Operator *-correspondences: Representations and pairings with unbounded *KK*-theory

Jens Kaad

October 26, 2016

Jens Kaad Operator *-correspondences and unbounded KK-theory

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

-

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

• $M_n(\mathcal{X})$ is complete;

э

向 ト イヨ ト イヨト

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

1 $M_n(\mathcal{X})$ is complete;

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

1 $M_n(\mathcal{X})$ is complete;

3

伺 ト イヨト イヨト

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

• $M_n(\mathcal{X})$ is complete;

Theorem (Ruan)

Any operator space \mathcal{X} is completely isometric to a closed subspace of $\mathcal{L}(H)$ for some Hilbert space H.

Operator *-algebras

Definition

An **operator** *-algebra is an operator space \mathcal{A} equipped with a completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

э

- < ∃ →

Operator *-algebras

Definition

An **operator** *-algebra is an operator space \mathcal{A} equipped with a completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

and a completely isometric involution

 $\dagger:\mathcal{A}\to\mathcal{A}$

Operator *-algebras

Definition

An **operator** *-algebra is an operator space \mathcal{A} equipped with a completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

and a completely isometric involution

$$\dagger:\mathcal{A}\to\mathcal{A}$$

Theorem (Blecher, K., Mesland)

Any operator *-algebra \mathcal{A} is completely bounded isomorphic to a closed subalgebra of $\mathscr{L}(H)$ for some Hilbert space H. Moreover, we may assume the existence of a selfadjoint unitary operator $U: H \to H$ such that $Ua^*U = a^{\dagger}$ for all $a \in \mathcal{A}$.

Example

• Let A be a *-subalgebra of a C*-algebra A.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

Example

- Let A be a *-subalgebra of a C*-algebra A.
- Suppose that we have a closed *-derivation

$$\delta: \mathcal{A} \to \mathcal{A} \qquad \delta(\mathbf{a}^*) = -\delta(\mathbf{a})^*$$

э

/□ ▶ < 글 ▶ < 글

Example

- Let A be a *-subalgebra of a C*-algebra A.
- Suppose that we have a closed *-derivation

$$\delta: \mathcal{A} \to \mathcal{A} \qquad \delta(\mathbf{a}^*) = -\delta(\mathbf{a})^*$$

Then the (canonical matrix norms coming from the) algebra homomorphism

$$\mathcal{A} o M_2(A) \qquad a \mapsto \left(egin{array}{cc} a & 0 \\ \delta(a) & a \end{array}
ight)$$

provides A with an operator *-algebra structure.

Let \mathcal{A} and \mathcal{B} be operator *-algebras. An **operator** *-correspondence is an operator space \mathcal{X} equipped with

Let \mathcal{A} and \mathcal{B} be operator *-algebras. An **operator** *-correspondence is an operator space \mathcal{X} equipped with

Completely contractive module actions

 $\mathcal{A}\times\mathcal{X}\to\mathcal{X}\qquad\text{and}\qquad\mathcal{X}\times\mathcal{B}\to\mathcal{X}$

Let \mathcal{A} and \mathcal{B} be operator *-algebras. An **operator** *-**correspondence** is an operator space \mathcal{X} equipped with

Completely contractive module actions

 $\mathcal{A}\times\mathcal{X}\to\mathcal{X}\qquad\text{and}\qquad\mathcal{X}\times\mathcal{B}\to\mathcal{X}$

A completely contractive and non-degenerate inner product

$$\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{B}$$

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Then A and B are completely bounded isomorphic to closed subalgebras π(A), π(B) ⊆ ℒ(H) and X is completely bounded isomorphic to a closed subspace π(X) ⊆ ℒ(H) for some Hilbert space H such that

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Then A and B are completely bounded isomorphic to closed subalgebras π(A), π(B) ⊆ ℒ(H) and X is completely bounded isomorphic to a closed subspace π(X) ⊆ ℒ(H) for some Hilbert space H such that

2)
$$\pi(a)\pi(\xi) = \pi(a \cdot \xi)$$
 , $\pi(\xi)\pi(b) = \pi(\xi \cdot b)$.

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Then A and B are completely bounded isomorphic to closed subalgebras π(A), π(B) ⊆ ℒ(H) and X is completely bounded isomorphic to a closed subspace π(X) ⊆ ℒ(H) for some Hilbert space H such that

2
$$\pi(a)\pi(\xi) = \pi(a \cdot \xi)$$
 , $\pi(\xi)\pi(b) = \pi(\xi \cdot b)$.

Over the existence of a selfadjoint unitary operator U : H → H such that

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Then A and B are completely bounded isomorphic to closed subalgebras π(A), π(B) ⊆ ℒ(H) and X is completely bounded isomorphic to a closed subspace π(X) ⊆ ℒ(H) for some Hilbert space H such that

2)
$$\pi(a)\pi(\xi) = \pi(a\cdot\xi)$$
 , $\pi(\xi)\pi(b) = \pi(\xi\cdot b)$.

Over the existence of a selfadjoint unitary operator U : H → H such that

$${f O}$$
 $U\pi(a)^*U=\pi(a^\dagger)$, $U\pi(b)^*U=\pi(b^\dagger);$

Let \mathcal{X} be an operator *-correspondence from \mathcal{A} to \mathcal{B} .

Then A and B are completely bounded isomorphic to closed subalgebras π(A), π(B) ⊆ ℒ(H) and X is completely bounded isomorphic to a closed subspace π(X) ⊆ ℒ(H) for some Hilbert space H such that

2)
$$\pi(a)\pi(\xi) = \pi(a \cdot \xi)$$
 , $\pi(\xi)\pi(b) = \pi(\xi \cdot b)$.

Over the existence of a selfadjoint unitary operator U : H → H such that

$${old O}~~U\pi(a)^*U=\pi(a^\dagger)$$
 , $~~U\pi(b)^*U=\pi(b^\dagger);$

Example

Let A, B be *-subalgebras of C*-algebras A and B, respectively;

э

-

Example

- Let A, B be *-subalgebras of C*-algebras A and B, respectively;
- Let X be a sub-hermitian A-B-bimodule of a C*-correspondence X from A to B;

Example

- Let A, B be *-subalgebras of C*-algebras A and B, respectively;
- Let X be a sub-hermitian A-B-bimodule of a C*-correspondence X from A to B;
- Suppose that we have a closed *-derivation

$$\delta: \mathcal{B} \to B$$

Example

- Let A, B be *-subalgebras of C*-algebras A and B, respectively;
- Let X be a sub-hermitian A-B-bimodule of a C*-correspondence X from A to B;
- Suppose that we have a closed *-derivation

$$\delta: \mathcal{B} \to B$$

9 Suppose that we have a closed metric δ -connection

 $abla : \mathcal{X} o \mathcal{X} \qquad \langle
abla (\xi), \eta
angle + \langle \xi,
abla (\eta)
angle = \delta(\langle \xi, \eta
angle)$

such that $[\nabla, a] : \overline{\mathcal{X}} \to X$ is bounded in operator norm for all $a \in \mathcal{A}$.

Then the matrix norms coming from the representations:

< ≣ ► <

Then the matrix norms coming from the representations:

I ≡ →

Then the matrix norms coming from the representations:

< ≣ ► <

Then the matrix norms coming from the representations:

э

Then the matrix norms coming from the representations:

Provide \mathcal{X} with the structure of an operator *-correspondence from \mathcal{A}_{∇} to \mathcal{B} .

Convention

From now on, any operator *-algebra A comes equipped with a fixed C*-norm || · ||. The C*-closure A is σ-unital and the inclusion A → A is completely bounded.

Convention

- From now on, any operator *-algebra A comes equipped with a fixed C*-norm || · ||. The C*-closure A is σ-unital and the inclusion A → A is completely bounded.
- Prom now on, any operator *-correspondence X from A to B is assumed to sit densely inside an essential and countably generated C*-correspondence X from A to B.

A modular spectral triple over an operator *-algebra ${\mathcal B}$ consists of

< ∃ >

A modular spectral triple over an operator *-algebra ${\mathcal B}$ consists of

 A separable Hilbert space G with an essential *-homomorphism π : B → ℒ(G);

A modular spectral triple over an operator *-algebra ${\mathcal B}$ consists of

- A separable Hilbert space G with an essential *-homomorphism $\pi : B \to \mathscr{L}(G);$
- 2 An unbounded selfadjoint operator $D : \mathscr{D}(D) \to G$;

A modular spectral triple over an operator *-algebra ${\mathcal B}$ consists of

- A separable Hilbert space G with an essential *-homomorphism π : B → ℒ(G);
- 2 An unbounded selfadjoint operator $D : \mathscr{D}(D) \to G$;
- **3** A bounded positive operator Γ : $G \rightarrow G$ with dense image;

A modular spectral triple over an operator *-algebra ${\mathcal B}$ consists of

- A separable Hilbert space G with an essential *-homomorphism $\pi: B \to \mathscr{L}(G)$;
- 2 An unbounded selfadjoint operator $D : \mathscr{D}(D) \to G$;
- **③** A bounded positive operator $\Gamma : G \rightarrow G$ with dense image;

Such that the following holds:

Modular spectral triples

Definition

• $b \cdot (i + D)^{-1} : G \to G$ is compact for all $b \in B$

Jens Kaad Operator *-correspondences and unbounded KK-theory

□ ▶ < □ ▶ < □</p>

- $b \cdot (i + D)^{-1} : G \to G$ is compact for all $b \in B$
- Intere exists a completely bounded map

$$\rho_{\Gamma}: \widetilde{\mathcal{B}} \to \mathscr{L}(G)$$

such that

$$\Gamma^{1/2}\rho_{\Gamma}(b,\lambda)\Gamma^{1/2}(\xi) = D(b+\lambda)\Gamma(\xi) - \Gamma(b+\lambda)D(\xi)$$

for all $(b,\lambda) \in \widetilde{\mathcal{B}}$ and all $\xi \in \mathscr{D}(D)$.

♬▶ ◀ ᆿ▶

- $b \cdot (i + D)^{-1} : G \to G$ is compact for all $b \in B$
- Intere exists a completely bounded map

$$\rho_{\Gamma}: \widetilde{\mathcal{B}} \to \mathscr{L}(G)$$

such that

$$\Gamma^{1/2}\rho_{\Gamma}(b,\lambda)\Gamma^{1/2}(\xi) = D(b+\lambda)\Gamma(\xi) - \Gamma(b+\lambda)D(\xi)$$

for all $(b, \lambda) \in \widetilde{\mathcal{B}}$ and all $\xi \in \mathscr{D}(D)$.

Some of the sequence {b · Γ(Γ + 1/n)⁻¹} converges in operator norm to b for all b ∈ B.

Let (\mathcal{B}, H, D) be a spectral triple $(\mathcal{B} \text{ is an operator } *-algebra and <math>[D, \cdot] : \mathcal{B} \to \mathcal{L}(H)$ is completely bounded). Let $x \in \mathcal{B}$.

Let (\mathcal{B}, H, D) be a spectral triple $(\mathcal{B} \text{ is an operator } *-algebra and <math>[D, \cdot] : \mathcal{B} \to \mathcal{L}(H)$ is completely bounded). Let $x \in \mathcal{B}$.

1 Define the operator *-subalgebra $\mathcal{B}_x := \overline{x\mathcal{B}x^*} \subseteq \mathcal{B}$.

Let (\mathcal{B}, H, D) be a spectral triple $(\mathcal{B} \text{ is an operator } *-algebra and <math>[D, \cdot] : \mathcal{B} \to \mathscr{L}(H)$ is completely bounded). Let $x \in \mathcal{B}$.

- **1** Define the operator *-subalgebra $\mathcal{B}_x := \overline{x\mathcal{B}x^*} \subseteq \mathcal{B}$.
- 2 Define the Hilbert subspace $Im(x) \subseteq H$.

Let (\mathcal{B}, H, D) be a spectral triple $(\mathcal{B} \text{ is an operator } *-algebra and <math>[D, \cdot] : \mathcal{B} \to \mathscr{L}(H)$ is completely bounded). Let $x \in \mathcal{B}$.

- **1** Define the operator *-subalgebra $\mathcal{B}_x := \overline{x\mathcal{B}x^*} \subseteq \mathcal{B}$.
- **2** Define the Hilbert subspace $Im(x) \subseteq H$.
- Oefine the unbounded selfadjoint operator
 - $D_x := \overline{xDx^*} : \mathscr{D}(D_x) \to H \text{ with core } x(\mathscr{D}(D)) \subseteq \overline{\mathrm{Im}(x)}.$

Let (\mathcal{B}, H, D) be a spectral triple $(\mathcal{B} \text{ is an operator } *-algebra and <math>[D, \cdot] : \mathcal{B} \to \mathscr{L}(H)$ is completely bounded). Let $x \in \mathcal{B}$.

- **1** Define the operator *-subalgebra $\mathcal{B}_{x} := \overline{x\mathcal{B}x^{*}} \subseteq \mathcal{B}$.
- 2 Define the Hilbert subspace $Im(x) \subseteq H$.
- Oefine the unbounded selfadjoint operator

 $D_x := \overline{xDx^*} : \mathscr{D}(D_x) \to H \text{ with core } x(\mathscr{D}(D)) \subseteq \overline{\mathrm{Im}(x)}.$

Then the triple $(\overline{Im(x)}, D_x, xx^*)$ is a modular spectral triple over \mathcal{B}_x .

The **unbounded** K-homology over an operator *-algebra \mathcal{B} consists of modular spectral triples modulo bounded perturbations and unitary equivalences. The unbounded K-homology over \mathcal{B} is an abelian monoid denoted by $UK_*(\mathcal{B}, \mathbb{C})$.

 Suppose that D := (G, D, Γ) is a modular spectral triple over an operator *-algebra B. Then the pair F_D := (G, D(1 + D²)^{-1/2}) is a Kasparov module over the C*-completion B.

- Suppose that D := (G, D, Γ) is a modular spectral triple over an operator *-algebra B. Then the pair F_D := (G, D(1 + D²)^{-1/2}) is a Kasparov module over the C*-completion B.
- The assignment 𝒴 → F_𝒴 induces a well-defined homomorphism

$$F: UK_*(\mathcal{B}, \mathbb{C}) \to K^*(B)$$

with values in analytic K-homology.

• The unbounded Kasparov product yields a well-defined and explicit associative and bilinear pairing:

 $\widehat{\otimes}_{\mathcal{B}}: \mathit{M}(\mathcal{A},\mathcal{B}) imes \mathit{UK}_*(\mathcal{B},\mathbb{C}) o \mathit{UK}_*(\mathcal{A},\mathbb{C})$

where $M(\mathcal{A}, \mathcal{B})$ is a suitable abelian monoid consisting of compact operator *-correspondences.

• The unbounded Kasparov product yields a well-defined and explicit associative and bilinear pairing:

 $\widehat{\otimes}_{\mathcal{B}}: \mathit{M}(\mathcal{A},\mathcal{B}) imes \mathit{UK}_*(\mathcal{B},\mathbb{C}) o \mathit{UK}_*(\mathcal{A},\mathbb{C})$

where $M(\mathcal{A}, \mathcal{B})$ is a suitable abelian monoid consisting of compact operator *-correspondences.

This pairing is compatible with the bounded Kasparov product

$$\widehat{\otimes}_B : KK_0(A, B) \times K^*(B) \to K^*(A)$$

after taking bounded transforms.