Unbounded KK-theory and KK-bordisms

Magnus Goffeng

joint work with Robin Deeley and Bram Mesland

University of Gothenburg

161026 Warzaw

2 Bordisms in KK

Introduction

In NCG, a "noncommutative manifold" is a spectral triple ($\mathcal{A}, \mathcal{H}, D$):

 $\begin{cases} \mathcal{H} & \text{is a Hilbert space;} \\ \mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) & \text{is a }*\text{-subalgebra;} \\ D = D^*: \mathcal{H} \dashrightarrow \mathcal{H}, & \text{compatible with } \mathcal{A} \text{ through:} \end{cases}$

 $\mathcal{A} \subseteq \operatorname{Lip}_0(D) := \{ T \in \mathcal{B}(\mathcal{H}) : [D, T] \text{ bounded and } (T \pm T^*)(1 + D^*D)^{-1} \in \mathbb{K}(\mathcal{H}) \}.$

Prototypical example

For a Riemannian manifold M, a Clifford bundle E and the Dirac operator

 $\mathbb{D}: C_c^{\infty}(M, E) \to C_c^{\infty}(M, E),$

we form $D := \overline{\mathcal{P}}$. If *M* is complete, $(C_c^{\infty}(M), L^2(M, E), D)$ is a spectral triple.

Noncommutative topology

The noncommutative topology of $(\mathcal{A}, \mathcal{H}, D)$ is described by a class $[\mathcal{A}, \mathcal{H}, D] \in K^*(\mathcal{A})$, where $\mathcal{A} = \overline{\mathcal{A}}$ and $K^*(\mathcal{A}) := KK_*(\mathcal{A}, \mathbb{C})$ its K-homology.

Unbounded Kasparov cycles

An unbounded Kasparov cycle for (\mathcal{A}, B) is a pair (\mathcal{E}, D) where:

- \mathcal{E} is a (graded) (A, B)-Hilbert C^{*}-module;
- D: E --→ E is a self-adjoint regular operator such that A ⊆ Lip₀(D).

Let $Z_*(\mathcal{A}, B)$ denote the semigroup of (\mathcal{A}, B) -Kasparov cycles.

Subtleties in fixing \mathcal{A}

We can define the **set** of unbounded (A, B)-Kasparov modules:

 $\Psi_*(A,B) := \{ (\mathcal{A}, \mathcal{E}_B, D) : \ \mathcal{A} \subseteq A \text{ dense and } (\mathcal{E}_B, D) \text{ an } (\mathcal{A}, B) \text{-cycle} \}.$

The natural mapping $Z_*(\mathcal{A}, B) \rightarrow \Psi_*(\mathcal{A}, B)$ is rarely surjective!

(日)

Prototypical example

For a complete Riemannian manifold *M*, a *B*-bundle $\mathcal{E}_B \to M$ and a Dirac type operator

$$\mathbb{D}_{\mathcal{E}}: C^{\infty}_{c}(M, \mathcal{E}_{B}) \to C^{\infty}_{c}(M, \mathcal{E}_{B}),$$

 $(L^2(M, \mathcal{E}_B), D_{\mathcal{E}})$ is an unbounded Kasparov cycle for $(C_c^{\infty}(M), B)$.

Example of *B***-bundle:** If \tilde{M} is the universal cover of *M*, its Mishchenko bundle

$$\mathcal{L}_M := \tilde{M} \times_{\pi_1(M)} C^*(\pi_1(M)) \to M,$$

is a flat $C^*(\pi_1(M))$ -bundle of "rank" 1. Any Dirac type operator $\not D$ on a vector bundle $E \to M$ lifts to a Dirac operator

$$onumber \mathcal{D}_{\mathcal{L}}: C^{\infty}_{c}(M, E \otimes \mathcal{L}) \to C^{\infty}_{c}(M, E \otimes \mathcal{L})$$

KK-theory

The noncommutative topology is in this case encoded by *KK*-cycles, a pair (\mathcal{E}, F) where $F \in \operatorname{End}_B^*(\mathcal{E})$ satisfies:

$$a(F^2-1), a(F^*-F), [F,a] \in \mathbb{K}_B(\mathcal{E}), \forall a \in A.$$
 (1)

The bounded transform of an unbounded Kasparov cycle is a KK-cycle:

$$\beta(\mathcal{E}, D) := (\mathcal{E}, D(1 + D^2)^{-1/2}).$$

Relations

- **(**) If all terms in (1) are 0, we say that (\mathcal{E}, F) is *degenerate*.
- If F: [0,1] → End^{*}_B(E) is norm-continuous and (E, F(t)) is a KK-cycle for all t, we say that (E, F(0)) and (E, F(1)) are operator homotopic.
- KK_{*}(A, B) is the abelian group of KK-cycles modulo degenerate cycles and operator homotopy.

Building KK from unbounded cycles

Baaj-Julg '83

If A is separable, there is a dense $\mathcal{A}\subseteq A$ such that

 $\beta: Z_*(\mathcal{A}, B) \to KK_*(\mathcal{A}, B),$ is surjective for any B.

The bounded transform defines a surjection $\Psi_*(A, B) \to KK_*(A, B)$.

Motivating question

Can we do KK-theory only using unbounded Kasparov theory?

The Answer?

Blackadar writes in his K-theory book on page 165:

"We leave to the reader the task of appropriately formulating the equivalence relations on $\Psi_*(A, B)$ corresponding to the standard relations..."

Some notions of cycles

A symmetric chain...

...is a pair (\mathcal{E}, D) satisfying that D is a symmetric regular operator with

 $\mathcal{A} \subseteq \operatorname{Lip}(D) := \{T \in \operatorname{End}_B^*(\mathcal{E}) : [D, T] \text{ bounded}\}.$

A half-closed chain...

...is a symmetric chain (\mathfrak{E}, D) such that for any $a \in \mathcal{A}$

$$a$$
Dom $(D^*) \subseteq$ Dom (D) and $a(1 + D^*D)^{-1} \in \mathbb{K}_B(\mathcal{E})$.

If W is a compact Riemannian manifold with boundary and D a Dirac type operator on $\mathcal{E}_B \to W$, D defines a symmetric regular operator D_{min} with

$$\mathrm{Dom}(D_{\min}) := H^1_0(W, \mathcal{E}_B).$$

The pair $(L^2(W, \mathcal{E}_B, D_{min})$ is a symmetric $(C^{\infty}(\overline{W}), B)$ -chain and a half-closed $(C_c^{\infty}(W^{\circ}), B)$ -chain.

Hilsum bordisms

Let (\mathcal{F}, Q) be a symmetric chain (odd) and (\mathcal{E}, D) a cycle (even) for $(\mathcal{A}, \mathcal{B})$.

Boundary data

Boundary data for (\mathcal{E}, D) relative to (\mathcal{F}, Q) is a pair (θ, p) where

- $p \in \operatorname{End}_B^*(\mathcal{F})$ is a projection commuting with A;
- $\theta: p\mathcal{F} \to \mathcal{E} \otimes L^2[0,1]$ is an isomorphism.
- We define $b: C[0,1] \otimes A \to \operatorname{End}_B^*(\mathcal{F})$ by

$$b(\varphi \otimes a) := \theta^{-1}(\varphi \otimes a)\theta p + \varphi(1)a(1-p).$$

• We define $\Psi(D): \mathfrak{E}\otimes L^2[0,1] \dashrightarrow \mathfrak{E}\otimes L^2[0,1]$ as the closure of

 $i\gamma_{\mathcal{E}}\partial_x + D: C^\infty_c((0,1), \operatorname{Dom}(D)) \to \mathcal{E} \otimes L^2[0,1].$

Hilsum bordisms (almost there)

Cycles with boundary

We say that (\mathcal{E}, D) is a boundary of (\mathcal{F}, Q) with boundary data (θ, p) if

1 For $\varphi \in C^{\infty}_{c}(0,1]$ it holds that

 $b(arphi)\mathrm{Dom} Q^*\subseteq\mathrm{Dom} Q$ and $Q^*b(arphi)=Qb(arphi)$ on $\mathrm{Dom} Q^*.$

2 For $\varphi \in C_c^{\infty}(0,1)$ it holds that

 $\varphi \text{Dom} \Psi(D) = \theta b(\varphi) \text{Dom} Q$ and $Q = \theta^{-1} \Psi(D) \theta$ on $b(\varphi) \text{Dom} Q$.

(3) For $\varphi_1, \varphi_2 \in C^{\infty}[0, 1]$ satisfying $\varphi_1 \varphi_2 = 0$ it holds that

 $b(\varphi_1)Qb(\varphi_2)=0.$

イロト イポト イヨト イヨト 二日

Hilsum bordisms (for real this time)

Proposition (Hilsum)

If (\mathcal{E}, D) is the boundary of $(\mathcal{F}, Q, \theta, p)$, (\mathcal{F}, Q) becomes a symmetric $(C_c^{\infty}(0, 1] \otimes \mathcal{A}, B)$ -chain under $b : C[0, 1] \otimes \mathcal{A} \to \operatorname{End}_B^*(\mathcal{F})$ restricting to a half-closed $(C_c^{\infty}(0, 1) \otimes \mathcal{A}, B)$ -chain.

Definition: Hilsum bordisms

A bordism is a chain with boundary $(\mathcal{F}, Q, \theta, p)$ defining a half-closed $(C_c^{\infty}(0, 1] \otimes \mathcal{A}, B)$ -chain. We write

$$\partial(\mathcal{F}, Q, \theta, p) = (\mathcal{E}, D).$$

If $\partial(\mathcal{F}, Q, \theta, p) = (\mathcal{E}, D) - (\mathcal{E}', D')$ we write $(\mathcal{E}, D) \sim_{\mathit{bor}} (\mathcal{E}', D')$.

Theorem (Hilsum)

If
$$\partial(\mathcal{F}, Q, \theta, p) = (\mathcal{E}, D)$$
, then $\beta(\mathcal{E}, D) = 0$ in $KK_*(A, B)$.

The "obvious" example

The spin^c-bordism group

Classically, for a (compact) topological space X, the spin^c-bordism group is:

 $\Omega^{\mathrm{spin}^c}_*(X) := \{(M, f) : M \text{ closed spin}^c\text{-manifold and } f : M \to X\} / \sim_{\mathit{bor}},$

where $(M, f) \sim_{bor} 0$ if $(M, f) = \partial(W, g)$. Bordism invariance gives a mapping

$$\Omega^{\mathrm{spin}^c}_*(X) \ni (M,f) \mapsto f_*[D^M] = [(L^2(M,S_M),D^M)] \in K_*(X) = KK_*(C(X),\mathbb{C}).$$

The associated Hilsum bordism

For a Riemannian compact manifold X, the algebra of interest is $\mathcal{A} = \operatorname{Lip}(X)$. On a compact Riemannian spin^c-manifold with boundary W, and

 $g_W = \mathrm{d} x^2 + g_{\partial W}$ in a collar neighborhood $[0,1] \times \partial W \subseteq W$ of ∂W .

Assume that $f: W \to X$ is Lipschitz; inducing an action of $\operatorname{Lip}(X)$ on $L^2(W, S_W)$ as well as $H^1(W, S_W)$.

The collection $(L^2(W, S_W), D^W, id, \chi_{[0,1] \times \partial W})$ is a bordism of $(Lip(X), \mathbb{C})$ -cycles with

$$\partial(L^2(W,S_W),D^W,\mathrm{id},\chi_{[0,1]\times\partial W})=(L^2(\partial W,S_{\partial W}),D^{\partial W}).$$

Main results

Theorem (Deeley-Goffeng-Mesland '14)

Bordism defines an equivalence relation defining an abelian group:

$$\Omega_*(\mathcal{A},B):=Z_*(\mathcal{A},B)/\sim_{\mathit{bor}}$$
 .

This construction satisfies:

1 The bounded transform induces a homomorphism

 $\beta: \Omega_*(\mathcal{A}, B) \to KK_*(\mathcal{A}, B).$

For any separable C*-algebra A there is a dense *-subalgebra $\mathcal{A} \subseteq A$ making β surjective.

2) If
$$\mathcal{A} = \mathbb{C}$$
, $\Omega_*(\mathbb{C}, B) \cong K_*(B)$ via β .

- **3** If $C^{\infty}(X) \subseteq \mathcal{A} \subseteq \operatorname{Lip}(X)$ for a closed Riemannian manifold X, the bounded transform $\beta : \Omega_*(\mathcal{A}, B) \to KK_*(C(X), B)$ is split-surjective.
- If I ⊆ K(H) is a regular symmetrically normed ideal of compact operators the subgroup Ω^{*}_{*}(I, B) generated by essential cycles satisfies Ω^{*}_{*}(I, B) ≃ K_{*}(B).

The bread and butter of bordisms

The homotopy lemma

Let (\mathcal{E}, D_0) and (\mathcal{E}, D_1) be cycles. Assume that there is a dense submodule $\mathcal{W} \subseteq \mathcal{E}$ and $\hat{\mathcal{P}} : [0, 1] \to \operatorname{Hom}_{\mathcal{B}}(\mathcal{W}, \mathcal{E})$ such that

• \hat{p} defines an essentially self-adjoint regular $C[0,1] \otimes B$ -linear operator on $C[0,1] \otimes \mathcal{E}$ with closure \hat{D} such that

- the pointwise defined derivative $\hat{p}': [0,1] \to \operatorname{Hom}_{B}(\mathcal{W}, \mathcal{E})$ exists and $\hat{p}': [0,1] \to \operatorname{Hom}_{B}(\mathcal{W}, \mathcal{E})$
- $\hat{p}'(1+\hat{D}^2)^{-\frac{1}{2}}$ extends to a bounded operator on $C[0,1]\otimes \mathcal{E}$.

 $(\mathcal{E}, \hat{D}(t)) \text{ defines a cycle for any } t \text{ and } \sup_t \|[\hat{D}(t), a]\|_{\operatorname{End}^*_{\mathcal{B}}(\mathcal{E})} < \infty, \, \forall a \in \mathcal{A};$

3)
$$\hat{D}(j) = D_j$$
 in the endpoints $j = 0, 1$

Then

$$(\mathcal{E}, D_0) \sim_{bor} (\mathcal{E}, D_1).$$

Corollary: Bounded perturbations

The class of (\mathcal{E}, D) in $\Omega_*(\mathcal{A}, B)$ is not changed by ε -bounded perturbations of D.

・ 一 ・ ・ ・ ・ ・ ・

Degenerate cycles

Definition: Degeneracy of cycles

Let (\mathcal{E}, D) be an (\mathcal{A}, B) -cycle. If $D = D_0 + S$ where

- **1** D_0 and S are self-adjoint regular operators;
- 2 S admits a bounded inverse and commutes with the A-action;

 \bigcirc S and D_0 preserve each others domains and

 $[D_0, S]_s = 0$ on $Dom D_0 S = Dom SD_0$.

we say that (\mathcal{E}, D) is weakly degenerate.

When $D_0 = 0$, the terminology degenerate cycle was coined by Kucerovsky motivated by that if (\mathcal{E}, D) is degenerate, the bounded Kasparov cycle $(\mathcal{E}, D|D|^{-1})$ is degenerate.

・ロト ・得ト ・ヨト ・ヨト

Degenerate cycles, continued

Theorem: Weak degeneracies and bordisms

If (\mathcal{E}, D) is weakly degenerate it is null-bordant.

Sketch of proof.

Take $\mathcal{F} = \mathcal{E} \otimes L^2(\mathbb{R}_+)$ and Q as the closure of

$$i\gamma\partial_x + D_0 + XS: C_c^{\infty}((0,\infty), \operatorname{Dom}(D)) \to \mathcal{F},$$

where $X\in \mathcal{C}^\infty(\mathbb{R}_+)$ is given by

$$X(x) = egin{cases} 1, & ext{near } x = 0 \ \sqrt{1 + x^2}, & ext{for large } x \end{cases}$$

Then $Q^*Q \approx -\partial_x^2 + x^2S^2 + (S^2 + D^2).$

< 4 ₽ > < Ξ

Weakly degenerate versus degenerate

We say that a bounded cycle (\mathcal{E}, F) is weakly degenerate if F is invertible and $(\mathcal{E}, F|F|^{-1})$ is degenerate.

Proposition: Lifting weak degeneracies

If (\mathcal{E}, D) satisfies that $b(\mathcal{E}, D) = (\mathcal{E}, D(1 + D^2)^{-1/2})$ is weakly degenerate, then (\mathcal{E}, D) is null bordant.

Proof.

$$(\mathcal{E}, D) \sim_{bor} (\mathcal{E}, D + \gamma_{\mathcal{E}} D |D|^{-1}).$$

The decomposition $D + \gamma_{\mathcal{E}} D|D|^{-1} = D_0 + S$, where $D_0 = D$ and $S = \gamma_{\mathcal{E}} D|D|^{-1}$, shows that $D + \gamma_{\mathcal{E}} D|D|^{-1}$ is weakly degenerate

Question

If A and B are separable C*-algebras, does there exist a dense *-subalgebra $\mathcal{A} \subseteq A$ for which the bounded transform

 $\beta: \Omega_*(\mathcal{A}, B) \to KK_*(\mathcal{A}, B)$ is an isomorphism?

Thanks

Thanks for your attention!

Magnus Goffeng Bordisms and KK