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Introduction

Introduction

In NCG, a "noncommutative manifold” is a spectral triple (A, #, D):

H is a Hilbert space;
A C B(H) is a x-subalgebra;
D =D*: % --» H, compatible with A through:

A C Lipo(D) :={T € B(#) : [D, T] bounded and (T+T*)(14+D*D)~! € K(#)}.

Prototypical example

For a Riemannian manifold M, a Clifford bundle E and the Dirac operator

D :CP(M,E) — C(M,E),

we form D := . If M is complete, (C°(M), L?(M, E), D) is a spectral triple.

Noncommutative topology

The noncommutative topology of (A, #, D) is described by a class
[A, #, D] € K*(A), where A= A and K*(A) := KK« (A, C) its K-homology.
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Introduction

Unbounded Kasparov cycles

An unbounded Kasparov cycle for (A, B) is a pair (£, D) where:
@ T is a (graded) (A, B)-Hilbert C*-module;

@ D:E --» E is a self-adjoint regular operator such that
A C Lipy(D).
Let Z.(A, B) denote the semigroup of (A, B)-Kasparov cycles.

Subtleties in fixing A
We can define the set of unbounded (A, B)-Kasparov modules:

V,(A,B) :={(A, Eg,D): AC Adense and (Eg, D) an (A, B)-cycle}.

The natural mapping Z.(A, B) — W.(A, B) is rarely surjective!
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Prototypical example

For a complete Riemannian manifold M, a B-bundle £g —+ M and a
Dirac type operator

@g : CCOO(M,(‘:B) — CCOO(M,EB),
(L2(M,Eg), De) is an unbounded Kasparov cycle for (C°(M), B).

Example of B-bundle: If M is the universal cover of M, its Mishchenko
bundle B
,CM =M XWI(M) C*(ﬂ'l(/\/l)) — M,

is a flat C*(mw1(M))-bundle of “rank” 1. Any Dirac type operator [P on a
vector bundle E — M lifts to a Dirac operator

Dr:C*(ME® L) — C*(M,E® L)
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KK-theory

The noncommutative topology is in this case encoded by KK-cycles, a
pair (E, F) where F € Endg(E) satisfies:

a(F? = 1), a(F* — F), [F,a] € Kg(E), Va € A. (1)
The bounded transform of an unbounded Kasparov cycle is a KK-cycle:

B(E, D) := (E,D(1 + D?)~%/?).

@ If all terms in (1) are 0, we say that (E, F) is degenerate.

@ If F:[0,1] — Endg(ZE) is norm-continuous and (E, F(t)) is a
KK-cycle for all t, we say that (£, F(0)) and (E, F(1)) are operator
homotopic.

© KK.(A, B) is the abelian group of KK-cycles modulo degenerate
cycles and operator homotopy.
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Building KK from unbounded cycles

Baaj-Julg '83
If A is separable, there is a dense A C A such that

B:Z.(A,B) — KK.(A,B), is surjective for any B.

The bounded transform defines a surjection V. (A, B) — KK.(A, B).

Motivating question

Can we do KK-theory only using unbounded Kasparov theory?

Blackadar writes in his K-theory book on page 165:

"We leave to the reader the task of appropriately formulating the
equivalence relations on W, (A, B) corresponding to the standard
relations...”
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Bordisms in KK

Some notions of cycles

A symmetric chain...

...is a pair (£, D) satisfying that D is a symmetric regular operator with

A C Lip(D) := {T € Endg(E) : [D, T] bounded}.

A half-closed chain...

| \

...Is @ symmetric chain (E, D) such that for any a € A

aDom(D*) C Dom(D) and a(l+ D*D)~! € Kg(E).

If W is a compact Riemannian manifold with boundary and D a Dirac type operator
on Eg — W, D defines a symmetric regular operator D,,;, with

Dom(Dpin) := H (W, Eg).

The pair (L2(W, Eg, Dmin) is a symmetric (C>°(W), B)-chain and a half-closed
(C(W®), B)-chain.
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Bordisms in KK

Hilsum bordisms

Let (¥, Q) be a symmetric chain (odd) and (E, D) a cycle (even) for
(A, B).

Boundary data

Boundary data for (£, D) relative to (F, Q) is a pair (6, p) where

@ p € Endg(F) is a projection commuting with A;

@ 0:pF — E®L?0,1] is an isomorphism.

@ We define b: C[0,1] ® A — Endjz(F) by
b(p ®a) =07 (p® a)fp + p(1)a(L — p).
@ We define W(D) : £® L2[0,1] --+ £ ® L2[0,1] as the closure of

ivz0x + D : C2°((0,1), Dom(D)) — £ ® L?[0,1].
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Bordisms in KK

Hilsum bordisms (almost there)

Cycles with boundary

We say that (£, D) is a boundary of (F, Q) with boundary data (¢, p) if
@ For p € C2°(0,1] it holds that

b(p)Dom@* C DomQ®@ and Q"b(¢) = Qb(¢) on DomQ".
@ For p € C2°(0,1) it holds that
eDomVW (D) = 0b(¢)DomQ and Q =0'W(D)I on b(p)DomQ.
@ For 1, pr € C*[0, 1] satisfying w12 = 0 it holds that

b(1)Rb(p2) = 0.
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Hilsum bordisms (for real this time)

Proposition (Hilsum)

If (£, D) is the boundary of (£, Q,6,p), (F, Q) becomes a symmetric
(€°(0,1] ® A, B)-chain under b: C[0,1] ® A — Endg(F) restricting to
a half-closed (C2°(0,1) ® A, B)-chain.

Definition: Hilsum bordisms

A bordism is a chain with boundary (F, Q, 0, p) defining a half-closed
(Ce°(0,1] ® A, B)-chain. We write

9(7,Q,0,p) = (£, D).

If O(F, Q,0,p) = (E,D) — (£, D) we write (E, D) ~bor (E',D').

Theorem (Hilsum)
If 0(F,Q,0,p) = (E, D), then B(E,D) =0 in KK.(A, B).
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Bordisms in KK

The “obvious” example

The spin©-bordism group

Classically, for a (compact) topological space X, the spin®-bordism group is:
5in€
Qipm (X) := {(M, f) : M closed spin®-manifold and f : M — X}/ ~por,
where (M, f) ~po, 0if (M, f) = O(W, g). Bordism invariance gives a mapping

QP (X) 5 (M, £) = £[DM] = [(L2(M, Sw), DM)] € Ku(X) = KKy (C(X), ©).

The associated Hilsum bordism

For a Riemannian compact manifold X, the algebra of interest is /A = Lip(X). On a compact Riemannian
spin©-manifold with boundary W, and

gw = dx? + 8w in a collar neighborhood [0,1] x OW C W of OW.
o}

Assume that f : W — X is Lipschitz; inducing an action of Lip(X) on LQ(W, Sw) as well as Hl(W, Sw)-

The collection (L2 W, Sw), DW7 id, x is a bordism of (Lip(X), C)-cycles with
[0,1]x oW

w . 2 ow
(2w, Sw), DY, id, (0,1 x W) = (L*(BW, Spw), DO).
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Main results

Theorem (Deeley-Goffeng-Mesland '14)

Bordism defines an equivalence relation defining an abelian group:
Q*(-A’ B) = Z*(-Aa B)/ ~bor -

This construction satisfies:

@ The bounded transform induces a homomorphism
B8:Q+(A, B) — KK« (A, B).

For any separable C*-algebra A there is a dense *-subalgebra A C A making 3
surjective.

Q If A=C, Q.(C,B) = Ki(B) via .

@ If C°°(X) C A C Lip(X) for a closed Riemannian manifold X, the bounded
transform B : Q. (A, B) = KK, (C(X), B) is split-surjective.

© If Z C K(H) is a regular symmetrically normed ideal of compact operators the
subgroup Q¢(Z, B) generated by essential cycles satisfies Q¢(Z, B) & K. (B).
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Homotopies

The bread and butter of bordisms

The homotopy lemma

Let (£, Do) and (E, D1) be cycles. Assume that there is a dense submodule W C E
and P : [0,1] — Homg(W, E) such that
(1) (f) defines an essentially self-adjoint regular C[0, 1] ® B-linear operator on
C[0,1] ® E with closure D such that

@ the pointwise defined derivative @, : [0,1] — Hompg(W, E) exists and
° @l(l + 52)7% extends to a bounded operator on C[0,1] ® E.

@ (E, D(t)) defines a cycle for any t and sup; H[E)(t),a]”EndE(g) < o0, Va € A;
© D(j) = Dj in the endpoints j = 0, 1.
Then

(Zv DO) ~bor (‘Ev Dl)

Corollary: Bounded perturbations

The class of (E, D) in Q«(A, B) is not changed by e-bounded perturbations of D.
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A nonclassical example of a bordism

Degenerate cycles

Let (E, D) be an (A, B)-cycle. If D = Dy + S where
@ Do and S are self-adjoint regular operators;
9 S admits a bounded inverse and commutes with the A-action;

© S and Dy preserve each others domains and
[Do,S]ls =0 on DomDyS = DomSDy.

Q 7(A) C Lip(Dy),
we say that (£, D) is weakly degenerate.

When Dy = 0, the terminology degenerate cycle was coined by Kucerovsky motivated
by that if (£, D) is degenerate, the bounded Kasparov cycle (£, D|D|71) is
degenerate.
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A nonclassical example of a bordism

Degenerate cycles, continued

Theorem: Weak degeneracies and bordisms

If (£, D) is weakly degenerate it is null-bordant.

Sketch of proof.
Take F = £® L?(R,) and @ as the closure of

in0y + Do + XS : €°((0, 00), Dom(D)) — ¥,

where X € C>°(R.) is given by

X(x) = 1, near x =0
| VI+x2, forlarge x
Then Q*Q ~ —92 + x252 + (5% + D?). O
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A nonclassical example of a bordism

Weakly degenerate versus degenerate

We say that a bounded cycle (E, F) is weakly degenerate if F is invertible and
(E, F|F|™1) is degenerate.

Proposition: Lifting weak degeneracies

If (£, D) satisfies that b(E, D) = (E, D(1 4+ D?)~1/2) is weakly degenerate, then
(E, D) is null bordant.

(Zv D) ~bor (‘E: D +'7£D|D|_1)'

The decomposition D + vzD|D|~! = Dy + S, where Dy = D and S = v D|D| 1,
shows that D + yzD|D|~! is weakly degenerate

v

If A and B are separable C*-algebras, does there exist a dense *-subalgebra A C A for
which the bounded transform

B: (A, B) = KK«(A, B) is an isomorphism?
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A nonclassical example of a bordism

Thanks

Thanks for your attention!
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