Topology and *K*-theory of noncommutative weighted projective spaces

Tomasz Brzeziński

Swansea University Uniwersytet w Białymstoku

Simons Semester Workshop, Warsaw 2016

Reference:

 TB & W Szymański, The C*-algebras of quantum lens and weighted projective spaces, arXiv:1603:04678

Main objectives

- To identify the algebras of continuous functions on quantum weighted projective and lens spaces as graph C*-algebras.
- To use the above identification to compute the K-theory of these spaces in cases that have not been computed yet.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Graph C*-algebras and their K-theory

- A directed graph G = (G⁰, G¹, ρ, σ) consists of two sets G⁰ and G¹ and two mappings ρ, σ : G¹ → G⁰.
- $C^*(G)$ is the universal C^* -algebra generated by
 - mutually orthogonal projections P_{ν} , $\nu \in G^0$,
 - ▶ partial isometries S_e , $e \in G^1$,

subject to the following relations, for all $e \neq f \in G^1$ and all $v \in G^0$ emitting a finite number of edges,

$$egin{aligned} S_{e}^{*}S_{f} &= 0, \qquad S_{e}^{*}S_{e} &= P_{\varrho(e)}, \qquad S_{e}S_{e}^{*} \leq P_{\sigma(e)}, \ P_{v} &= \sum_{e \in G^{1}: \ \sigma(e) = v} S_{e}S_{e}^{*}. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

Graph C^* -algebras and their K-theory

Set:

 $V_G := \{ v \in G^0 \mid v \text{ emits a finite non-zero } \# \text{ of edges} \}.$

Define:

$$\Phi: \mathbb{Z}V_G \longrightarrow \mathbb{Z}G^0, \quad v \longmapsto \sum_{e \in G^1, \ \sigma(e) = v} \varrho(e) - v.$$

Then:

 $\mathcal{K}^0(\mathcal{C}^*(G)) = \operatorname{coker} \Phi, \qquad \mathcal{K}^1(\mathcal{C}^*(G)) = \ker \Phi.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The circle group actions on quantum spheres

C(S_q²ⁿ⁺¹) is the universal C*-algebra with generators z₀, z₁,..., z_n, subject to the following relations:

$$z_i z_j = q z_j z_i$$
 for $i < j$, $z_i z_j^* = q z_j^* z_i$ for $i \neq j$,

$$z_i z_i^* = z_i^* z_i + (q^{-2} - 1) \sum_{j=i+1}^n z_j z_j^*, \qquad \sum_{j=0}^n z_j z_j^* = 1,$$

where $q \in (0, 1)$.

Fix a sequence of positive integers m := m₀,..., m_n.
 C(S²ⁿ⁺¹_a) admits the circle group action *Q*m,

$$\varrho_{\mathsf{m}}: z_i \mapsto \xi^{m_i} z_i, \qquad i = 0, \dots, n,$$

where ξ is the unitary generator of \mathbb{T} (of infinite order).

Quantum weighted projective and lens spaces

- Continuous functions on the q weighted projective space $C(\mathbb{WP}_{q}^{n}(\mathsf{m})) \equiv \text{fixed points of the } \mathbb{T}\text{-action } \varrho_{\mathsf{m}}.$
- Continuous functions on the quantum lens space $C(L_q^{2n+1}(N;m)) \equiv$ all the elements $\sum_i x_i$ of $C(S_q^{2n+1})$ that transform according to the rule

$$\sum_{i} x_{i} \mapsto \sum_{i} \xi^{r_{i}N} x_{i}, \qquad r_{i} \in \mathbb{Z},$$

• Equivalently, $C(L_q^{2n+1}(N;m)) \equiv \text{fixed points of the} \mathbb{Z}_N$ -action on $C(L_q^{2n+1}(N;m))$,

$$\varrho_{\mathsf{m}}^{\mathsf{N}}: z_i \mapsto \zeta^{m_i} z_i,$$

where ζ is a generator of \mathbb{Z}_N .

Quantum weighted projective vs lens spaces

▶ The action ρ_m gives rise to the \mathbb{T} -action $\hat{\rho}_m$ on $C(L_q^{2n+1}(N;m))$ with fixed points being again $C(\mathbb{WP}_q^n(m))$: an element $x \in C(L_q^{2n+1}(N;m))$ transforms under $\hat{\rho}_m$ as $x \mapsto \xi^r x$ provided it transforms as $x \mapsto \xi^{rN} x$ under ρ_m .

(日) (日) (日) (日) (日) (日) (日)

What has been known?

Special cases:

► [Hong-Szymański '03] gcd(m_i, N) = 1: C(L²ⁿ⁺¹_q(N; m)) are graph C*-algebras,

$$K_1(C(L_q^{2n+1}(N;\mathbf{m}))) = \mathbb{Z};$$

Some examples of K_0 have been calculated.

► [Hong-Szymański '02] $m_0 = ... = m_n = 1$: $C(\mathbb{WP}_q^n(\mathbf{m}))$ are graph C^* -algebras,

 $K_0(\mathcal{C}(\mathbb{WP}_q^n(\mathsf{m}))) = \mathbb{Z}^{n+1}, \quad K_1(\mathcal{C}(\mathbb{WP}_q^1(\mathsf{m}))) = 0.$

• [Brzeziński-Fairfax '12] $gcd(m_0, m_1) = 1$:

$$C(\mathbb{WP}^1_q(\mathsf{m}))\cong\mathbb{C}\oplus\mathcal{K}^{m_1},$$
 hence

 $\mathcal{K}_0(\mathcal{C}(\mathbb{WP}^1_q(\mathsf{m}))) = \mathbb{Z}^{m_1+1}, \quad \mathcal{K}_1(\mathcal{C}(\mathbb{WP}^1_q(\mathsf{m}))) = 0.$

What has been known?

► [D'Andrea-Landi '15] m_i = ∏_{j≠i} p_j, for some pairwise coprime p₀,..., p_n:
The generators of the coordinate alrebra of WUDD(m)

The generators of the coordinate algebra of $\mathbb{WP}_q^n(m)$ and irreducible representations are known, Fredholm modules have been constructed. Also:

$$\mathbb{Z}^{1+\sum_{k=1}^n p_0 \cdots p_{k-1}} \subseteq K_0(\mathcal{C}(\mathbb{WP}_q^n(\mathsf{m}))).$$

► [Arici-Brain-Landi '15] m₀ = ... = m_n = 1: K₀-groups of C(L²ⁿ⁺¹_q(N;m)) for n = 1, 2, 3, 4 have been calculated. Quantum spheres as graph C*-algebras

- Hong and Szymański have shown that C(S_q²ⁿ⁺¹) is the C*-algebra associated to a graph L_{2n+1} defined as follows.
- ► L_{2n+1} has n + 1 vertices v_0, v_1, \ldots, v_n , and (n+1)(n+2)/2edges e_{ij} , $i = 0, \ldots, n$, $j = i, \ldots, n$, with v_i the source and v_j the range of e_{ij} .
- ► L₅:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Actions on graph C*-algebras

- ► The actions of Z_N and T translate to the actions on the graph C*-algebra C*(L_{2n+1}):
- ► The (lens space yielding) ℤ_N-action

$$\varrho_{\mathsf{m}}^{\mathsf{N}}: \mathcal{S}_{\boldsymbol{e}_{ij}} \mapsto \zeta^{m_i} \mathcal{S}_{\boldsymbol{e}_{ij}}, \quad \varrho_{\mathsf{m}}^{\mathsf{N}}: \mathcal{P}_{\boldsymbol{v}_i} \mapsto \mathcal{P}_{\boldsymbol{v}_i}.$$

► The (wieghted projective space yielding) T-action

$$\varrho_{\mathsf{m}}: S_{\boldsymbol{e}_{ij}} \mapsto \xi^{m_i} S_{\boldsymbol{e}_{ij}}, \quad \varrho_{\mathsf{m}}: \boldsymbol{P}_{\boldsymbol{v}_i} \mapsto \boldsymbol{P}_{\boldsymbol{v}_i}.$$

Quantum lens spaces as graph C*-algebras

Since C(L²ⁿ⁺¹_q(N; m)) equals fixed points of a finite abelian group action on C^{*}(L_{2n+1}), a theorem by Crisp implies

$$C(L_q^{2n+1}(N;\mathsf{m})) \cong \left(\sum_{i=0}^n P_{(v_i,0)}\right) C^*(L_{2n+1} \times_c \mathbb{Z}_N) \left(\sum_{i=0}^n P_{(v_i,0)}\right).$$

- L_{2n+1} ×_c ℤ_N is the skew product graph with labelling c induced by the ℤ_N-action:
 - vertices: $(v_i, r), i = 0, ..., n, r = 0, ..., N 1;$
 - edges: $(e_{ij}, r), i, j = 0, ..., n, i \le j, r = 0, ..., N 1$, with $(v_i, r m_i \mod N)$ being the source and (v_j, r) being the range of (e_{ij}, r) .

Example: n = 1, N = 6, $m_0 = 1$, $m_1 = 3$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The graphs for quantum lens spaces

- ► A path in $L_{2n+1} \times_c \mathbb{Z}_N$ from (v_i, r) to (v_j, s) that does not pass through (v_k, t) , with k = i + 1, ..., j 1 and $t = 0, ..., gcd(m_k, N) 1$ is termed **admissible**. The number of such paths is denoted by n_{ii}^{rs} .
- ▶ Based on $L_{2n+1} \times_c \mathbb{Z}_N$ we construct a graph $L_{2n+1}^{N;m}$:
 - vertices: v_i^r , i = 0, ..., n, $r = 0, ..., gcd(N, m_i) 1$;
 - edges: $e_{ij;a}^{rs}$ from v_i^r to v_j^s , with $a = 1, \ldots, n_{ij}^{rs}$.
- Since there are no edges (e_{ij}, r) in L_{2n+1} ×_c ℤ_N with i > j, one may assume that i ≤ j in e^{rs}_{ij;a}.
- In v^r_i, we refer to the index i as labelling the *levels*, and to index r as labelling the *loops* in L^{N;m}_{2n+1}.

Observations on $L_{2n+1}^{N;m}$

- There is a single loop at each vertex.
- Except for loops, edges always point to higher loop or higher level.
- The number of edges depends on the relative primness of the m_i and N.
- If all the m_i divide N, then the graph L^{N:m}_{2n+1} consists of n + 1 levels of interconnected loops with m_i mutually disconnected loops at the *i*-th level.
- If all the m_i are coprime with N, the graph L^{N;m}_{2n+1} coincides with the graph described earlier by Hong and Szymański

Example: $L_3^{kl;1,l}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example: $L_5^{kl;1,1,l}$

Example: $L_5^{kl;1,l,l}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantum lens spaces as graph algebras

Theorem

$$C^*(L^{N;m}_{2n+1}) \cong C(L^{2n+1}_q(N;m)).$$

Corollary The following sequence of C*-algebras

 $0 \longrightarrow (\mathcal{K} \otimes C(\mathbb{T}))^{\oplus c_n} \longrightarrow C(L_q^{2n+1}(N; \mathsf{m})) \longrightarrow C(L_q^{2n-1}(N; \mathsf{m})) \longrightarrow 0,$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $c_n = \text{gcd}(m_n, N)$, is exact.

Quantum lens spaces as graph algebras

Theorem

$$C^*(L_{2n+1}^{N;m}) \cong C(L_q^{2n+1}(N;m)).$$

Corollary The following sequence of C*-algebras

$$0 \longrightarrow (\mathcal{K} \otimes C(\mathbb{T}))^{\oplus c_n} \longrightarrow C(L_q^{2n+1}(N; \mathsf{m})) \longrightarrow C(L_q^{2n-1}(N; \mathsf{m})) \longrightarrow 0,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where $c_n = \text{gcd}(m_n, N)$, is exact.

Examples of K₀

$$\mathcal{K}_0(\mathcal{C}(L^3_q(kl; 1, l))) = \mathbb{Z}^l \oplus \mathbb{Z}_k.$$

$$\mathcal{K}_0(\mathcal{C}(L^5_q(kl;1,1,l))) = \mathbb{Z}^l \oplus \begin{cases} \mathbb{Z}_k \oplus \mathbb{Z}_k & \text{if } k \text{ is odd or } l \text{ is even,} \\ \mathbb{Z}_{2k} \oplus \mathbb{Z}_{\frac{k}{2}} & \text{if } k \text{ is even and } l \text{ is odd.} \end{cases}$$

$$\mathcal{K}_0(\mathcal{C}(\mathcal{L}_q^5(kl; 1, l, l))) = \mathbb{Z}^l \oplus \begin{cases} \mathbb{Z}_k^{l+1} & \text{if } k \text{ is odd}, \\ \mathbb{Z}_{2k} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_k^{l-1} & \text{if } k \text{ is even}. \end{cases}$$

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Examples of K_0

$$\mathcal{K}_{0}(C(\mathcal{L}_{q}^{7}(kl;1,1,1,1,l))) = \mathbb{Z}^{l} \oplus \begin{cases} \mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{6k} & \text{if } k | \alpha \& \beta \equiv \frac{k}{6}, \frac{5k}{6} \pmod{k}, \\ \mathbb{Z}_{\frac{k}{6}} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{3k} \oplus \mathbb{Z}_{3k} & \text{if } k | \alpha \& \beta \equiv \frac{k}{3}, \frac{2k}{3} \pmod{k}, \\ \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{k} \oplus \mathbb{Z}_{2k} \oplus \mathbb{Z}_{2k} & \text{if } k | \alpha \& \beta \equiv \frac{k}{2} \pmod{k}, \\ \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{4k} & \text{if } k \not| \alpha \& \beta \equiv \frac{k}{2} \mid \beta, \\ \mathbb{Z}_{\frac{k}{6}} \oplus \mathbb{Z}_{\frac{k}{2}} \oplus \mathbb{Z}_{12k} & \text{if } k \not| \alpha \& \frac{k}{2} \not| \beta, \end{cases}$$

where

$$\alpha := n_{13}^{00} = \frac{kl(k+1)}{2}, \quad \beta := n_{03}^{00} = \alpha \frac{2kl+l+3}{6}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If I = 1 all these cases reduce to [Arici-Brain-Landi'15].

1_

Quantum weighted projective lines as AF graph *C**-algebras

Let $g := \gcd(m_0, m_1)$ and $\tilde{m_1} := m_1/g$, and define

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

- $C(\mathbb{WP}^1_q(\mathbf{m})) \cong C^*(W_1(\mathbf{m})).$
- $\models K_0(C(\mathbb{WP}^1_q(\mathsf{m}))) = \mathbb{Z}^{1+\tilde{m}_1}, K_1(C(\mathbb{WP}^1_q(\mathsf{m}))) = 0.$

Quantum weighted projective lines as AF graph *C**-algebras

Let $g := \gcd(m_0, m_1)$ and $\tilde{m_1} := m_1/g$, and define

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

- $C(\mathbb{WP}_q^1(\mathsf{m})) \cong C^*(W_1(\mathsf{m})).$
- $\blacktriangleright \ \mathcal{K}_0(\mathcal{C}(\mathbb{WP}^1_q(\mathsf{m}))) = \mathbb{Z}^{1+\tilde{m}_1}, \ \mathcal{K}_1(\mathcal{C}(\mathbb{WP}^1_q(\mathsf{m}))) = 0.$

The *K*-theory of quantum weighted projective spaces

Theorem

Let $m := m_0, ..., m_n$. If there exists $j \in \{0, 1, ..., n-1\}$ so that m_j is relatively prime with m_n . Then there is an exact sequence

$$0 \longrightarrow \mathcal{K}^{m_n} \longrightarrow C(\mathbb{WP}_q^n(\mathsf{m})) \longrightarrow C(\mathbb{WP}_q^{n-1}(\mathsf{m})) \longrightarrow 0.$$

Corollary

Let $m := m_0, ..., m_n$. If for each $j \ge 1$ there is an i < j so that m_i and m_i are relatively prime. Then

 $K_0(C(\mathbb{WP}_q^n(\mathsf{m}))) = \mathbb{Z}^{1+\sum_{i=1}^n m_i}, \qquad K_1(C(\mathbb{WP}_q^n(\mathsf{m}))) = 0.$

[Arici '16] shows that in this case $C(\mathbb{WP}_q^n(\mathsf{m}))$ is *KK*-equivalent to $\mathbb{C}^{1+\sum_{i=1}^n m_i}$.

The K-theory of quantum weighted projective spaces

Theorem

Let $m := m_0, ..., m_n$. If there exists $j \in \{0, 1, ..., n-1\}$ so that m_j is relatively prime with m_n . Then there is an exact sequence

$$0 \longrightarrow \mathcal{K}^{m_n} \longrightarrow C(\mathbb{WP}_q^n(\mathsf{m})) \longrightarrow C(\mathbb{WP}_q^{n-1}(\mathsf{m})) \longrightarrow 0.$$

Corollary

Let $m := m_0, ..., m_n$. If for each $j \ge 1$ there is an i < j so that m_i and m_i are relatively prime. Then

$$K_0(\mathcal{C}(\mathbb{WP}_q^n(\mathsf{m}))) = \mathbb{Z}^{1+\sum_{i=1}^n m_i}, \qquad K_1(\mathcal{C}(\mathbb{WP}_q^n(\mathsf{m}))) = 0.$$

[Arici '16] shows that in this case $C(\mathbb{WP}_q^n(\mathbf{m}))$ is *KK*-equivalent to $\mathbb{C}^{1+\sum_{i=1}^n m_i}$.