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Operator spaces

Definition

An operator space is a vector space X equipped with a norm
‖ · ‖X : Mn(X )→ [0,∞) for each n ∈ N such that

1 Mn(X ) is complete;

2 ‖ξ ⊕ η‖X = max{‖ξ‖X , ‖η‖X };
3 ‖v · ξ · w‖X ≤ ‖v‖C · ‖ξ‖X · ‖w‖C.

Theorem (Ruan)

Any operator space X is completely isometric to a closed subspace
of L (H) for some Hilbert space H.
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Operator ∗-algebras

Definition

An operator ∗-algebra is an operator space A equipped with
a completely contractive product

m : A×A → A

and a completely isometric involution

† : A → A

Theorem (Blecher, K., Mesland)

Any operator ∗-algebra A is completely bounded isomorphic to a
closed subalgebra of L (H) for some Hilbert space H. Moreover,
we may assume the existence of a selfadjoint unitary operator
U : H → H such that Ua∗U = a† for all a ∈ A.
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∗-derivations

Example

1 Let A be a ∗-subalgebra of a C ∗-algebra A.

2 Suppose that we have a closed ∗-derivation

δ : A → A δ(a∗) = −δ(a)∗

3 Then the (canonical matrix norms coming from the) algebra
homomorphism

A → M2(A) a 7→
(

a 0
δ(a) a

)
provides A with an operator ∗-algebra structure.
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Operator ∗-correspondences

Definition

Let A and B be operator ∗-algebras. An operator
∗-correspondence is an operator space X equipped with

1 Completely contractive module actions

A×X → X and X × B → X

2 A completely contractive and non-degenerate inner product

〈·, ·〉 : X × X → B
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Representations of operator ∗-correspondences

Theorem (Blecher, K. Mesland)

Let X be an operator ∗-correspondence from A to B.

1 Then A and B are completely bounded isomorphic to closed
subalgebras π(A) , π(B) ⊆ L (H) and X is completely
bounded isomorphic to a closed subspace π(X ) ⊆ L (H) for
some Hilbert space H such that

2 π(a)π(ξ) = π(a · ξ) , π(ξ)π(b) = π(ξ · b).

3 Moreover, we may assume the existence of a selfadjoint
unitary operator U : H → H such that

4 Uπ(a)∗U = π(a†) , Uπ(b)∗U = π(b†);

5 Uπ(ξ)∗Uπ(η) = π(〈ξ, η〉).
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Metric connections

Example

1 Let A, B be ∗-subalgebras of C ∗-algebras A and B,
respectively;

2 Let X be a sub-hermitian A-B-bimodule of a
C ∗-correspondence X from A to B;

3 Suppose that we have a closed ∗-derivation

δ : B → B

4 Suppose that we have a closed metric δ-connection

∇ : X → X 〈∇(ξ), η〉+ 〈ξ,∇(η)〉 = δ(〈ξ, η〉)

such that [∇, a] : X → X is bounded in operator norm for all
a ∈ A.
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Metric connections

Example (Continued)

Then the matrix norms coming from the representations:

1 π : A → B(X ⊕ X ) a 7→
(

a 0
[∇, a] a

)
2 π : X → B(B ⊕ B,X ⊕ X ) ξ 7→

(
ξ 0
∇(ξ) ξ

)
3 π : B → B(B ⊕ B) b 7→

(
b 0
δ(b) b

)
Provide X with the structure of an operator ∗-correspondence
from A∇ to B.
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C ∗-completions

Convention

1 From now on, any operator ∗-algebra A comes equipped with
a fixed C ∗-norm ‖ · ‖. The C ∗-closure A is σ-unital and the
inclusion A → A is completely bounded.

2 From now on, any operator ∗-correspondence X from A to B
is assumed to sit densely inside an essential and countably
generated C ∗-correspondence X from A to B.
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Modular spectral triples

Definition

A modular spectral triple over an operator ∗-algebra B
consists of

1 A separable Hilbert space G with an essential
∗-homomorphism π : B → L (G );

2 An unbounded selfadjoint operator D : D(D)→ G ;
3 A bounded positive operator Γ : G → G with dense image;

Such that the following holds:
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Modular spectral triples

Definition

1 b · (i + D)−1 : G → G is compact for all b ∈ B

2 There exists a completely bounded map

ρΓ : B̃ → L (G )

such that

Γ1/2ρΓ(b, λ)Γ1/2(ξ) = D(b + λ)Γ(ξ)− Γ(b + λ)D(ξ)

for all (b, λ) ∈ B̃ and all ξ ∈ D(D).

3 The sequence
{

b · Γ(Γ + 1/n)−1
}

converges in operator norm
to b for all b ∈ B.
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Localization of spectral triples

Example (Localization of spectral triples)

Let (B,H,D) be a spectral triple (B is an operator ∗-algebra
and [D, ·] : B → L (H) is completely bounded). Let x ∈ B.

1 Define the operator ∗-subalgebra Bx := xBx∗ ⊆ B.
2 Define the Hilbert subspace Im(x) ⊆ H.
3 Define the unbounded selfadjoint operator

Dx := xDx∗ : D(Dx)→ H with core x(D(D)) ⊆ Im(x).

Then the triple (Im(x),Dx , xx∗) is a modular spectral triple
over Bx .
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Unbounded K -homology

Definition

The unbounded K -homology over an operator ∗-algebra B
consists of modular spectral triples modulo bounded perturbations
and unitary equivalences. The unbounded K -homology over B is
an abelian monoid denoted by UK∗(B,C).
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The bounded transform

Theorem (K.)

1 Suppose that D := (G ,D, Γ) is a modular spectral triple over
an operator ∗-algebra B. Then the pair
FD := (G ,D(1 + D2)−1/2) is a Kasparov module over the
C ∗-completion B.

2 The assignment D 7→ FD induces a well-defined
homomorphism

F : UK∗(B,C)→ K ∗(B)

with values in analytic K -homology.
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The unbounded Kasparov product

Theorem (K.)

1 The unbounded Kasparov product yields a well-defined and
explicit associative and bilinear pairing:

⊗̂B : M(A,B)× UK∗(B,C)→ UK∗(A,C)

where M(A,B) is a suitable abelian monoid consisting of
compact operator ∗-correspondences.

2 This pairing is compatible with the bounded Kasparov
product

⊗̂B : KK0(A,B)× K ∗(B)→ K ∗(A)

after taking bounded transforms.
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1 The unbounded Kasparov product yields a well-defined and
explicit associative and bilinear pairing:

⊗̂B : M(A,B)× UK∗(B,C)→ UK∗(A,C)

where M(A,B) is a suitable abelian monoid consisting of
compact operator ∗-correspondences.

2 This pairing is compatible with the bounded Kasparov
product

⊗̂B : KK0(A,B)× K ∗(B)→ K ∗(A)

after taking bounded transforms.
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