) / 2$ edges $e_{i j}, i=0, \ldots, n, j=i, \ldots, n$, with v_{i} the source and v_{j} the range of $e_{i j}$.
- L_{5} :

Actions on graph C^{*}-algebras

- The actions of \mathbb{Z}_{N} and \mathbb{T} translate to the actions on the graph C^{*}-algebra $C^{*}\left(L_{2 n+1}\right)$:
- The (lens space yielding) \mathbb{Z}_{N}-action

$$
\varrho_{\mathrm{m}}^{N}: S_{e_{i j}} \mapsto \zeta^{m_{i}} S_{e_{i j}}, \quad \varrho_{\mathrm{m}}^{N}: P_{v_{i}} \mapsto P_{v_{i}}
$$

- The (wieghted projective space yielding) \mathbb{T}-action

$$
\varrho_{\mathrm{m}}: S_{e_{i j}} \mapsto \xi^{m_{i}} S_{e_{i j}}, \quad \varrho_{\mathrm{m}}: P_{v_{i}} \mapsto P_{v_{i}}
$$

Quantum lens spaces as graph C^{*}-algebras

- Since $C\left(L_{q}^{2 n+1}(N ; m)\right)$ equals fixed points of a finite abelian group action on $C^{*}\left(L_{2 n+1}\right)$, a theorem by Crisp implies

$$
C\left(L_{q}^{2 n+1}(N ; \mathrm{m})\right) \cong\left(\sum_{i=0}^{n} P_{\left(v_{i}, 0\right)}\right) C^{*}\left(L_{2 n+1} \times \mathbb{Z}_{N}\right)\left(\sum_{i=0}^{n} P_{\left(v_{i}, 0\right)}\right) .
$$

- $L_{2 n+1} \times{ }_{c} \mathbb{Z}_{N}$ is the skew product graph with labelling c induced by the \mathbb{Z}_{N}-action:
- vertices: $\left(v_{i}, r\right), i=0, \ldots, n, r=0, \ldots, N-1$;
- edges: $\left(e_{i j}, r\right), i, j=0, \ldots n, i \leq j, r=0, \ldots N-1$, with $\left(v_{i}, r-m_{i} \bmod N\right)$ being the source and $\left(v_{j}, r\right)$ being the range of $\left(e_{i j}, r\right)$.

Example: $n=1, N=6, m_{0}=1, m_{1}=3$

The graphs for quantum lens spaces

- A path in $L_{2 n+1} \times{ }_{c} \mathbb{Z}_{N}$ from $\left(v_{i}, r\right)$ to $\left(v_{j}, s\right)$ that does not pass through $\left(v_{k}, t\right)$, with $k=i+1, \ldots, j-1$ and $t=0, \ldots, \operatorname{gcd}\left(m_{k}, N\right)-1$ is termed admissible.
The number of such paths is denoted by $n_{i j}^{r s}$.
- Based on $L_{2 n+1} \times c \mathbb{Z}_{N}$ we construct a graph $L_{2 n+1}^{N ; m}$:
- vertices: $v_{i}^{r}, i=0, \ldots, n, r=0, \ldots, \operatorname{gcd}\left(N, m_{i}\right)-1$;
- edges: $e_{i j ; a}^{r s}$ from v_{i}^{r} to v_{j}^{s}, with $a=1, \ldots, n_{i j}^{r s}$.
- Since there are no edges $\left(e_{i j}, r\right)$ in $L_{2 n+1} \times c \mathbb{Z}_{N}$ with $i>j$, one may assume that $i \leq j$ in $e_{i j ; a}^{r s}$.
- In v_{i}^{r}, we refer to the index i as labelling the levels, and to index r as labelling the loops in $L_{2 n+1}^{N ; m}$.

Observations on $L_{2 n+1}^{N ; m}$

- There is a single loop at each vertex.
- Except for loops, edges always point to higher loop or higher level.
- The number of edges depends on the relative primness of the m_{i} and N.
- If all the m_{i} divide N, then the graph $L_{2 n+1}^{N ; m}$ consists of $n+1$ levels of interconnected loops with m_{i} mutually disconnected loops at the i-th level.
- If all the m_{i} are coprime with N, the graph $L_{2 n+1}^{N ; m}$ coincides with the graph described earlier by Hong and Szymański

Example: $L_{3}^{k l ; 1, l}$

Example: $L_{5}^{k l ; 1,1, l}$

Example: $L_{5}^{\mathrm{kl;} ; 1, \mathrm{l}, \mathrm{l}}$

Quantum lens spaces as graph algebras

Theorem

$$
C^{*}\left(L_{2 n+1}^{N ; m}\right) \cong C\left(L_{q}^{2 n+1}(N ; m)\right) .
$$

Corollary
The following sequence of C*-algebras
where $c_{n}=\operatorname{gcd}\left(m_{n}, N\right)$, is exact.

Quantum lens spaces as graph algebras

Theorem

$$
C^{*}\left(L_{2 n+1}^{N ; m}\right) \cong C\left(L_{q}^{2 n+1}(N ; m)\right) .
$$

Corollary
The following sequence of C^{*}-algebras
$0 \longrightarrow(\mathcal{K} \otimes C(\mathbb{T}))^{\oplus c_{n}} \longrightarrow C\left(L_{q}^{2 n+1}(N ; m)\right) \longrightarrow C\left(L_{q}^{2 n-1}(N ; m)\right) \longrightarrow 0$,
where $c_{n}=\operatorname{gcd}\left(m_{n}, N\right)$, is exact.

Examples of K_{0}

$$
K_{0}\left(C\left(L_{q}^{3}(k l ; 1, l)\right)\right)=\mathbb{Z}^{\prime} \oplus \mathbb{Z}_{k} .
$$

$$
K_{0}\left(C\left(L_{q}^{5}(k l ; 1,1, /)\right)\right)=\mathbb{Z}^{\prime} \oplus \begin{cases}\mathbb{Z}_{k} \oplus \mathbb{Z}_{k} & \text { if } k \text { is odd or } / \text { is even, } \\ \mathbb{Z}_{2 k} \oplus \mathbb{Z}_{\frac{k}{2}} & \text { if } k \text { is even and } / \text { is odd. } .\end{cases}
$$

$$
K_{0}\left(C\left(L_{q}^{5}(k \mid ; 1, I, I)\right)\right)=\mathbb{Z}^{\prime} \oplus \begin{cases}\mathbb{Z}_{k}^{l+1} & \text { if } k \text { is odd, } \\ \mathbb{Z}_{2 k} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{k}^{l-1} & \text { if } k \text { is even. }\end{cases}
$$

Examples of K_{0}

$$
K_{0}\left(C\left(L_{q}^{7}(k l ; 1,1,1, l)\right)\right)=\mathbb{Z}^{\prime} \oplus\left\{\begin{array}{l}
\mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \text { if } k|\alpha \& k| \beta, \\
\mathbb{Z}_{\frac{k}{6}} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{6 k} \text { if } k \left\lvert\, \alpha \& \beta \equiv \frac{k}{6}\right., \frac{5 k}{6}(\bmod k), \\
\mathbb{Z}_{\frac{k}{3}} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{3 k} \text { if } k \left\lvert\, \alpha \& \beta \equiv \frac{k}{3}\right., \frac{2 k}{3}(\bmod k), \\
\mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{2 k} \text { if } k \left\lvert\, \alpha \& \beta \equiv \frac{k}{2}(\bmod k)\right., \\
\mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{4 k} \text { if } \left.k \nmid \alpha \& \frac{k}{2} \right\rvert\, \beta, \\
\mathbb{Z}_{\frac{k}{6}} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{12 k} \text { if } k \nmid \alpha \& \frac{k}{2} X \beta,
\end{array}\right.
$$

where

$$
\alpha:=n_{13}^{00}=\frac{k l(k+1)}{2}, \quad \beta:=n_{03}^{00}=\alpha \frac{2 k l+I+3}{6}
$$

If $I=1$ all these cases reduce to [Arici-Brain-Landi'15].

Quantum weighted projective lines as AF graph C^{*}-algebras

Let $g:=\operatorname{gcd}\left(m_{0}, m_{1}\right)$ and $\tilde{m}_{1}:=m_{1} / g$, and define

Theorem
$\left.=C^{\left(\pi / \mathbb{D P}^{1}\right.}(m)\right) \cong C^{*}\left(W_{1}(m)\right)$.

- $K_{0}\left(C\left(\mathbb{W P}_{q}^{1}(m)\right)\right)=\mathbb{Z}^{1+\tilde{m}_{1}^{1}}, K_{1}\left(C\left(\mathbb{W} \mathbb{P}_{q}^{1}(m)\right)\right)=0$.

Quantum weighted projective lines as AF graph C^{*}-algebras

Let $g:=\operatorname{gcd}\left(m_{0}, m_{1}\right)$ and $\tilde{m}_{1}:=m_{1} / g$, and define

Theorem

- $C\left(\mathbb{W P}_{q}^{1}(\mathrm{~m})\right) \cong C^{*}\left(W_{1}(\mathrm{~m})\right)$.
- $K_{0}\left(C\left(\mathbb{W P}_{q}^{1}(\mathrm{~m})\right)\right)=\mathbb{Z}^{1+\tilde{m}_{1}}, K_{1}\left(C\left(\mathbb{W} \mathbb{P}_{q}^{1}(\mathrm{~m})\right)\right)=0$.

The K-theory of quantum weighted projective spaces

Theorem
Let $\mathrm{m}:=m_{0}, \ldots, m_{n}$. If there exists $j \in\{0,1, \ldots, n-1\}$ so that m_{j} is relatively prime with m_{n}. Then there is an exact sequence

$$
0 \longrightarrow C\left(\mathcal{K}^{m_{n}} \longrightarrow \mathbb{P}_{q}^{n}(\mathrm{~m})\right) \longrightarrow\left(\mathbb{W}_{q}^{n-1}(\mathrm{~m})\right) \longrightarrow 0
$$

Corollary
Let $\mathrm{m}:=m_{0}, \ldots . m_{n}$. If for each $j \geq 1$ there is an $i<j$ so that m_{i} and m_{j} are relatively prime. Then

The K-theory of quantum weighted projective spaces

Theorem

Let $\mathrm{m}:=m_{0}, \ldots, m_{n}$. If there exists $j \in\{0,1, \ldots, n-1\}$ so that m_{j} is relatively prime with m_{n}. Then there is an exact sequence

$$
0 \longrightarrow \mathcal{K}^{m_{n}} \longrightarrow C\left(\mathbb{W}_{q}^{P_{q}^{n}}(\mathrm{~m})\right) \longrightarrow C\left(\mathbb{W P}_{q}^{n-1}(\mathrm{~m})\right) \longrightarrow 0 .
$$

Corollary

Let $\mathrm{m}:=m_{0}, \ldots, m_{n}$. If for each $j \geq 1$ there is an $i<j$ so that m_{i} and m_{j} are relatively prime. Then

$$
K_{0}\left(C\left(\mathbb{W}_{q}^{n}(\mathrm{~m})\right)\right)=\mathbb{Z}^{1+\sum_{i=1}^{n} m_{i}}, \quad K_{1}\left(C\left(\mathbb{W} \mathbb{P}_{q}^{n}(\mathrm{~m})\right)\right)=0 .
$$

[Arici '16] shows that in this case $C\left(W_{P}{ }_{q}^{n}(\mathrm{~m})\right)$ is $K K$-equivalent to $\mathbb{C}^{1+\sum_{i=1}^{n} m_{i}}$.

